DETERMINATION OF FLOOD LOAD ON BRIDGE DECK

KUA CHIN TONG

SCHOOL OF CIVIL ENGINEERING UNIVERSITI SAINS MALAYSIA 2017

DETERMINATION OF FLOOD LOAD ON BIDGE DECK

By

KUA CHIN TONG

This dissertation is submitted to

UNIVERSITI SAINS MALAYSIA

As partial fulfilment of requirement for the degree of

BACHELOR OF ENGINEERING (HONS.) (CIVIL ENGINEERING)

School of Civil Engineering, Universiti Sains Malaysia

June 2017

SCHOOL OF CIVIL ENGINEERING ACADEMIC SESSION 2016/2017

FINAL YEAR PROJECT EAA492/6 DISSERTATION ENDORSEMENT FORM

Name of Student: KUA	CHIN TONG	
I hereby declare that all c examiner have been take	corrections and comments ma n into consideration and recti	de by the supervisor(s) an fied accordingly.
Signature:		Approved by:
Kua Chin Tong	– Name of Supervisor : A	(Signature of Supervisor) Assoc. Prof. Dr. Lau Tze l
	Date :	Approved by:
		(Signature of Examiner)

ACKNOWLEDGEMENT

I am truly indebted to so many individuals whose guidance and assistances that brought me to the completion of my research. I would like to take this opportunity to express my special thanks and appreciation to my project supervisor, Assoc. Prof. Dr. Lau Tze Liang, for his invaluable support, guidance and extraordinary patience throughout my whole final year project journey. Moreover, he spared his time every week to listen and discuss the problems faced in the research. He also provided many other learning platforms for students to explore new knowledge and develop a spirit of adventure in regard to research. Without his help, this dissertation would not have been possible.

Besides that, I also would like to thank Mr. Moon Wei Chek who have guided me in the using of Flow-3D[®] and spent his time in explaining the way to interpret the raw data. Apart from that, the credits are also given to Mr. Chiew Chang Chyau, Mr. Cheah Yi Ben and Mr. Tan Chin Guan for helping me in the experimental works in this research.

Furthermore, I also would like to thank the School of Civil Engineering and River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia for the opportunity of undertaking part of this study using its facility. Special acknowledgements are due to the technical teams who have been very helpful in addressing the technical issues arisen when performing laboratory works.

Last but not least, I also would like to thank all those who have directly and indirectly guided me in accomplishing this dissertation.

ABSTRAK

Banyak jambatan telah dirosakkan semasa banjir di seluruh dunia termasuk banjir yang terkini di pantai timur Semenanjung Malaysia pada Disember 2014. Punca utama yang menyebabkan kerosakan jambatan semasa banjir telah dikaji. Objektif utama kajian yang berasaskan simulasi berangka ini adalah untuk menentukan kesan pelbagai kedalaman aliran, halaju aliran dan ketinggian geladak jambatan yang terdiri daripada lima galang terhadap beban hidraulik pada jambatan semasa banjir berlaku. Selain itu, hubungan antara pekali seret (C_D) , pekali daya angkat (C_L) , dan pekali momen (C_M) berkenaan dengan nisbah pembanjiran (h^*) , nisbah kehampiran (P_r) dan nombor Froude (Fr) telah dikaji. Julat halaju banjir di antara 1 m/s hingga 8.22 m/s telah digunakan dan kedalaman aliran 5 m hingga 14.3 m telah dipertimbangkan. Kelegaan geladak jambatan adalah dalam julat 1.5 m hingga 6.0 m. Eksperimen fizikal yang terdiri daripada kes tenggelam penuh dan separa penuh telah dilakukan untuk mengesahkan keputusan daripada simulasi berangka. Untuk hubungan dengan nisbah pembanjiran, pekali seret dan pekali daya angkat, mempunyai julat kira-kira 0.3 hingga 5.2 dan -2.4 ke hampir 0, masing-masing. Pekali momen yang diperolehi daripada kajian ini adalah dalam julat 0.3 hingga 14.1. Pekali daya angkat dan pekali momen berkenaan dengan nisbah kehampiran kebanyakannya dalam julat -2 hingga 2 dan -6 hingga 15. Pekali seret mempunyai nilai positif dalam julat 0.5 hingga 5 untuk hubungan dengan nisbah kehampiran. Graf menghubungkaitkan pekali seret, pekali daya angkat dan pekali momen dengan nisbah pembanjiran, nisbah kehampiran dan nombor Froude telah dihasilkan. Keputusan kajian adalah berguna untuk jurutera untuk menganggarkan beban hidrodinamik ke atas jambatan yang ditenggelami penuh atau separa penuh semasa banjir.

