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KELAKUAN PENGENDALIAN PERTUKARAN LORONG SECARA WAJIB

BERASASKAN TEORI PERMAINAN DALAM SITUASI KONFLIK

ABSTRAK

Keputusan budi bicara pertukaran lorong (DLC) di jalan raya bandar adalah
tindak-an yang sangat mencabar dan bercanggah. Selama dua dekad yang lalu, banyak
jenis penyelidikan telah berusaha menyelesaikan masalah ini dengan menggunakan
model pertukaran lorong berdasarkan keputusan binar. Walau bagaimanapun, sangat
sedikit kajian yang dilakukan untuk menangani masalah jenis ini dengan
menggunakan model teori permainan berasaskan Keseimbangan Nash sebagai
sekurang-kurangnya empat model berdasarkan keputusan. Walaupun tingkah laku
pemain (pemandu kenderaan yang menukar lorong dan pemandu kenderaan belakang
yang disasarkan dalam sistem lalu lintas bandar) dibatasi secara rasional dalam
situasi yang berinteraksi, penyeli-dikan tersebut menerapkan model teori permainan
Keseimbangan Nash yang menggu-nakan tingkah laku pemandu yang rasional
sepenuhnya. Tugas yang mencabar ini akan diatasi dengan menerapkan teori
permainan Keseimbangan Sambutan Kuantal (QRE) yang menerapkan pemain
rasional terikat. Model QRE memberikan keputusan per-tukaran lorong interaktif
dengan menggunakan faktor lintasan yang berbeza. Faktor-faktor ini dinyatakan
dalam penyelidikan lalu lintas pertukaran lorong dan kenderaan yang mengikut.
Model Pemandu Pintar (IDM) sebagai model kereta yang mengikut menggunakan
faktor kelajuan yang diinginkan, dan model perancangan lintasan pertu-karan lorong
memberikan faktor jurang keselamatan. Dengan mengelakkan kedua-dua faktor
keputusan pertukaran lorong ini, penyelesaian berdasarkan penyelidikan yang
disebutkan di atas mungkin tidak mungkin dilakukan, sedangkan literatur menyarank-

an untuk memasukkan faktor-faktor tersebut dalam mendorong penyelidikan lalu lin-

xXxil



tas berdasarkan tingkah laku. Penyelidikan ini mengumpulkan faktor kelajuan yang
diinginkan dari model simulasi IDM yang dikalibrasi, dan faktor jurang keselamatan
dari model lintasan pertukaran lorong yang dicadangkan, serta mencadangkan model
keputusan pertukaran lorong berdasarkan QRE untuk kawasan lalu lintas sesak di ban-
dar. Kaedah kalibrasi menggunakan set data Algorithma Ginetik (GA) dan Simulasi
Generasi Hadapan (NGSIM). Algoritma genetik juga digunakan untuk mengkalibrasi
model lintasan pertukaran lorong yang diubah, di mana parameter parameter fungsi
yang digunakan, ditentukan. Selanjutnya, masalah pengaturcaraan dua peringkat me-
nerapkan model teori permainan berasaskan QRE. Masalah pengaturcaraan dwi-tahap
mengkalibrasi faktor-faktor yang berkaitan dengan parameter utiliti teori permainan
dan kebarangkalian keputusan pemandu dengan menggunakan GA. Oleh itu, model
teori permainan ini dikalibrasi untuk mencadangkan tingkah laku pemandu DLC, dan
disahkan dengan menggunakan 30% (37 contoh pertukaran lorong) set data. Penemu-
an kajian ini mencadangkan model empat keputusan sehingga kadar penggera palsu
model adalah 9.38% (keputusan menukar lorong kenderaan subjek), 28.13% (mengha-
silkan keputusan sasatan kenderaan belakang ) dan 20% (keputusan melarang sasaran
kenderaan belakang ) dengan menggunakan ujian pengesahan. Selanjutnya, penyeli-
dikan ini juga menyarankan untuk mengawal faktor lintasan dinamika yang digunak-
an dalam situasi yang bertentangan. Perisian simulasi lalu lintas berasaskan prestasi
tinggi pada masa akan datang dapat mengembangkan model ini untuk mengurangkan

kemalangan jalan raya, kesesakan dan isyarat panjang di persimpangan.

