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PLATINUM NANODENDRITE PELBAGAI FUNGSI BAHARU SEBAGAI 

EJEN TERANOSTIK UNTUK PENGIMEJAN KANSER DAN RAWATAN 

RADIOTERAPI 

ABSTRAK 

Nanopartikel dengan nombor atom yang tinggi telah dikaji secara pesat sebagai 

ejen radioteranostik kerana mempunyai kadar penyerapan X-ray yang tinggi dan 

farmakokinetik yang bagus. Namun, kajian ke atas ejen berasaskan platinum sangat 

terhad walaupun bahan ini telah digunakan secara meluas dalam bidang kimoterapi. 

Justeru, kajian ini dibuat bertujuan untuk menghasilkan bahan yang baru, iaitu 

Platinum Nanodendrite (PtND) sebagai ejen radioteranostik. PtND yang dihasilkan 

dalam kajian ini mempunyai permukaan bercaj negatif dan berbentuk dendrit. Empat 

saiz PtND telah disediakan untuk kajian teranostik. Semua PtND ini menunjukkan 

kadar toksik yang rendah terhadap model-model sel yang digunakan dalam kajian ini 

bagi kepekatan di bawah 0.1 mM. Sekiranya kepekatan dinaikkan melebihi had itu, 

kadar toksik PtND meningkat bergantung kepada saiz partikel, jenis sel dan tempoh 

inkubasi. Penyelidikan teranostik PtND terbahagi kepada dua bahagian, iaitu bahagian 

diagnostik dan radioterapi. Kemampuan diagnostik PtND diuji menggunakan 

kepekatan PtND maksimum, iaitu 1.0 mM untuk meningkatkan kontras dalam imej 

sinar-X. PtND dengan saiz yang berbeza telah dibandingkan dengan ejen kontras iodin 

menggunakan tiga jenis alat sinar-X (tomografi berkomputer, fluoroskopi, dan sinar-

X menyatah). Hasil kajian menunjukkan kadar penyerapan sinar-X oleh PtND jauh 

lebih baik dari iodin dengan kepekatan yang sama. Kadar penyerapannya juga 



   

 

xxiii 

 

bergantung kepada saiz PtND, yang mana PtND lebih besar menyerap sinar-X lebih 

baik berbanding PtND yang kecil. Kajian radioterapi pula dibuat menggunakan tiga 

jenis radiasi, iaitu sinar foton 6 MV (PhT), radiasi elektron 6 MeV (EBT), dan radiasi 

proton 150 MeV (PrT). Sebelum diradiasi, sel HeLa telah dirawat menggunakan PtND 

berkepekatan 0.1 mM. Kemudian, sel tersebut didedahkan dengan dos radiasi yang 

berbeza-beza. Penilaian klonogenik sel itu menunjukkan yang PtND berjaya 

meningkatkan kepekaan sel tersebut terhadap radiasi. Peningkatan tersebut juga 

bergantung kepada saiz PtND dan jenis radiasi yag digunakan. Kadar pemekaan 

tertinggi direkodkan oleh gabungan PtND bersaiz 29 nm dengan PhT (SER=2.54). 

Manakala untuk PrT dan EBT, PtND bersaiz 36 nm (SER=1.38) dan 42 nm 

(SER=1.83) adalah lebih baik. Seterusnya, penilaian DCF tidak menunjukkan 

sebarang perkaitan antara gabungan rawatan radiasi dan PtND terhadap perubahan 

tahap spesis oksigen radikal (ROS) di dalam sel. Ini menunjukkan bahawa tekanan 

oksidatif berkemungkinan bukan punca utama di sebalik kesan pemekasinaran PtND. 

Kesimpulannya, kajian ini telah berjaya menghasilkan ejen radioteranostik yang baru, 

iaitu PtND. Ejen ini adalah lebih baik berbanding iodin untuk pengimejan sinar-X, dan 

mampu memeka sel terhadap radioterapi. Justeru, PtND berpotensi untuk 

meningkatkan keberkesanan pengesanan dan rawatan kanser berasaskan radiasi 

mengion. 
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NOVEL MULTIFUNCTIONAL PLATINUM NANODENDRITES AS 

THERANOSTIC AGENTS IN CANCER IMAGING AND RADIOTHERAPY 

TREATMENT 

ABSTRACT 

High-Z nanoparticles have been studied over the years as a potential radio-

theranostic agent due to their high X-ray absorption and good pharmacokinetic 

properties. However, only a few platinum-based agents have been reported in the 

literature, despite its wide usage in chemotherapy (i.e., cisplatin). Thus, this work aims 

to study platinum nanoparticles, Platinum Nanodendrites (PtND), as a novel 

theranostic agent. The PtNDs fabricated in this work possessed a dendritic shape with 

a negatively charged surface. Four PtND sizes were prepared for theranostic 

evaluations (29 nm, 36 nm, 42 nm, and 52 nm). In-vitro biocompatibility assessment 

revealed that the PtNDs of all sizes were non-cytotoxic for the particle concentration 

of up to 0.1 mM. Furthermore, the PtNDs’ toxicity also depended on PtNDs’ size, cell 

type, and incubation period. The theranostic evaluation of PtNDs was separated into 

diagnostic and radiotherapy sections. The diagnostic evaluation was performed with 

the maximum available PtND concentration, 1.0 mM, to maximize their image contrast 

in X-ray images. The PtNDs of different sizes were compared with the commercial 

iodinated contrast agent in three X-ray modalities (CT, fluoroscopy, and planar X-ray). 