ABSTRACT

Many bridges were damaged during flood worldwide including the recent flood happened in East Coast of Peninsular Malaysia in December 2014. The fundamental causes of bridge failure during flooding are reviewed. The main objective of this numerical simulation based research are to determine the effect of various flow depths, flow velocities and elevations of the five-girder bridge deck to the hydrodynamic loading on bridge deck during flood events. Moreover, the relationship between the drag coefficient (C_D), lift coefficient (C_L), moment coefficient (C_M) with respect to the inundation ratio (h^*) , proximity ratio (P_r) and Froude number (Fr) were developed. The range of the flood velocity simulated in this study was 1 m/s to 8.22 m/s and the flow depth of 5 m to 14.3 m was considered. The vertical clearance of the bridge deck is within the range of 1.5 m to 6.0 m. A physical experiment consisting partially submerged and fully submerged cases was conducted to validate the numerical results. From the numerical analysis, the graphs of the drag coefficient, lift coefficient and moment coefficient with respect to inundation ratio and Froude number were plotted. For the relationship with inundation ratio, drag and lift coefficient have a range of about 0.3 to 5.2 and -2.4 to nearly 0, respectively. Moment coefficients obtained from this study are in the range of 0.3 to 14.1. Lift and moment coefficient with respect to the proximity ratio are mostly in the range -2 to 2 and -6 to 15. The drag coefficient have all positive value in the range of 0.5 to 5 for the relationship with proximity ratio. The results of this study are useful for engineers to estimate the hydrodynamic loadings on bridge deck in designing new or retrofitting existing bridge so that it can withstand the hydrodynamic forces under partially or completely inundated cases.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv
NOMENCLATURES	xv

Background	. 1
Problem Statement	. 6
Objectives	.7
Scope of Work	. 8
Justification of Research	. 8
Structure of Dissertation	.9
	Background Problem Statement Objectives Scope of Work Justification of Research Structure of Dissertation

(CHAP	FER 2	10
	2.1	Quartieur	10
	2.1		10
	2.2	Theory of Forces Acting on Inundated Bridge Decks	10
	2.2	.1 Drag Force and Coefficient of Drag (C_D)	11
	2.2	.2 Lift Force and Coefficient of Lift (C_L)	14
	2.2	.3 Moment and Coefficient of Moment (C_M)	14
	2.3	Flood Design Guidelines and Considerations	15
	2.4	Physical Simulation to Evaluate Flood Loads on Bridge Structures	17
	2.5	Numerical Studies to Evaluate Flood Loads on Bridge Structures	20

2.6	Summary	27
CHAP	ГЕR 3	28
3.1	Overview	28
3.2	Desk Study and Data Collection	30
3.3	Design of Numerical Experiment	31
3.3	.1 Computational Fluid Dynamics Program – FLOW-3D [®]	31
3.3	.2 Determination of Optimum Mesh Size	34
3.4	Design of Physical Experiment	35
3.4	.1 Coordinate System	36
3.4	.2 Definition of Proximity Ratio (P_r) and Inundation Ratio (h^*)	36
3.4	.3 Physical Bridge Model Scaling Based on Froude Number Similarity	37
3.4	.4 Hydraulic Wave Flume	39
3.4	.5 Instrumentation	40
3.4	.6 Calibration of Instruments	43
3.4	.7 Execution of Physical Modelling	44
3.5	Validation of Software, FLOW-3D [®]	47
3.6	Simulation of Numerical Model	50
3.7	Result Analysis	54
CHAP	ΓER 4	55
4.1	Introduction	55
4.2	Contour Plots for Variable Around Scaled Bridge Decks	55
4.2	.1 Velocity Distribution	55
4.2	.2 Pressure Distribution	58
4.3	Time Histories of Flood Load Acting on Bridge	61
4.4	Relationship Between Hydrodynamic Forces and Inundation Ratio	65
4.4	.1 Relationship Developed for Drag Coefficient, <i>C</i> _D	65
4.4	.2 Relationship Developed for Lift Coefficient, <i>C</i> _L	66
4.4	.3 Relationship Developed for Moment Coefficient, C_M	67
4.5	Relationship Between Hydrodynamic Forces and Froude Number	67
4.5	.1 Relationship Developed for Drag Coefficient, <i>C</i> _D	67