xxiil



GAME THEORY-BASED DISCRETIONARY LANE CHANGING
CONTROLLING COMPULSORY BEHAVIOR IN CONFLICTING

SITUATION

ABSTRACT L

The challenging and contradictory Discretionary Lane Changing (DLC) is to hap-
pen for comfortable or safe journey in urban roadway. For the last two decades, many
studies have been trying to solve this problem by using the binary decisions-based lane
changing model. However, very few researches were conducted to handle this type of
problem by using the Nash equilibrium-based game theory model as an at-least four
decisions-based model. Despite bounded rational behavior of the game theory players
(lane changing vehicle driver and target rear vehicle driver in urban traffic system),
existing researches apply the Nash-equilibrium game theory model including the full
rational behavior. This challenging task needs to be overcome by applying the Quan-
tal Response Equilibrium (QRE) game theory including the bounded rational players.
The QRE model provides the interactive lane changing decision by using different
trajectory factors. These factors are found in car-following and lane-changing traffic
researches. The Intelligent Driver Model (IDM) as a car-following model incorporates
the desired speed factor, and the lane-changing trajectory planning model provides a
safety gap factor. By avoiding these two factors, the above-mentioned research-based
solution may not be possible, whereas literature suggested to include such factors in
driving behavior-based traffic research. This research collects the desired speed factor
from calibrated IDM, and safety gap factor from lane changing trajectory model, to
propose the QRE-based lane changing decision mo@or urban congested traffic ar-
eas. The calibration method uses Genetic Algorithm (GA) against the real dataset,
Next Generation Simulation (NGSIM). GA is also used to calibrate the modified lane

XX1V
chang-



ing trajectory model, and determine efficient model parameters. Further, a bi-level
programming problem includes the QRE-based game theory model in this research.
The bi-level programming calibrates parameters of game theory utilities (factors) and
driver decision probabilities by using Therefore, this game theory model em-
ploys the calibration by using 70% (92 lane-changing instances) of dataset to propose
the driver behavior. Further, this model check the validation by using 30% (40
lane-changing instances) of dataset. This research finds false alarm rates of the model,
10.81% (lane changing decision of subject vehicle), 0.00% (non-lane changing deci-
sion of subject vehicle), 36.36% (yielding decision of target rear vehicle), and 42.86%
(forbidding decision of target rear vehicle) by using validation test. Further, finding
results suggest overcoming conflicts in this dataset by controlling the used dynamic
factors. High performance-based traffic simulation software in the future can use the
further developed model to decrease traffic crashes, bottlenecks, and long signals in

the intersection.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Unplanned Lane Changing (LC) behavior of vehicle drivers in urban roadway in-
fluences traffic bottleneck and increases traffic crash. Generally, a driver decision in
various hazard situations is the leading cause of congestion (Malikopoulos & Aguilar,
2013)), and merging roadway is the most reliable source of high congestion (Margiotta
& Snyder, 2011). The time—cost of people produced in congested urban traffic areas
is more than 6.9 billion hours on the road, the purchasing cost of fuel is additional 3.1
billion gallons, and the average resulting total cost is $160 billion in 2014 (Afrin &
Yodo, 2020; Rahaman et al., 2019; Schrank, Eisele, Lomax, & Bak, 2015). Moreover,
the driver distraction, discomfort and frustration are twisted from traffic congestion

and may result in fierce driving behavior (Malikopoulos & Aguilar, 2012)

Planned driver behavior is anticipated to resolve many transport problems and pro-
vide comfort, safety, productivity and flexibility during travel. These planned vehicle
movements are contained either in macroscopic or microscopic factor analysis. The
macroscopic factor addresses traffic flow, density and average traffic speed and the
microscopic factor differentiates the vehicle trajectory based movements, such as po-
sition, velocity, acceleration, gap and time headway (Treiber & Kesting, 2013b). The

analysis of microscopic factor suggests that the driving system is flexible and safe.

Car following is a microscopic-based vehicle movement analysis in multilane roads.



When a vehicle driver continues his movement in the current lane, he includes the
car following behavior, and his vehicle is known as the following or subject vehicle
(SV). In the last four decades, the limited number of Car Following Models (CFMs)
have been developed to control the driver trajectory-based behavior, wherein Intelligent
Driver Model (IDM) is the best Car Following Model for the comfortable jour-
ney because of the model parameter (desired speed) (Treiber & Kestingl [2013b)). The
desired speed of a driver corresponds to his highest expected speed in the current lane.
This parameter depends on the real trajectories of Subject Vehicle (SV)) and Front Ve-

hicle (EV)) (C. Chen, Li, Hu, & Geng, [2010).

A vehicle driver who changes the current lane is called the LC driver. This type
of driver needs high or controlling speed and tries to overcome any obstacle in this
lane. When a driver must change the current-lane, this changing is a Mandatory Lane
Changing (MLC). In the last two decades, many researchers have developed MLC
models to overcome traffic obstacles. Furthermore, when a driver changes the lane
for either comfortable or safe journey, this changing is Discretionary Lane Changing
(DLC). The DLC action provides more relaxation and safety to drivers in congested
traffic areas, thereby bringing more comfort when the driver needs more speed in the
freeway road (M. Yang, Wang, & Quddus, [2019). However, DLC action is not com-
pulsory. Thus, the safety factor of DLC action is more significant than that of MLC

action.

The safety factor is determined using the trajectories of Target Rear Vehicle (TRV)
and SV after LC. In recent years, researchers developed a gap acceptance model that

included safety factor and proposed the distribution of trajectories (Balal, Cheu, &



Sarkodie-Gyan, 2016). For DL decision, a lane-changing vehicle (SV) driver tends
to identify the gap between the FV and the TRV at the target-lane after LC. When an
SV driver identifies the gap at the target-lane, he applies binary decision (e.g. LC and
Non-Lane Changing (NLC) decisions). TRV may also apply another binary decision
(e.g. yielding or forbidding decisions) immediately. The SV changes lane when the gap
is accepted; otherwise, SV does not change lane. Also, TRV either gives permission

or forbids to change lane.