The result in all imaging systems evidenced better attenuation of PtNDs over iodinated 

contrast agent at equivalent concentration. The contrast enhancement is also size-

dependent, where larger PtNDs exhibited higher X-ray attenuation than the smaller 
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ones. The radiotherapy evaluation involved a study on the radiosensitization effects of 

PtNDs in three different types of radiotherapy: 6 MV photon radiotherapy, 6 MeV 

electron beam therapy, and 150 MeV proton beam therapy. HeLa cells were treated 

with 0.1 mM of PtNDs of different sizes and subjected to increasing radiation doses. 

The clonogenic assay evaluations revealed that the PtNDs successfully enhanced the 

radiosensitivity of HeLa cells, depending on the particle size and types of radiotherapy. 

The maximum radiosensitization effect was observed in the combination of 29 nm 

PtNDs with PhT (SER=2.54). 36 nm and 42 nm PtNDs produced the highest 

radiosensitization in PrT (SER=1.38) and EBT (SER=1.83), respectively. DCF assay 

assessment shows that the ROS induced by the PtND-radiation combinations may not 

be the major determining factors that catalyse the PtNDs’ radiosensitization effect. In 

conclusion, this work has successfully developed and characterized the theranostic 

potential of PtNDs. This study provides a platform for theranostic multimodal 

approaches in diagnostic imaging and radiotherapy to improve cancer treatment 

efficacy and outcomes.  

 



   

 

1 

 

CHAPTER 1  

INTRODUCTION 

 

1.1 Cancer Prevalence, Diagnosis, and Treatment 

Cancer is the uncontrollable spread of abnormal cells, which can affect almost 

any part of the body. 18.1 million new cancer cases were reported globally in 2018, 

and it rises to 19.3 million by 2020 (Bray et al., 2018; IARC, 2021; Sung et al., 2021). 

According to WHO, cancer has caused the death of more than 9.9 million global 

populations, making it the second leading cause of death worldwide in recent years 

(WHO, 2021). Figure 1.1 shows the estimated number of new cancer cases by 2020. 

Breast, lung, and colorectum cancer were the most significant contributor to new 

cancer cases in 2020, accounting for 11.7 %, 11.4 %, and 10 % of the total new cases 

globally. Whereas in Malaysia, the fraction of breast and colorectal cancer cases were 

much greater, accounting for 17.3 % and 13.6 % of the national total new cancer cases, 

respectively. It was projected that there would be around 28.4 million new cancer cases 

worldwide in 2040, a whopping 47 % increase of new cases compared to 2020 (Sung 

et al., 2021). 

WHO has categorized the cause of cancer into physical, chemical, biological 

carcinogens (WHO, 2021). This includes the risk factors such as external and 

environmental carcinogens (e.g., asbestos, arsenic, etc.), alcohol and tobacco 

consumption, dietary patterns, viral infections, and inactive lifestyles (Wu et al., 2016; 

Connor, 2017; Grosso et al., 2017; WHO, 2021). Primarily, cancer prevalence is 

associated with the socio-economic developments, ageing, and growth of populations 

(Bray et al., 2018; Sung et al., 2021). 
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Figure 1.1 The estimated number of new cancer cases globally (top chart) and in 

Malaysia (bottom chart) by 2020 (IARC, 2020). 
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New cancer therapy options are flourishing in recent years to address the 

growing cancer burden, such as targeted therapy (Sawyers, 2019; van de Stadt et al., 

2021), immunotherapy (Riveiro-Barciela et al., 2020), and hormonal therapy 

(Abraham and Staffurth, 2020; Del Río et al., 2020). However, conventional options 

such as chemotherapy, radiotherapy, and surgery remain as the primary route of cancer 

management (Kwatra et al., 2013). A hefty 60 % of cancers cases require radiotherapy 

within the treatment regime (Mohan et al., 2019). These conventional treatments were 

also touched by the advance in technology. For example, the previously non-specific 

chemotherapeutic agents now can be functionalized with carriers to deliver them 

precisely to cancer sites (Li et al., 2019a; Yafout et al., 2021). Conventional surgery 

can now be accompanied by robotic aid, which dramatically reduces the surgeons’ 

workload (Baek et al., 2021).  