4.5.2	Relationship Developed for Lift Coefficient, C _L	. 68
4.5.3	Relationship Developed for Moment Coefficient, C _M	. 69

CHAF	PTER 5	
5.1	Conclusions	
5.2	Recommendations	
REFE	ERENCES	

APPENDIX A: Time History of Drag Force and Lift Force

LIST OF FIGURES

Figure 1.1	Wash Away of the Decks of Pulau Setelu Bridge in Kelantan (Thestar, 2015)	3
Figure 1.2	Debris Accumulated at Bridges in Kelantan During the Recent Flood (Straitstimes, 2014)	3
Figure 1.3	The Partially Collapse of Aur Gading Bridges in Pahang (Astroawani, 2015)	3
Figure 1.4	Bridge Collapse During the Flood Event in Lower Dir (BBC, 2016)	4
Figure 1.5	The Collapse of the Suspension Bridge due to the Flash Flood (The Telegraph, 2016)	5
Figure 1.6	The Bridge Collapsed in Heavy Rain in Kangra District of Himachal Pradesh on 11 August 2016 (Newscrunch, 2016)	5
Figure 1.7	The Mumbai-Goa Highway Bridge Collapse on 2 August 2016 (CNN, 2016)	6
Figure 2.1	Sketch of Forces Acting on Bridge Deck	11
Figure 2.2	Pressure on an Immersed Body (Jempson, 2000)	12
Figure 2.3	Drag Coefficient as Function of Submergence (Apelt, 1965)	13
Figure 2.4	The Graph of h^* with Respect to the C_D (Malavasi and Guadagnini, 2003)	17
Figure 2.5	Dependence of the Experimental Dynamic Lift Coefficient on h^* and Fr (Malavasi and Guadagnini, 2003)	18
Figure 2.6	Dependence of the Experimental Moment Coefficient on h^* and Fr (Malavasi and Guadagnini, 2003)	18
Figure 2.7	Comparison Between the Results of (Malavasi and Guadagnini, 2003) for <i>Fr</i> Approximately 0.7, and 0.8 and Data from (Tainsh, 1965) and (Denson, 1982)	18
Figure 2.8	Superstructure A - C_D as a Function of h^* and Fr (Jempson, 2000)	19

Figure 2.9	Superstructure A – C_L as a Function of h^* and Fr (Jempson, 2000)	19
Figure 2.10	Superstructure A – C_M as a Function of h^* and Fr (Jempson, 2000)	20
Figure 2.11	Comparison between Physical and Numerical Result for Drag Coefficient (Patil et al., 2009)	21
Figure 2.12	Comparison between Physical and Numerical Result for Lift Coefficient (Patil et al., 2009)	21
Figure 2.13	Tested Mesh Refinements: (a) Basic Mesh, (b) Refined Near Bridge, (c) Fully Refined (Adhikary et al., 2010)	22
Figure 2.14	Drag Coefficient for Single-Phase Model with Respect to Inundation Ratio (Adhikary et al., 2010)	23
Figure 2.15	Lift Coefficient for Single-Phase Model with Respect to Inundation Ratio (Adhikary et al., 2010)	23
Figure 2.16	Comparison of Physical and Numerical Results of the Drag Coefficient for Six-Girder Bridge Deck (Afzal, 2010)	24
Figure 2.17	Comparison of Physical and Numerical Results of the Lift Coefficient for Six-Girder Bridge Deck (Afzal, 2010)	25
Figure 2.18	Comparison of Physical and Numerical Results of the Moment Coefficient for Six-Girder Bridge Deck (Afzal, 2010)	25
Figure 2.19	Comparison of Physical and Numerical Results of the Drag Coefficient for Three-Girder Bridge Deck (Afzal, 2010)	26
Figure 2.20	Comparison of Physical and Numerical Results of the Lift Coefficient for Three-Girder Bridge Deck (Afzal, 2010)	26
Figure 2.21	Comparison of Physical and Numerical Results of the Moment Coefficient for Three-Girder Bridge Deck (Afzal, 2010)	27
Figure 3.1	Research Flow Chart	29
Figure 3.2	Computational Domain of the CFD in FLOW-3D [®]	33
Figure 3.3	Boundary Conditions for Single-Phase Model	34
Figure 3.4	Convergence Test with Different Sizes of Mesh	35