The binary decision model can provide the decision to either or TRV by using
their trajectories. When this model applies SV trajectories, SV can make LC decision.
However, when this model applies TRV trajectories, TRV can make the decisions. As
a result, the binary decision model priorities persons/drivers separately. To date, the
binary decision model is used to determine the decisions for individual person/driver

(Arbis, |2017} |Arbis & Dixit, 2019).

All driver decisions are more important for DLC action. When the current safety
gap is less than the minimum safety gap, the TRV driver may decelerate his vehicle
to create a huge safety gap through interaction, and the SV driver may change his
current lane without the rear crash. Thus, the LC decision of SV may depend on
binary decision of TRV to avoid the rear crash. In this environment, driver interaction
is generated between two drivers. However, the binary decision-based gap acceptance
model could not combine interacted decisions for DLC action. The reason is that
the binary model can only suggest the decision to a single driver (Balal et al., 2016).

Therefore, a modification approach is demanded in decision-based research.



Game theory-based decision model evolved for more than one driver to make their
own decision. This model combines the decisions in an interacted driving environment.
The Game Theory Model (GTM) is used to determine the probabilities of SV (e.g. LC
and decisions) and TRV driver decisions (e.g. yielding or forbidding decisions)
of in the interacted driving environment. Thus, during these two vehicles
decide according to the GTM. Here SV is considered as a first player, whereas TRV
is considered as an opposition player. This competitive game may be cooperative or

non-cooperative (M. Wang, Hoogendoorn, Daamen, van Arem, & Happee, 2015).

Nash Equilibrium (NE) is a pioneer research tool in game theory-based decision
model because it can provide the best strategy to decision-makers. If interacting drivers
choose a strategy from Nash equilibria (solution points), this strategy is the best strat-
egy in competing environment. Thus, decision-makers can implement the Nash equi-
libria in conflicting scenarios because many solutions belong to this strategy set. More-
over, the conflict probability is likely to increase when SV takes the LC decision, and
TRV forbids the LC decision of SV. Hence, the probability of LC may be changed by
controlling the dynamic factors because the SV driver intention occurs the DLC ac-
tion. In addition, given that TRV intention occurs a forbidding decision, the forbidding
probability may also be changed by controlling its dynamic factors in conflicting time.
Therefore, the SV and TRV drivers may control their dynamic factors using the GTM

in conflicting scenarios to reduce the crashing probability amongst these vehicles.



1.2 Problem Statement

CFM was developed to control the driver longitudinal movements in the current
lane, wherein the desired speed is an [DM] parameter that provides the best re-
garding comfortable journey. The desired speed parameter influences the be-
cause depends on driver intention. Balal et al.| (2016) found that the desired
speed factor collection is problematic because it may significantly influence the binary
decision model. Furthermore, according to M. Yang et al. (2019), the desired speed
factor creates the DLC intention in binary decision-intended gap acceptance model.
However, they avoided the collection of this factor. The main issue in collecting the
desired speed factor is calibration, especially when microscopic-based big data is im-
plemented. [Kang and Rakhal (2017, 2018) found that the desired speed factor highly
affected the MLC decision using GTM. However, none of these studies developed the
game theory-based decision model including the desired speed factor in decision

model.

Safety gap factor is a significant component for driver safety in Lane Changing
Trajectory Planning Model (LCTPM). As a result, this factor also affects driver deci-
sion significantly as a safety measurement. The safety gap factor could be determined
by using the LC trajectory model. However, a few studies used the lateral trajectory
models: Quintic Bezier Curves (Shen, Zhang, & Fangl 2017), Multi-Order
Polynomial Curve (MOPC) (D. Yang, Zheng, Wen, Jin, & Ran, [2018]) and Hyperbolic
Tangent Curve (HTC)) (B. Zhou, Wang, Yu, & Wu, [2017). The QBC was only applied
for robotic planning vehicle. Most of the MOPCs was derived based on velocity and

acceleration. Velocity and acceleration are assumed to be zero in starting and ending



points of LC, except in D. Yang et al.| (2018). |D. Yang et al. argued that this assump-
tion was unrealistic for congested traffic scenarios. HTCs were determined from LC
reference angles by real views. The assumption of HTC is more realistic than MOPC
because realistic parameters are used. |B. Zhou et al.| (2017) used the parameters and
regression coefficient to fit with microscopic-based real data remarkably. However,
these parameters and regression coefficients were calibrated against a very few real
data. Further, most studies used a straight line to represent the longitudinal movements
in safety gap measurement. Eventuality, D. Yang et al. showed that the longitudinal
direction does not follow always a straight line to adjust the vehicle in the target-lane.
That directional straight line includes a weighted parameter after crossing the mid-
dle line that was not calibrated. Therefore, the longitudinal trajectory line and lateral

trajectory HTC parameters were not properly calibrated to determine the safety gap.