New and advanced technologies also being developed in radiotherapy; some 

have transitioned into clinical phases and becomes routine techniques, including 

stereotactic radiation therapy (stereotactic radiosurgery (SRS), stereotactic body 

radiation treatment (SBRT)) (Ricco et al., 2017; Abel et al., 2019), image-guided 

radiation therapy (IGRT) (Rosenberg et al., 2019), and helical tomotherapy (Jeraj et 

al., 2004; Lee et al., 2021; Öztunali et al., 2021). These new and advanced 

radiotherapy techniques boast over the conventional 3D conformal radiation therapy 

(3D-CRT) as possessing better dose conformity to the tumour, hence limiting the 

toxicity and side effects to the nearby organs at risk (OARs) (Lee et al., 2021). This is 

proven by several clinical trial reports that show a significantly reduced rate of acute, 

subacute, and chronic toxicities while improving tumour control compared to 
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conventional radiotherapy (Joo et al., 2017; Rosenberg et al., 2019; Öztunali et al., 

2021).  

Additionally, there is an increasing number of heavy particle beam centres 

worldwide (Grau et al., 2020). The facilities use the high linear energy transfer (LET) 

particles such as neutrons, protons, helium, or carbon ions as dose delivery mediums. 

Despite being the most resource-demanding among all ionizing radiation therapy 

facilities, the superior treatment quality of particle-beam radiotherapy over X-rays are 

unquestionable due to the unique dose profile of the particle radiations, which is 

especially important in the management of cancers located nearby the radiosensitive 

OARs such as head and neck cancers (Jensen, 2020). This is due to heavy particle 

radiation's unique characteristic. The dose profile of the heavy particle beam and 

photon beam is shown in Figure 1.2. The figure clearly shows that the proton beam's 

entrance and exit radiation dose is vastly superior to the photon beam, making it the 

best candidate for better dose localization in the tumour. 

The current advancement in tumour treatment, especially with the application 

of particles beam, will lead to more sophisticated and efficient treatment techniques. 

Effective treatment can be optimally achieved with technological advancement in 

beam delivery and by understanding and improving the radiobiological impact of 

ionizing radiation on cancer cells. 



   

 

5 

 

 

Figure 1.2 Comparison of depth dose curves for a 10 MV photon beam and a 10 

MeV proton beam (shown with and without an SOBP). This figure 

shows a lower entrance dose and absence of exit dose for the proton 

beam compared to the photon beam (Image adapted from Ladra and 

Yock (2014), Figure 1, Page 114). 

 

1.2 Radiobiological Impact of Ionizing Radiation 

Radiotherapy implements ionizing radiations that deposit energy in their 

pathway and hence cause damage to the cells of the tissues. Clinical radiation beams 

come in various forms and sources, primarily photons (X-rays, gamma rays) and 

particles beam (electrons, protons, neutrons) that possess enough energy to excite 

electrons from their orbital within the atoms to form ions (Zeman et al., 2020). In 

radiotherapy, a linear accelerator (LINAC) accelerates electrons to reach the kinetic 

energies of more than several megavoltages (MV) before bombarding them into a 

high-Z target to produce a spectrum of polyenergetic X-ray. This MV X-ray is highly 

energetic in that it can penetrate deep into the patients’ body to reach the targeted 
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tumour, hence depositing their energy along the way and cause genetic changes 

resulting in cancer cell death. 

The high energy X-ray beam is more practical for cancer radiotherapy than low 

kV X-rays because of higher beam penetration that can reach deep-seated tumours, 

produce lower skin dose, higher dose rate, flatter beam profile, and smaller penumbra 

(Stanton et al., 2010). The LINAC also can be used as the electron beam source by 

simply removing the X-ray target from the accelerated electron path. The photon and 

electron beam undergoes different interaction with biological material and deposits 

their energy through different mechanisms.  

The photoelectric effects, Compton scattering, and pair production are 

common interactions in clinical photon energy ranges (Cherry and Duxbury, 2019). 

The probability of each interaction (termed as the ‘interaction cross-section’) is 

different depending on the radiation quality and the interacting materials. In essence, 

photoelectric effects, Compton scattering, and pair production predominate at low, 

intermediate, and high X-ray energy, respectively (Power, 2021b). 

Charged particles such as protons and electrons can create trails of ionizations 

and excitations along its path, dissipating its energy along the path until it subsequently 

comes into rest. A charged particle can dissipate its energy via two types of 

interactions: a) collision interaction and b) radiative interaction. While collision 

interactions involve the loss of energy via excitation and ionization of atoms, radiative 

interaction of charged particles differ in a way that the energy is lost via photon 

emission, usually by Bremsstrahlung (braking) radiation (Bushberg and Boone, 2011). 