Figure 3.5	Global Coordinate System	36
Figure 3.6	Dimensions for Calculating P_r and h^*	37
Figure 3.7	Dimension of Bridge Deck	39
Figure 3.8	Schematic Diagram of Hydraulic Wave Flume	39
Figure 3.9	Hydraulic Flume at REDAC, USM	40
Figure 3.10	Schematic Diagram of Data Acquisition System	41
Figure 3.11	Instruments and Devices Used	42
Figure 3.12	Calibration of a Load Cell at <i>x</i> -Component	43
Figure 3.13	Correlations Between the Applied Load and Strain for F_x and the Load Cell	44
Figure 3.14	Correlations Between the Applied Load and Strain for F_z and the Load Cell	44
Figure 3.15	Setup of Bridge Model with Load Cell	45
Figure 3.16	Force Time Histories at the Location of Bridge Model for Partially Submerged Case	46
Figure 3.17	Force Time Histories at the Location of Bridge Model for Fully Submerged Case	46
Figure 3.18	Velocity Time Histories for Partially Submerged Case	46
Figure 3.19	Velocity Time Histories for Fully Submerged Case	47
Figure 3.20	Physical Simulation for Fully Submerged Case	48
Figure 3.21	Numerical Simulation for Fully Submerged Case	48
Figure 3.22	Physical Simulation for Partially Submerged Case	49
Figure 3.23	Numerical Simulation for Partially Submerged Case	49
Figure 4.1	Velocity Contour for Case H7V1Z5.5 (Fr = 0.121) at $t = 81.6$ s	56
Figure 4.2	Velocity Contour for Case H7V1Z3.5 ($Fr = 0.121$) at $t = 81.6$ s	56
Figure 4.3	Velocity Contour for Case H7V1Z2.5 ($Fr = 0.121$) at $t = 81.6$ s	56
Figure 4.4	Velocity Contour for Case H5V5Z4.5 ($Fr = 0.714$) at $t = 69$ s	57

Figure 4.5	Velocity Contour for Case H5V5Z3.5 ($Fr = 0.714$) at $t = 69$ s	57
Figure 4.6	Velocity Contour for Case H5V5Z2.5 ($Fr = 0.714$) at $t = 69$ s	57
Figure 4.7	Velocity Contour for Case H6V3Z4.5 ($Fr = 0.391$) at $t = 67$ s	58
Figure 4.8	Velocity Contour for Case H6V3Z3.5 ($Fr = 0.391$) at $t = 67$ s	58
Figure 4.9	Velocity Contour for Case H6V3Z2.5 ($Fr = 0.391$) at $t = 67$ s	58
Figure 4.10	Pressure Contour for Case H7V1Z5.5 ($Fr = 0.121$) at $t = 81.6$ s	59
Figure 4.11	Pressure Contour for Case H7V1Z3.5 ($Fr = 0.121$) at $t = 81.6$ s	59
Figure 4.12	Pressure Contour for Case H7V1Z2.5 ($Fr = 0.121$) at $t = 81.6$ s	59
Figure 4.13	Pressure Contour for Case H5V5Z4.5 ($Fr = 0.714$) at $t = 69$ s	60
Figure 4.14	Pressure Contour for Case H5V5Z3.5 ($Fr = 0.714$) at $t = 69$ s	60
Figure 4.15	Pressure Contour for Case H5V5Z2.5 ($Fr = 0.714$) at $t = 69$ s	60
Figure 4.16	Pressure Contour for Case H6V3Z4.5 ($Fr = 0.391$) at $t = 67$ s	61
Figure 4.17	Pressure Contour for Case H6V3Z3.5 ($Fr = 0.391$) at $t = 67$ s	61
Figure 4.18	Pressure Contour for Case H6V3Z2.5 ($Fr = 0.391$) at $t = 67$ s	61
Figure 4.19	Time History of Drag Force for H7V1 Case ($Fr = 0.121$)	62
Figure 4.20	Time History of Lift Force for H7V1 Case ($Fr = 0.121$)	63
Figure 4.21	Time History of Drag Force for H6Z4 Case	64
Figure 4.22	Time History of Lift Force for H6Z4 Case	64
Figure 4.23	Relationship Between Drag Coefficient and Inundation Ratio for the Five-Girder Bridge	65
Figure 4.24	Relationship Between Lift Coefficient and Inundation Ratio for the Five-Girder Bridge	66
Figure 4.25	Relationship Between Moment Coefficient and Inundation Ratio for the Five-Girder Bridge	67
Figure 4.26	Relationship Between Drag Coefficient and Proximity Ratio for the Five-Girder Bridge	68