decision provides a comfortable and time-saving journey and releases the
frustration of drivers. However, the decision model can suggest some crash-
avoiding LC decisions to the driver (Arbis & Dixit, [2019; |H. Zhou, Sun, Qin, Xu, &
Yao, 2020). Studies regarding actions are extremely limited. However, as men-
tioned previously in Section [[.T] the binary model can only suggest the decision to a
single decision-maker (Balal et al.,|2016), whereas GTM can suggest to more than one
decision-maker (Ali, Zheng, Haque, & Wang, |[2019). In H. Zhou et al.|(2020), a binary
decision model explored the conflict probabilities for [LC| and decisions in
action. The NE-based GTM on LC decision is gradually improving for MLC, wherein
the driver behavior is fully rational. However, some research proved that a driver be-
havior in congested traffic area is bounded rational (Barmpounakis, Vlahogianni, &

Golias, [2016; H. Zhou et al., 2020). A seminal work (Arbis & Dixit, [2019) included



bounded rational behavior-based QRE model and proposed the MLC decision. More-
over, no study used the bounded rational behavior-based Quantal Response Equilib-

rium (QRE]) model for decision.

1.3 Objectives of the Research

This research has four objectives:

* To collect the realistic desired speed from a CFM (IDM) using microscopic data.

* To determine the safety gap factor from LCTPM using microscopic data.

* To propose a bounded rational behavior-based model of action by

using the aforementioned car following and lane changing trajectory factors.

 To suggest the controlling driving behavior in [DLC| conflicting situation.

1.4 Scopes and Limitations of the Study

This research collects the desired speed factor as an IDM parameter, and safety gap
factor as a factor of modified parametric trajectory models. This study also proposes
the QRE}based LC decision model fitting NGSIM dataset. To collect the desired speed
factor, this research considers as the best CFM for a comfortable journey. The

IDM parameters are collected by comparing calibration methods (e.g. SPSA and GA).

The existing lateral trajectory movements along the Hyperbolic Tangent Curve
(HTC), and the longitudinal trajectory movements along the straight lines are modified
by using GA. The Next Generation Simulation (NGSIM)) dataset (US-101) has three

parts (e.g. 7.50 am to 8.05 am; 8.05 am to 8.20 am; and 8.20 am to 8.35 am). This



research uses the 7.50 am to 8.05 am dataset, wherein this macroscopic and micro-
scopic dataset includes trajectory-based 1,1180598-row vectors and 18-column vec-
tors. Therefore, 123 [LO groups and 9 groups are collected by using MATLAB

coding, wherein every group has four vehicles.

To fit the model against the collected vehicle groups, the decision model includes
the bi-level programming; and the bi-level programming provides the probabilistic
fitting value of driver decisions, such as LC and [NLC decisions for SV, and yielding
and forbidding decisions for TRV. Using genetic algorithm and Sum of Square Error
(SSE) function, the bi-level programming also provides the realistic GTM parameters,

where the used MATLAB coding achieves an outstanding result in this research.

1.5 Significance of the Study

This thesis focuses on scheming the lateral control decision that the desired speed
of calibrated car-following parameters and safety gap factor of LCTPM influences this
decision. The SV and TRV drivers control the dynamic factors used in this model and
decrease the rear crash by applying the proposed QRE-based GTM during In
the future, high performance-based traffic simulation software can develop this model
further to reduce traffic crash, bottlenecks and long signal in the intersection. The
proposed model very effectively fits in human-based real trajectory NGSIM (US-101)
dataset. As such, the proposed model application can promote next-generation auto-

mated driving systems.



1.6 Organization of the Thesis

The presentation of the thesis is organized as follows:

Chapter 2 provides the comprehensive literature of calibrated algorithms of
(IDM), and research opportunity in the LCTPM. This chapter also specially reviews
the literature of the QRE-based GTM as an emerging tool to solve the bounded rational

behavior-based driver interacted decision.

Chapter 3 designs the methodological approaches of the calibration method en-
hanced parameters of IDM, and modification of the LCTPM. The desired speed be-
longs to CFM parameters, and safety gap belongs to LCTPM. Incorporated above-
mentioned factors in GTM are theoretically designed to propose the DLC decision
model. This decision model can be applied to decrease the rear crash by controlling

vehicle trajectories.

Chapter 4 delivers the information about the data collection site and data process-
ing style. This data improves the model, tests the accuracy, and provides the GTM
influenced factors. This chapter also shows the statistical figure of the extracted-data

and collected-factors.

Chapter 5 discusses the comparative best calibration method of CFM, calibration
of modified LCTPM, and figure of collected factors. Finally, this chapter presents
the proposed solution of the research problem by testing the validation against real
trajectory data, where the proposed solution suggests that the controlling of driver

dynamic factors is able to avoid the rear crash in urban roadway.