Following the radiation interaction, the ionization and excitation of atoms in 

the subjected medium will occur. As the molecules in the medium are atoms bonded 
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together, the ionization of one or more atoms in the molecules can cause the collapse 

of molecular structures (Zeman et al., 2020). When ionizing radiations interact with 

biological media, biological molecules such as proteins and enzymes denature, causing 

damages to the cellular environment. This field of knowledge is termed radiobiology: 

a medical science field that delves into the biological effect of ionizing radiation on 

living tissues (Connor (2019). 

The most critical cellular structure is DNA, a group of genes that govern all the 

cellular functions, and hence become the most vulnerable target to radiation damage. 

Any damage to these macromolecules can lead to failure of cellular functions, which 

eventually will cause cell death. The damage that may occur can be estimated by 

assuming 1 Gy of radiation dose in a cell nucleus can produce roughly 2 x 105 

ionizations, causing around 100 single-strand breaks and 40 double-strand breaks of 

DNA (Mayles et al., 2007). 

The mechanism of cell damage upon radiation exposures can be divided into 

direct and indirect actions (Connor, 2019). Direct action of cell damage occurs when 

ionizing radiation hit the atomic structures of DNA molecules directly, causing 

damage to molecules due to the ionization of the atoms. Indirect action happens when 

the ionizing radiation interacts with surrounding molecules (usually water), causing 

ionization and producing radicals such as hydroxyl OH, superoxide anion O2– and 

others (Connor, 2019). These free radicals are highly reactive and capable of damaging 

DNA structures upon contact. Figure 1.3 illustrates the direct and indirect damage 

caused by ionizing radiations to a DNA strand. Although DNA damage is commonly 

correlated with cell death upon ionizing radiation exposure, there have been increasing 

evidence that other organelles such as endoplasmic reticulum, ribosome, 
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mitochondria, lysosome and cell membrane are also affected by radiation damage 

(Wang et al., 2018). 

Recently, many studies have investigated a new method in increasing optimal 

radiobiological impact to the cancer cells by applying radiosensitizer. The application 

of contrast agent and radiosensitizer seems to be a promising technique in enhancing 

DNA damage and cell death in tumours and elevating radiotherapy efficacy. These 

agents also can alleviate some of the limitations of the current-gen radiotherapy 

systems, which will be debriefed further in the following section. 

 

Figure 1.3 Direct and indirect action of DNA damages due to radiation. 

 

1.3 The Importance of Contrast Agents and Radiosensitizers in Cancer 

Management 

Since the discovery of X-rays and radioactivity more than 100 years ago, 

ionizing radiation has been used extensively worldwide for medical imaging and 

radiotherapy (Zeman et al., 2020). The primary objective of cancer treatment using 
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ionizing radiation never really change since then: to deliver the maximum dose to the 

targeted tumour while minimizing the radiation hazard to the surrounding healthy 

tissues (Grégoire et al., 2020; Kaanders et al., 2020). The advancements in 

radiotherapy technologies, as mentioned in the previous section are all revolved around 

this objective.  

Despite that, the side effect of radiotherapy never ceased to persist (Mohan et 

al., 2019). The exact localization of dose to the tumour remains a considerable hurdle 

to be surpassed due to the nature of external radiation delivery: it needs to pass through 

healthy tissues to reach the commonly deep-seated tumours. The radiation also scatters 

upon interaction, compromising the neighbouring healthy tissues. Some cancer 

patients are more radiosensitive than others. Around 5 % of them received limited 

radiation dosage to avoid the adverse side effects (Mohan et al., 2019).  

 

Table 1.1 summarizes some examples of adverse side effects associated with 

radiotherapy treatments. Multiple post-treatment remedies were used to treat these side 

effects (Mohan et al., 2019). However, this option will introduce additional costs at 

the expense of the patients' quality of life. Thus, it is essential to continue discovering 

ways to maximize the treatment efficacy and healthy tissue sparing in the current and 

upcoming radiotherapy treatment regimes. 

The effectiveness of SBRT in enhancing the biological effective dose (BED) 

is unquestionable as multiple clinical reports already proved the superior outcome of 

cancer management by using stereotactic body radiation treatment (SBRT) over the 

conventional therapies (Joo et al., 2017; Rosenberg et al., 2019). This favourable 

outcome entices the oncologists to escalate the radiation dose further to improve the 
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tumoricidal effectiveness. However, this venture is also hindered by the constraint of 

the dose to the nearby organs at risk (Yadav et al., 2021). 

 

Table 1.1 Examples of side effects associated with radiotherapy treatment with 

respect to the treatment site (Mohan et al., 2019). 

Cancer site Side effects 

Breast Fatigue, skin irritation, breastfeeding problem, lymphedema, 

angiosarcoma. 

Head and neck Soreness, hair loss, oral mucositis, impaired speech function, 

tooth decay. 

Liver Gastritis, upper abdominal pain, gastric bleeding, nausea, and 

vomiting. 

Thyroid Vertigo, vocal cord paralysis, body numbness, salivary gland 

swelling. 

Prostate Rectal bleeding, diarrhoea, radiation cystitis, impotence, erection 

problems. 