- Figure 4.27 Relationship Between Lift Coefficient and Proximity Ratio for 68 the Five-Girder Bridge
- Figure 4.28 Relationship Between Moment Coefficient and Proximity Ratio 69 for the Five-Girder Bridge

LIST OF TABLES

Table 2.1	Summary of Past Study on Hydrodynamic Forces Acting on Bridge Model	27
Table 3.1	Range for Minimum Clearance Height of Bridge (FHWA, 2005)	30
Table 3.2	Summary of the Model Scaling in 1:50	38
Table 3.3	Summary of Calibration Constant for Load Cell	43
Table 3.4	Comparison between Physical and Numerical Results for Partially Submerged Case	49
Table 3.5	Comparison between Physical and Numerical Results for Fully Submerged Case	50
Table 3.6	Cases with Froude Number, $Fr = 0.121$	51
Table 3.7	Cases with Froude Number, $Fr = 0.241$	51
Table 3.8	Cases with Froude Number, $Fr = 0.391$	51
Table 3.9	Cases with Froude Number, $Fr = 0.456$	52
Table 3.10	Cases with Froude Number, $Fr = 0.571$	52
Table 3.11	Cases with Froude Number, $Fr = 0.652$	53
Table 3.12	Cases with Froude Number, $Fr = 0.714$	53

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
ASCE	American Society of Civil Engineers
ARI	Average Recurrence Interval
CFD	Computational Fluid Dynamics
FHWA	Federal Highway Administration
LES	Large Eddy Simulation
NAASRA	National Association of Australian State Road Authorities
NS	Navier-Stokes
RANS	Reynolds-Averaged Navier-Stokes
REDAC	River Engineering and Urban Drainage Research Centre
STL	STereoLithography
3D	Three - Dimensional
UK	United Kingdom
UN-SPIDER	United Nations Platform for Disaster Management and Emergency Response
USA	United States of America
UCS	Universal Coordinate System
USM	Universiti Sains Malaysia
VOF	Volume of Fl uid

NOMENCLATURES

Α	Frontal area of the bridge body
C_D	Drag coefficient
cg	Center of gravity
C_L	Lift coefficient
C_M	Moment coefficient
F_D	Drag force
F_L	Lift force
Fr	Froude number
F_{RES}	Resultant force
g	Gravitational acceleration
h^*	Inundation ratio
М	Overturning moment
Р	Pressure
P_o	Free stream mean dynamic pressure
P_r	Proximity ratio
Re	Reynold number
S	Bridge deck height
t	Time
W	Bridge width
Z.	Vertical clearance height of the bridge deck

Greek Letter

h Water depth

- *v* Velocity of water flow
- θ Angle
- ρ Fluid density (or water density)
- τ Shear stress

CHAPTER 1

INTRODUCTION

1.1 Background

Flooding is a natural disaster, and it is common in many places where heavy rainfall occurs. This natural disaster is extremely dangerous and has the potential to wipe away an entire city, coastline and cause great damage to property and loss of life. It has high erosive power and can be extremely destructive to the embankments, roads and bridges and paralyzed transportation for long periods. The extent, magnitude and duration of the storms could cause flood waters to overtop numerous bridges, roads and levees. Kilometres of roadway will be submerged and eroded, and portions of roadway will be covered with sediment deposits after flood waters recede. According to UN-SPIDER (2006), flooding means a general and temporary condition of partial or complete inundation of normally dry land areas from overflow of inland or tidal waters from the unusual and rapid accumulation or runoff of surface waters from any source.