Chapter 6 summarizes the proposed suggestions, concludes the hypothetical so-
lution of the problem in this chapter, and provides the future research direction for

development of the research in this thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter briefly reviews the literature of Car Following Model (CFM) and Lane
Changing Trajectory Planning Model (LCTPM). CEM provides the desired speed fac-
tor, and LCTPM provides the safety gap factor. In the Section the Intelligent
Driver Model (IDM) as the best for a comfortable journey, and calibration ap-
proaches of CFM are reviewed. In the third section, reviewed LCTPM contains lateral
and longitudinal trajectory models for a safe and comfortable journey. Different lateral
trajectory curves and a longitudinal trajectory line are discussed. Moreover, related
studies on the safety gap factor are addressed in the same section. Above-mentioned
two factors included in Game Theory Model (GTM) are discussed in the Section2.4]
Besides, this section includes the discussion of fully rational-based Nash Equilibrium

(NE) model and bounded rational-based Quantal Response Equilibrium (QRE) model.

2.2 Traffic Flow Analysis

A complex traffic network behavior has been used to analyze the macroscopic and
microscopic traffic flow models. The macroscopic simulation model is a procedure
that executes the density, flow, and average speed of steady-state traffic flow (Ireiber
& Kesting, 2013b)). Besides, the microscopic simulation model plays a significant
role in driver to driver interactions and allows a decision by exploring and planning

traffic network facilities (Koutsopoulos & Farah, 2012). Generally, a traffic simulation
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platform consists of many models as discussed in different traffic flow models (C. Chen
et al., 2010; Kesting & Treiber, 2008} |Ossen & Hoogendoorn, [2009; |Punzo, Ciuffo, &

Montanino, 2012)).

The macroscopic-based traffic model is essential for controlling the traffic area.
However, this model parameter improves the microscopic-based traffic flow model
(Rakha & Gao, 2010). The microscopic-based driver behavior is given more prior-
ity when exploring safe and comfortable journeys and solving many traffic problems
in congested areas (Islam), 2014) because dynamic parameters involve in this model.
Besides, the traffic network flow parameters of macroscopic structures, such as criti-
cal density, free flow velocity and jam density, are significant in various models, and
these parameters can be directly projected to loop indicator traffic flows (D. Chen,
Laval, Zheng, & Ahn, 2012). Nevertheless, other parameters (gap, desired speed,
maximum acceleration and maximum deceleration) cannot be derived from macro-
scopic capacities in different CFMs (Kesting & Treiber, 2008; Ossen & Hoogendoorn,
2009; Paz, Molano, Martinez, Gaviria, & Arteaga, [2015;|Wagner, Buisson, & Nippold,
2016). Therefore, the Subsection briefly explains the microscopic-based traffic

flow model, where driver comfortable level is prioritized.

2.2.1 Car following model

The longitudinal and lateral movements of the vehicle are called car following and
lane changing (LC) trajectories, respectively. The longitudinal movement has a one-
dimensional direction, and the lateral movement has multidimensional directions. By

analyzing the microscopic factors, one-dimensional controls the vehicle. The
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current research trend for CFM uses real trajectory data as the exhibition of driving
behavior in real environment (Ciuffo, Punzo, & Montanino, |2012a; Kesting & Treiber,

2008} |Ossen & Hoogendoorn, 2009; Punzo & Simonelli, 2005).

The widely used Gipps prioritizes maximum velocity and deceleration by
hard-brake for safety (Ciuffo, Punzo, & Montanino, 2012b; M. M. Rahman, Ismail,
& Al 2019b; Spyropoulou, 2007). However, these actions are often unnecessary in
highway scenarios. For instance, hard braking deceleration is unnecessary because the
rear vehicle cannot perform hard-brake instantly (Treiber & Kesting, 2013a). High
braking deceleration is a threat in the comfortable journey (Treiber, Hennecke, & Hel-
bing, |2000; Treiber & Kesting, [2013a). IDM is a comfortable CFM that can explain
the complexity better than Optimum Velocity Model (OVM) L. Liu, Zhu, and Yang
(2016); M. Rahman, Chowdhury, Dey, Islam, and Khan (2017); Treiber and Kesting

(2013b) .

Learning-based CFMs, such as Gaussian mixture and hidden Markov model (W. Wéng,
X1, & Zhao, [2018; 'W. Wang, Zhao, X1, LeBlanc, & Hedrick, 2017)), fuzzy logic model
(Wu, Brackstone, & McDonald, [2003)) and artificial neural network model (Panwai &
Dial 2007), are artificial intelligence systems for microscopic traffic analysis. How-
ever, all these models highly depend on real trajectory datasets. Moreover, the data
collection is not an easy procedure (Coifman, Wu, Redmill, & Thornton, 2016; Do-
gru & Subasi, 2018} Leduc et al., 2008; Peng, Abdel-Aty, Shi, & Yu, 2017; |Punzo
& Simonelli, 2005), thereby making the research on learning-based methods less in-
teresting. Furthermore, if the dataset has a low frequency (few data with respect to

time) or many outliers, CFMs behave unrealistically. The under-fitted and over-fitted
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datasets also produce another problem as a data-driven CFM (Aghabayk, Sarvi, &
Young, 2015). As such, the research on parametric-based CFM becomes highly inter-

esting for a comfortable journey.