Lung Breathing and swallowing difficulty, cough, breast soreness, and 

pneumonitis. 

Ovary Radiation cystitis, vaginal irritation, and bowel discomfort. 

 

Despite the normal-tissue sparing advantage and the tumoricidal effectiveness 

of the latest-gen radiotherapy, some reports have shown that these treatments come 

with an expensive cost and worse patient survival than conventional treatments 

(Kumar et al., 2021; Park et al., 2021). For example, Figure 1.4 shows that the SBRT 

treatment alone for recurrent head and neck cancers has failed to improve the patients’ 

overall survival compared to chemoradiation, surgery with radiation and surgery with 

chemoradiation. The worse outcome of SBRT is correlated to the older age of patients, 

patient comorbidity, advanced tumour stage, cancer history and lower biological 

effective SBRT dose (Park et al., 2021).  
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Figure 1.4 Overall survival of HNC treated with SBRT regimens with different 

treatment modalities (Image adapted from Park et al. (2021)). 

 

Particle beam therapy also suffers from the lack of conclusive clinical evidence 

to support the superior theoretical efficacy of the expensive particle beam therapy over 

the more common photon radiotherapy techniques (Hwang et al., 2020). The use of 

accompanying radiosensitizers may improve the efficacy significance of these 

advanced methods over the conventional methods. 

The expensive treatment of advanced radiotherapy also makes it hardly 

reachable to developing countries. This is reflected by the recent statistics of global 

cancer incidence and mortality rate, where the mortality rate of cancer patients in Asia 

and Africa is higher than their incidence rate, as compared to the other region in the 

world (Sung et al., 2021). Furthermore, due to the socioeconomic discrepancies, the 

distribution of radiotherapy centres worldwide is more concentrated in higher-income 

countries, as presented in Table 1.2. Unfortunately, the number of radiotherapy 

equipment per million populations significantly reduced with the country income 

(IAEA, 2021). Therefore, introducing contrast agents or radiosensitizers to enhance 
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radiotherapy efficacy is a more viable option for most global populations, especially 

in low-income countries. 

 

Table 1.2 The distribution of radiotherapy centres and equipment based on the 

country developing index (IAEA, 2021). 

Income group Countries 

with RT: 

Countries 

without RT 

Available RT 

machines 

Million 

population 

Equipment 

per million 

population 

High income 62:15 8952 1245 7 

Upper middle 

income 

54:12 4102 2851 1 

Lower middle 

income 

49:14 1306 2829 0 

Low income 11:19 34 643 0 

Unclassified 1:4 3 1 5 

 

Nowadays, the most recent radiotherapy technology comes with onboard 

imaging capabilities (Jeraj et al., 2004; Gupta and Narayan, 2012; Grégoire et al., 

2020). The imaging procedures such as X-ray computed tomography (CT), magnetic 

resonance imaging (MRI) or ultrasound operated in parallel with the radiotherapy 

allow better localization of the tumour and real-time control of dose delivery (Grégoire 

et al., 2020). 

For example, the helical tomotherapy can use the megavoltage computed 

tomotherapy (MVCT) to verify the patients’ positioning during the irradiation (Lee et 

al., 2021) and result in better dose conformity to the tumour and reduced side effects 

to the healthy tissues (Öztunali et al., 2021).  However, it comes with massive 

shortcomings: the image quality of MVCT is poor, and the complicated setup process 

raise the setup uncertainty during the procedure (Lee et al., 2021).  
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On top of that, the additional imaging radiations in parallel with the therapeutic 

ones will inevitably introduce additional radiation doses to the patient (Gupta and 

Narayan, 2012). Thus, the introduction of novel dual-modality contrast agent-

radiosensitizers may help to improve the image quality and dose conformity, followed 

by more efficient workflow and the patients’ dose management.  

Figure 1.5 summarizes the concerns regarding the limitation of the latest-gen 

radiotherapy techniques, leading to the need for contrast and radiosensitizing agents 

for better tumour control. The action mechanisms of these agents can be through the 

reversal of radiation resistance of tumour cells, radioprotection of the surrounding 

healthy tissue, or by the radiosensitization of the tumour cells (Kwatra et al., 2013). 

The agents can be fabricated in multiple forms, such as nanoparticles and 

functionalized molecules, with more flexibility in functionalization and 

personalization. This is especially important in the future, where the concept of 

personalized medicine is becoming more prominent (Jiang et al., 2021a; Scott et al., 

2021). This approach may be more viable for the developing countries that already 

possess conventional radiotherapy equipment but cannot afford to have the latest, 

advanced ones. Of course, this will undeniably benefit the patients, as they will have 

a better chance to get improved cancer management at a considerably lower expected 

treatment cost. 
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Figure 1.5 The raised concern on the need for advanced contrast agents and 

radiosensitizers for current cancer radiotherapy. 