Parola et al. (1998) reported that the floods that destroyed the upper Mississippi River and Missouri River basins (a place in the Southern region of the United States) in 1993 were abnormal in terms of magnitude, severity of damage, and season of occurrence. The severe rainfall events were coupled with wet antecedent conditions over large areas. This flooding caused large-scale damage to embankments, roadways and bridge, and also damage to slopes, drainage facilities as well as pavements. The U.S. Federal Highway Administration (FHWA) has allocated more than 158 million dollars for repair and/ or replacement of elements of the federal aid highway system in roughly 2305 sites (Parola et al., 1998). The drastic change of global environments in recent years induces a significant increase of natural hazards, both in magnitude and frequency. Catastrophic damages of important infrastructures, especially the heavy concrete bridges, have been reported frequently (Chen et al., 2014). Bridges playing an important role in connecting the community. Based on Guo et al. (2009), numerical simulations were carried out at the Argonne National Laboratory to examine the hydrodynamic forces experienced by an inundated bridge deck as it is considered as an important input in the design of bridges. The evaluation of bridge stability after flooding events, including the integrity of the bridge itself and the erosion of the riverbed surrounding bridge support structures, is critical to highway safety. During a big flood, a highway bridge above the sea or waterway may be submerged partially or completely. Such flows add significant hydrodynamic loading on bridge deck, possibly resulting in the turnover of the bridge decks and failure of the bridge superstructures (Guo et al., 2009).

In December 2014, the massive floods that hit the Kelantan state in East Coast of Peninsular Malaysia have left behind a trail of destruction. It was the worst in the past history confirmed by the National Security Council (NSC). According to the council's report, the water level of Sungai Kelantan at Tambatan Diraja, which has a danger level of 25 m, reached 34.17 m compared to 29.70 m in 2004 food and 33.61 m in the 1967 flood. In addition, the existing bridges and infrastructures were damaged due to the flooding would be estimated up to RM 932 million for the state of Kelantan. Figure 1.1 shows the collapse of the Pulau Setelu Bridge across the 300 m wide Nenggiri River due to the extraordinary water levels. Figure 1.2 and Figure 1.3 shows the high speed currents had destroyed properties and infrastructures in the region of Kelantan and Pahang, respectively.

Figure 1.1: Wash Away of the Decks of Pulau Setelu Bridge in Kelantan (Thestar, 2015)

Figure 1.2: Debris Accumulated at Bridges in Kelantan During the Recent Flood (Straitstimes, 2014)

Figure 1.3: The Partially Collapse of Aur Gading Bridges in Pahang (Astroawani, 2015)

Damages of bridges due to flood also happens worldwide recently. In the northwest region of Pakistan, a bridge linking Peshawar and Sheikhan in Lower Dir, dramatically collapsed on 5 April 2016 after torrential rains triggered flash floods as shown in Figure 1.4. At least 47 people have been killed and 37 of others injured in this flood event, as reported by the country's Provincial Disaster Management Authority. For the infrastructures, at least 141 houses have been damaged that yielded severe losses and casualties were beyond the expectation. The rescue actions have been blocked by the collapse of a bridge in the Khyber Pakhtunkhwa Province. The rains started lashing the northwest and other parts of Pakistan on Saturday, causing flooding in the Khyber Pakhtunkhwa Province (BBC, 2016).

Figure 1.4: Bridge Collapse During the Flood Event in Lower Dir (BBC, 2016)

Furthermore, a huge suspension bridge was swept away by flash flooding in Nepal on 25 July 2016. The bridge, which crossed part of the Tinau River in the city of Butwal was completely destroyed due to the continuous monsoon rains (The Telegraph, 2016). According to the Nepal's government, at least 58 people have been killed, while another 20 people were missing. Hundreds of flood victims have lost their house and properties due to this horrify flood. The dramatic moment of the suspension bridge collapse during deadly Nepal floods is shown in Figure 1.5.

Figure 1.5: The Collapse of the Suspension Bridge due to the Flash Flood (The Telegraph, 2016)

Similarly, a 44-year-old bridge in Himachal Pradesh's Kangra district in India collapsed on 11 August 2016 afternoon due to the heavy flow of flood water and rain. Figure 1.6 shows a large portion of the 160 m bridge and its pillars collapsing and getting swept away in the heavy current. According to the officials report, a total 76 m of the bridge on 10 pillars were washed away by flood waters. This old bridge links the villages of Himachal's Nurpur Tehsil with neighbouring Punjab area (NDTV, 2016).

Figure 1.6: The Bridge Collapsed in Heavy Rain in Kangra District of Himachal Pradesh on 11 August 2016 (Newscrunch, 2016)