After the exploration of (Treiber et al.,2000), research has found that the most
reliable and efficient parametric-based CFM expands the microscopic traffic research
area and makes significant rules for traffic network (Brockfeld, Kithne, & Wagner,
2005} |C. Chen et al., 2010). M. Rahman et al.| (2017) evaluated the effectiveness of
IDM based on an ordinary differential equation for n number of a vehicle platoon.

CFM simulation results provide a better suggestion for comfortable driving behavior.

The IDM is a car following dynamic system that includes parameters, such as maxi-
mum acceleration, maximum deceleration, desired speed, time headway and minimum
jam distance. Using these parameters, the IDM system provides simulation data, such
as the position, velocity, acceleration or deceleration and gap of Subject Vehicle (SV).
Gap refers to the distance between the Front Vehicle (FV) rear bumper position and the
SV front bumper position. Time headway of SV corresponds to the total time to touch
the FV (C. Chen et al., [2010). [Treiber and Kesting (2013b)) proposed the improved
IDM parameters where the desired speed relates to maximum deceleration as a param-
eter of comfortable journey. In Table[2.1] the different CFMs analysis the macroscopic

and microscopic environments.
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Table 2.1: Related works that have employed the CFM.

Traffic Car following Note
No. | Author analysis model
Mac| Mic | Gi | ID | OV | Oth

1 | IC. Chen et al. v v v" | The desired speed factor is
(2010) not included in compari-

son analysis.

2 | Treiber _and | v/ v v |V The IDM performs better
Kesting than OVM as comfortable
(2013b) journey.

3 | MTreiber  and v v |V The IDM performs bet-
Kesting ter than Gipps in desired
(2013a) speed as comfortable jour-

ney.

4 | |Punzo, Mon- v v FV trajectories influence
tanino, and more in simulation model.
Ciuffo| (2014)

5 | |Aghabayk et v v |V v' | The research prioritized
al. (2015)) more in IDM.

6 | Wagner et al. v v/ | Only stochastic value is
(2016) employed in this model.

7 |IL. Liu et al. v v |V IDM can explain the com-
(2016) plexity better than OVM.

8 | [Kurtc and v v v | Required IDM parameters
Treiber varied from full velocity
(2016) driver model.

9 | L. Li, Chen, v v |V The IDM is best to explain
and  Zhang the real trajectory by im-
(2016) proving parameters.

10 | M. Rahman et v v |V The research focused sim-
al.| (2017) ulation trajectories.

11 | |[Zhu, Wang, | v v v |V v | IDM is better performed
Tarko, et al. than other models for this
(2018)) dataset.

12 | M._M. Rah- v v The research only com-
man et al. pared the simulation data
(2019D) and real data.

Mac- Macroscopic analysis; Mic- Microscopic analysis; Gi-Gipps model; ID-IDM;
OV-OVM; oth- Other models
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2.2.2 Calibration methods

Parameter estimation against real data has become a familiar and important phe-
nomenon in CFM-based traffic research because earlier researchers could not fit per-
fectly CFM simulation parameters with real traffic system (Brockfeld et al., 2005}
Koutsopoulos & Farah, 2012). Ordinary differential equation-based microscopic sim-
ulation models are categorized by some parameters to explain the and fitted by
different types of calibration methods. The fitted microscopic simulation models can
reproduce the traffic scenarios (Bevrani & Chung, 2011} |da Rocha et al., 2015; Kest-
ing & Treiber, [2008; Ossen & Hoogendoorn, 2009} Punzo et al., 2012; M. M. Rahman,

Ismail, & Alil, [2019a).

Gipps has unrealistic factors; for example, velocity factor rarely has a phys-
ical link to the traffic scenarios, (Kesting & Treiber, 2008} Koutsopoulos & Farah,
2012). However, parameter calibration methods can improve the CFM performance in
real traffic. Calibration parameters represent real traffic driver behavior after improv-
ing the model performance (Punzo et al., 2014; Wagner et al.,[2016; Zhu et al., 2018)).
Therefore, the parameter calibration method depends on the objective function of the

optimization approach (Kesting & Treiber, 2008).

Many optimization functions, such as Genetic Algorithm (GA), Sequential Quadratic
Programming (SQP), Simultaneous Perturbation Stochastic Approximation (SPSA),
and Nelder—Mead-algorithm (L. L1 et al.l 2016; Nelder & Mead, 1965), can be used
for calibration methods. GA is an efficient calibration method that produces nearly
accurate value (Rakha & Gao, [2010). Furthermore, for the calibration of simu-

lation parameters, a stochastically global search is the most broadly used system
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for unconstrained and constrained objective functions (Ciuffo et al., 2012a)). L. Li
et al.| (2016) explained that the Sequential Quadratic Programming and
Simultaneous Perturbation Stochastic Approximation (SPSAJ) calibration methods pro-
duce realistic IDM parameters. Besides, L. L1 et al.| (2016) suggested that the driver
decision depends on calibration parameters. Zhu et al.| (2018]) explored that using cal-
ibration method (GA) in the IDM better fits with datasets (Shanghai expressways in
China). Zhu et al| (2018) only compared CFMs for best fitting with real datasets.