 

1.3.1 Nanomaterials as Potential Theranostic Agent 

Nanoparticles are ultrafine particles between 1 and 100 nm in size (Mazari et 

al., 2021). At this size range, the properties of a material can differ widely compared 

to their bulk counterpart due to the significant increment of the materials’ surface area 

(Sun et al., 2019; Yan et al., 2019). Consequently, more atoms that make up the 

materials are readily available to interact with external media and exerts unique size-

driven properties that cannot be observed within bulk materials. The nanomaterials can 

be observed in many forms, such as in spherical, hollow, tubular, and many more 

unique shapes, affecting their properties besides their size.  

The nanoparticles’ fabrication methods are diverse, depending on their 

material and the intended size and shape (Chen and Holt-Hindle, 2010; Kalaivani, 
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radiosensitizers?

Adverse side 
effects to normal 
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Contradictory outcomes of next-gen 
radiotherapy over the conventional 
regimes for certain type of cancer.
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2021). Some are simpler and requires a shorter period to complete than others (Jiang 

et al., 2021b). Most methods allow the customization of the particles’ dimension just 

by altering one or two parameters during their fabrication process, proving the 

simplicity of customizing the nanoparticles depending on their purpose.  

The unique properties of nanomaterials sparked much interest in their 

applications for many fields, including biomedical, manufacturing and energy 

industries (Mazari et al., 2021). For example, platinum (Pt) and palladium (Pd) 

nanoparticles were used as electrocatalysts in fuel cell reactions (Phan et al., 2021). 

Nanomaterials also proved to be helpful in the food and packaging industry, as they 

can improve the packaging’s heat and flame resistance, delay the fruit ripening, and 

improve the shelf life of food products through their antimicrobial properties (Tiwari 

et al., 2021).  

The medical fields are not left behind in venturing the possible applications of 

nanomaterials to improve healthcare. The combination of the field of medicine and 

nanotechnology for disease prevention and treatment gave birth to the area of 

nanomedicine (Liu et al., 2020b; Bernal et al., 2021). The global market of 

nanomedicine is flourishing every year. Many nanoparticle-based pharmaceutical 

products are already approved by Food and Drug Administration (FDA) and currently 

circulating in the market (Gadekar et al., 2021). It was projected that this industry's 

compound annual growth rate would show a 14 % increase from 2017 until 2022 

(Evers, 2015).  

The significant annual growth of the nanomedicine industry was fertilized by 

the favourable characteristics of nanoparticles for biomedical applications. For 

example, the nanoparticles’ surface was found to be easily modified, labelled, or 



   

 

16 

 

tagged with other biocompatible compounds (Prasad et al., 2020). These processes, 

collectively termed as surface functionalization, offers flexibility in developing a 

nanomaterial-based non-toxic drug. Nanoparticles also can be functionalized with the 

compounds that are primarily taken up by a specific organ, allowing them to 

specifically accumulate in the intended organ (Khot et al., 2021). Nanoparticles are 

also candidates as excellent agents in the targeted drug therapy or diagnostic 

procedures in the oncology field (Sun et al., 2019; Liu et al., 2020b; Khot et al., 2021). 

The underdeveloped blood vessels within the tumour due to angiogenesis allows the 

particles smaller than 100 nm to pass through their endothelial cell layers unhindered, 

causing significant accumulation of the nanoparticles within the tumour mass. The 

ease of functionalization of the nanoparticles’ surface extends their potential to be a 

more efficient, safe, and accurate therapeutic agent.  

With the unending array of nanoparticles' potentials, one needs to find the 

correct combination of material, size, shape, and surface properties to make up a 

promising nanoparticle in their intended field. In this work, the Platinum 

Nanodendrite's (PtND) primary intended application is to be an excellent theranostic 

agent, an agent that can be used as a contrast agent in diagnostic radiology and a 

radiosensitizer in radiation therapy. With the advancement of image-guided 

radiotherapy, the development of accompanying theranostic agents is crucial as 

insurance to give the best curative or palliative treatment the patients can get out of the 

already expensive cancer treatment regimes.  
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1.4 Problem Statement 

Radiotherapy has been used extensively to treat cancer aside from surgery and 

chemotherapy. The procedure boasts the advantage over surgery or chemotherapy 

because of its minimally or non-invasive procedure. Radiotherapy patients also usually 

do not need to be warded to get the treatment, and the procedure only requires a short 

amount of time per session.  

Albeit all those benefits, radiotherapy is not without downsides. Without 

surgery, the tumour localisation within the patient’s body mainly relies on radiographic 

imaging during radiotherapy simulation. Some tumours can be easily distinguished 

from the surrounding bodily materials, but some are not. Careful delineation of the 

treatment area needs to be performed by the oncologist before the actual treatment to 

avoid any mistakes during the irradiation, especially when the targeted tumour is 

located nearby radio-sensitive organs.  

The radiations are also projected from outside the patients’ body toward the 

target area within the body; thus, the tissues located between the skin and that target 

also received a portion of the radiation dose. With the advancement of radiotherapy 

modality, treatments nowadays can be performed in conjunction with real-time 

imaging. Thus, there is a need to develop theranostic agents that can cooperatively 

improve the contrast of the tumour in the images for accurate tumour localization and 

amplify the dose to the targeted tumour, which can also spare the healthy tissues from 

unnecessary radiation doses. 

Nanoparticles have been studied extensively in the past decade to be used as 

theranostic agents due to their unique pharmacokinetics and the simplicity in their 

fabrication and functionalization methods. Until now, only a few nanoparticle 
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theranostic agents have been developed using high-Z materials to harvest their high 

interaction cross-section properties, such as gold and hafnium nanoparticles. However, 

the results are still inconclusive, and the researchers are yet to achieve a consensus on 

which nanoparticles’ material and morphology combination are the best to create the 

optimal theranostic agent. Relevant literature has reported the theranostic capabilities 

of gold and hafnium nanoparticles, yet no studies have specifically evaluated the 

theranostic potential of platinum NPs. 

Few studies have characterized the interaction between radiation and platinum-

based NPs, yet their tested parameters are limited. To our knowledge, none of them 

has addressed the contrast enhancement effect of platinum nanodendrites (PtNDs) in 

diagnostic radiology, let alone the correlation between the contrast enhancement with 

the PtND size. The same goes for the radiosensitization effect of platinum NPs in 

clinical radiotherapy. Their tested parameters in most studies are mostly restricted to 

a single type of radiotherapy or size of nanoparticles. 

Furthermore, while many studies have evidenced the contrast enhancement and 

radiosensitization effect of high-Z nanoparticles, the understanding of the mechanisms 

behind their effect is still inadequate. This is especially true with platinum NPs. 

Platinum NPs are well-known as radical scavengers, yet they still evidenced a 

significant radiosensitization effect in several radiotherapy types. This creates a 

paradox in elucidating the mechanism behind the radiosensitization by platinum NPs, 

as it is also widely accepted that radicals such as reactive oxygen species (ROS) play 

a significant role in inducing radiation damage toward the biological medium. 
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Therefore, this work is performed to evaluate the theranostic potential of 

PtNDs, as well as elucidating the factors and mechanisms that may affect their 

performance as an agent in both diagnostic radiology and radiotherapy. 

 

1.5 Objective of Study 

The general objective of this study was to evaluate the potential of Platinum 

Nanodendrites (PtNDs) as a novel theranostic agent; an agent that can act as both 

contrast agent in diagnostic radiology, and as radiosensitizer in radiotherapy. This 

general objective encompassed the following specific objectives: - 

i. To characterize the PtNDs with an optimal condition for radiosensitizer and 

contrast agent application. 

ii. To investigate the biocompatibility of various sizes of PtNDs. 

iii. To assess the contrast enhancement of PtNDs in diagnostic imaging. 

iv. To evaluate the radiosensitization effect of PtNDs under the irradiation of 

different types of radiotherapy beams. 

v. To verify the feasibility of PtNDs as a theranostic agent. 

 

1.6 Scope of Study 

In this work, the PtNDs were synthesized using the chemical reduction method 

reported by Ridhuan et al. (2014). This study's primary aim was to characterize the 

potential of PtNDs as a theranostic agent. Therefore, the characterizations of the 

fabricated PtNDs were done to elucidate the factors that may affect the theranostic 

capabilities of PtNDs, such as the PtNDs’ morphology, pH, elemental constituents, 

and their biocompatibility. The contrast enhancement studies were performed on 
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phantoms and compared with the commercial iodinated contrast agent. On the other 

hand, the radiosensitization effects of PtNDs were assessed through the in-vitro 

method. Only three radiotherapy types were used in this work, namely photon, 

electron, and proton beam radiotherapy. However, we did not evaluate the energy-

dependent and cell-dependent radiosensitization effect due to time constraints and 

resource limitations. These parameters are suggested in the future recommendations at 

the end of this thesis.   

 

1.7 Thesis Outline 

This thesis is divided into six (6) chapters, starting from the Introduction, 

Literature Review, Methodology, Result, Discussion, and Conclusion, respectively. 

Chapter 1 starts with the current global cancer prevalence and the latest technological 

advancements in cancer management, especially in radiotherapy. Fundamentals of 

radiobiology are introduced in this chapter to understand the basic mechanisms behind 

the cell-killing effect of radiotherapy treatment. It is followed by insight into the 

several limitations in the current-generation radiotherapy regimes, which lead to the 

suggested importance of contrast and radiosensitizing agents to be implemented in 

parallel with the systems. Next, we briefly reviewed the current progress of research 

on nanoparticle-based theranostic agents and the unique characteristics of 

nanomaterials that fuel the interest. The introduction section is capped with the 

problem statement and the research objective of this work, which become the 

backbone of this thesis. 