However, they avoided the comparison of calibrated models.

Most of the researches used small-sized data to calibrate the simulation model as
shown in Table 2.2 A few numbers of vehicle trajectories are used in the small-sized
data, whereas many vehicle trajectories are used in big-sized data. Therefore, big
data provide a more realistic explanation and more opportunities to explain the driving
behavior and improve the simulated model parameters. Furthermore, the big data that
includes dynamic trajectories could supply the error of simulated driving performance
and real driving performance more realistically. Different calibration approaches used

real data as shown in Table 2.2]
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Table 2.2: Related works that have used the calibration approach.

Data Calibration
No. | Author size method Note
Sm | Big| GA| SA | Oth

1 [IC. Chen ef | v v The desired speed factor was
al.[(2010) not calibrated.

2 |Rakha and v v | The research compared the dif-
Gao| (2010) ferent CFMs.

3 | Bevrani v That research disclosed the im-
and Chung proved model for only safety
(2011) factor.

4 | [Punzo et al. v IV v' | The Gipps model parameters
(2012) are calibrated by synthetic data.

5 | [Treiber and | v/ v' | The research provides the all
Kesting calibrated parameters.

(2013b)

6 | Punzo et al. v v’ | A few parameters were cali-
(2014)) brated.

7 | [Wagner et v Only stochastic value is em-
al. (2016) ployed in this model.

8 | Kurtc __and v v | The research calibrated the IDM
Treiber parameters.

(2016)

9 |IL. Liu et al, v |V GA calibrated the IDM parame-
(2016) ters.

10 [IL. Li et all| v v | v | v | The research tested the con-
(2016) vergence speed of calibration

methods.

11 [1Zhu et al. v |V IDM parameters have good fit-
(2018) ting capability by using GA.

12 | M. M. Rah- | v v |V Calibrated methods are applied
man et al. to the simulation data for more
(2019a) fitting with real data.

Sm-Small; Oth- Other calibration approaches; SA- SPSA
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2.3 Lane Changing Trajectories Planning Model

Car following and LC are two vehicle movements on multilane roads. When a
vehicle driver needs high speed or controlling speed and tries to overcome any obstacle
in the current lane, he/she changes the current-lane (M. Rahman, Chowdhury, Xie,
& Hel 2013)). This action refers to the LC behavior of the vehicle driver. The LC
is categorized into Mandatory Lane Changing (MLC) and based on the driver
intentions. The driver must change his current-lane for MLC. In the last few years,
many researchers have developed the MLC model to overcome traffic obstacles (e.g.

rear crash, stop-and-go oscillation and working zone signal).

DLC action provides relaxation and comfort in congested road and freeway road,
respectively (M. Yang et al., 2019). The safety factor in DLC model is used more sig-
nificantly than those of MLC model because of safety priority. In recent years, using
safety factors and trajectory distribution, a few studies have developed the gap accep-
tance model. The proposed driver behavior is a planned action before the execution of
LC. The planned action depends on two factors, namely, lateral and longitudinal direc-
tions. In the coordinate system, both lateral and longitudinal movements can arrive in
a planned position and identify the gap in the target lane. Therefore, these direction-
based LC trajectory models need to develop and determine the safety gap in the target

lane. Subsections and 2.3.2review models of these two movements.

2.3.1 Lateral lane changing trajectory

trajectory planning model is important for identifying and ensuring safety in

any traffic system. The model helps predict the accepted gap and dynamic trajectories
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of the lateral movement. Trajectory planning model has been developing for more than
two decades. A few simulation models were developed for[DLCtrajectory planning by
using Quintic Bezier Curves (QBC) (Gonzalez, Pérez, Milanés, & Nashashibi, 2015
Kawabata, Ma, Xue, & Zheng, 2013} Shen et al., 2017), Hyperbolic Tangent Curve
(HTC) (W. Li, Gao, & Duan, 2010; B. Zhou et al., 2017) and Multi-Order Polynomial
Curve (MOPC) (C. Wang & Zheng, [2013; |D. Yang et al., 2018} You et al., 20135)) for
urban and freeway roads. Since a sine function-based trajectory curve was adapted to
generate the safety factor (J. Wang, Zhang, Zhang, & Yan, 2016; Y. Y. Wang, Pan,
Liu, & Feng, |[2018)), so maximum acceleration was used to derive the unrealistic curve.
Used curves in some studies provide the LC trajectory planning to determine the safety
gap factor, as shown in Tables [2.3|to [2.5] In addition, three types of purpose for LC

trajectory planning still have research gap (Katrakazas, Quddus, Chen, & Deka, 2015)):

* Best geometric trajectory is necessary for the SV. That is, the curvature at every
point on the curve needs to be as small as possible, and the curvatures at the

starting and ending points needs to be nearly zero.

* Realistic dynamic system is important for path planning. The vehicle [LC-ime

versus position should be validated by real trajectory.

* By using the geometric curve, LC-time should be safe.

2.3.1(a) Quintic bezier curve

The is used in LC trajectory planning for shortest-distance and smoothness
path, time-optimal and comfortable journey. Shen et al.| (2017)) addressed the trajec-

tory planning based on the fifth-order for a comfortable journey. They used this
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curve for a few tiny vehicle LC scenarios to test comfort measurement. They avoided
the error testing between the proposed path planning and real trajectory planning for
longitudinal and lateral path positions. Meanwhile, |(Gonzalez et al.| (2015) found that
the fifth-degree QBC was very smooth, however it was only applied on unicycle tra-
jectory. They agreed that the high-degree QBC lost flexibility of trajectory. Further,
Kawabata et al.| (2013) explored that only a small robotic wheel could use the QBC
for smoothness in LC trajectory planning. Therefore, the avoids curvature and
smoothness for real vehicle trajectory, whereas the shortest distance of the path was

prioritized significantly.

2.3.1(b) Multi-order polynomial curve

The parameters of are described by acceleration, speed and position con-
straints. Sometimes, inexperienced driving causes an uncomfortable journey during
LC. Resende and Nashashibi (2010) used fifth-order Polynomial Curve (PC) for dy-
namic longitudinal and lateral trajectory planning. This Polynomial Curve (PC)-based
dynamic model is suitable for freeway traffic system for autonomous vehicles, but this
curve has limitations for the urban traffic system. |C. Wang and Zheng| (2013)) provided
a simulation model for LC trajectory planning by using seven-order [PCl and assumed
that the initial velocity and acceleration are zero. They did not test the validation with

real vehicle trajectory.

Yao, Zhao, Bonnifait, and Zha| (2013)) proposed a data-driven LC path planning
model and fifth-order PC by using 223 LC observed data. However, this data-driven

model is still a problem due to data collection limitations. You et al. (2015) realized

21



the problem of the path planning algorithm and provided a proper solution by drawing
six-order PC for the longitudinal position and fifth-order PC for the lateral position. To
derive the PC model, You et al. (2015) assumed zero-based acceleration and velocity at
the LC starting and ending points. Ntousakis, Nikolos, and Papageorgiou| (2016) also
assumed that the acceleration and velocity at the starting and ending points are zero to

generate the lateral trajectory curve.

Heil, Lange, and Cramer] (2016) developed the [PClbased LC trajectory planning
and found the computational cost using maximum acceleration and overshooting be-
havior. D. Yang et al.|(2018) proposed the trajectory planning curve using where
the reference angle at the starting and ending points were used to derive the trajectory
curve. Therefore, the LC trajectory model is developed by using the MOPCl Most
of the LC trajectory model used zero-based velocity and acceleration at the starting
and ending points to derive the PC model, in which these assumptions are unrealistic

(D. Yang et al., 2018)).

2.3.1(c) Hyperbolic tangent curve

A reference angle-based trajectory planning model was modified by using
curvatures and trajectories of HTC are compared with curvatures and trajectories of
PC, in which[HTC performed better than [PCl (B. Zhou et al.,[2017). [W. Li et al.| (2010)
created another trajectory planning model by combining sine function and and
by comparing with the Spline Based Curve (SBC) model to avoid the high curvature
at the starting and ending points. B. Zhou et al.| (2017) modified HTC for trajectory

planning. Thus, they suggested to use the HTC in MLC and DLC actions in future
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research. Therefore, this research is for the DLC driver behavior to determine the

safety factor using this HTC trajectory planning.

2.3.2 Longitudinal lane changing trajectory

Without the longitudinal movements of the vehicle, the target gap point is unrealis-
tic, or the safe distance cannot be identified by using the lateral trajectory curve. A very
few articles use longitudinal movements in the trajectory planning curve to determine
the safety factor. Some studies proposed a straight line for longitudinal movements
(C. Wang & Zheng, 2013 |Y. Y. Wang et al., 2018)). However, this straight line may
not fit with real trajectory vehicle movements during LC. Driver has assumed points
that he/she may want to achieve after LC, and the longitudinal trajectory line direction
may change. The longitudinal movement line in previous research can not be fitted the
longitudinal positions during LC. However, they avoided the proposal of the planning
of longitudinal movements to better fit. The existing longitudinal trajectory planning
can not fitly determine the safety factor during LC due to model accuracy. So, the
literature has a huge gap. The studies that used longitudinal trajectory line with lateral

trajectory curve as shown in Tables[2.3]to[2.5]

2.3.3 Calibration and validation approaches of trajectory model

Literature suggests that the simulation model should be improved by using the cal-
ibration method against real trajectory data. Otherwise, the model may not be applica-
ble to the real field. Again, this research explores the literature gap, in which |B. Zhou
et al. (2017) proposed a trajectory model as a lateral direction curve that is more ef-

fective than other trajectory curves for a comfortable journey. The safety gap factor
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