Chapter 2 contains the review of relevant literature, starting with platinum 

nanoparticle synthesis and characterization methods. Next, current progress in the 
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application of high-Z nanoparticles as theranostic agents, specifically in the field of 

radiation oncology, is discussed. The mechanisms behind the radiosensitization effect 

of these agents are discussed in detail, which is separated into three distinct categories, 

namely physical, chemical, and biological mechanisms. 

Chapter 3 comprises a detailed explanation of the experimental procedures 

performed in this work, starting with the Platinum Nanodendrites (PtNDs) synthesis 

and characterization, their biocompatibility assessment, the contrast enhancement 

studies, and the radiosensitivity evaluation of the fabricated PtNDs. The chapter is 

capped with the statistical analysis used throughout the work. 

Chapter 4 contain the results of this research. The results are compared with 

findings from previous literature in Chapter 5. The findings are reviewed regarding 

their similarity and differences and the suggested mechanism that led to their 

respective conclusions. The influence of PtNDs size on their biocompatibility, contrast 

enhancement and radiosensitization effect is then justified with the support of current 

knowledge in the field. 

Finally, all these results are summarised and concluded in Chapter 6. The 

limitations of this research and the relevant recommendations for future studies are 

also written in this chapter. The supporting data and information that may aid the 

presentation of this thesis can be found in the Appendices. 
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CHAPTER 2  

LITERATURE REVIEW 

 

This chapter is comprised of three main topics. The first topic is about 

producing platinum nanoparticles for many application types and the various common 

ways of characterizing the fabricated particles before their application. The next part 

revolved around the current research and applications of high-Z nanoparticles as 

theranostic agents. Finally, this chapter rounds up the radiosensitization effect of high-

Z nanoparticles and the mechanisms behind the effects (physical, chemical, biological 

mechanisms), which enticed the researchers to delve into the applications of these 

materials as radiotherapy sensitizing agents. 

 

2.1 The Fabrication and Characterization of Platinum Nanoparticles 

2.1.1 Multiple Pathways of Nano-platinum Production 

Platinum nanoparticles (PtNPs) can be fabricated through many different 

methods. Chen and Holt-Hindle (2010) have summarized the methods to synthesize 

the PtNPs into five categories: - hydrothermal and solvothermal techniques, sol-gel 

methods, electrochemical deposition, physical synthesis techniques and electroless 

deposition.  

On the other hand, Stepanov et al. (2014) also introduced few categories to 

classify the PtNP synthesis methods. The categories were divided into two major types. 

The first group involves chemical solutions in the fabrication process, and the latter 

integrates physical techniques. Chemical preparation includes shape-controlled 

synthesis method, chemical reduction method, and curing one-step process in polymer, 
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while physical techniques comprise co-sputtering and electron beam evaporation 

method, ion implantation method, surface etching-combined ion implantation, and 

laser ablation in solution. To sum up, we summarized the methods for PtNP fabrication 

into seven major types presented in Figure 2.1. 

 

 

Figure 2.1 Categories of platinum nanoparticle synthesis methods. 

 

The hydrothermal and solvothermal method allows an easy process to produce 

Pt, Pt-based binary, and Pt-based ternary nanomaterials of distinct shapes and sizes. 

Hydrothermal involve a heterogeneous reaction, which takes place in aqueous solvents 
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under high temperature and pressure condition while solvothermal processes differ in 

the use of nonaqueous solvents. This technique usually takes place in closed systems, 

such as Teflon lined autoclaves enclosed in steel vessels. Hydrothermal and 

solvothermal methods require inexpensive equipment and can be completed within a 

day. However, the need to operate in high temperatures and pressure hinders the 

possibility to observe the growth of the synthesized nanomaterials. 

The sol-gel method is a wet-chemical technique that efficiently produces Pt 

and Pt-based nanostructures of small dimensions with uniform size and distribution. 

Platinum nanoparticles can be fabricated on many supporting materials such as silicate, 

aluminium, titanium, and carbon using this method, which is useful in developing 

highly efficient Pt-based catalysts for fuel cells and other applications. 

Physical syntheses are the processes whereby the precursor material undergoes 

no physical changes. There are many different methods under physical synthesis 

techniques, such as sputtering technique, ion or electron beam deposition, laser 

ablation, and various irradiation types. The fabrication conditions, the concentration 

of reagents, and the presence of stabilizers in these physical synthesis methods can be 

tuned to control the product composition, morphology, and properties. In addition, 

physical synthesis methods permit the production of nanoparticles without impurities 

and free of surfactant, allowing direct access of the reactants to the surface-active sites 

of metal nanoparticles. 

The electrochemical deposition method involves using a two- or three-

electrode electrochemical system, with the electrolyte serving as the source of Pt and 

conducting medium. Deposition occurs by controlling either the electrode potential or 

the current density of the electrochemical cell. This method is used to fabricate thin 
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