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PELANJUTAN CARTA-CARTA KAWALAN PEKALI VARIASI 

MULTIVARIAT 

ABSTRAK 

Carta-carta kawalan untuk mengawal pekali variasi multivariat (MCV) 

digunakan apabila fokus adalah dalam pemantauan varians multivariat relatif kepada 

vektor min untuk suatu proses multivariat. Tesis ini mencadangkan carta sisi-atas 

purata bergerak berpemberat eksponen (EWMA) dengan selang pensampelan boleh 

berubah (VSI) untuk mengesan anjakan menaik dalam MCV kuasa dua (𝛾2), iaitu carta 

sisi-atas VSI EWMA-𝛾2. Formula untuk mengira had-had kawalan dan pengukuran 

prestasi (menggunakan pendekatan rantaian Markov) carta sisi-atas VSI EWMA-𝛾2 

telah diberikan. Dapatan kajian menunjukkan bahawa saiz sampel (n) yang besar, 

bilangan pembolehubah rawak dipantau secara serentak (p) yang kecil dan nilai MCV 

dalam kawalan (𝛾0) yang kecil memberikan pengesanan anjakan proses yang lebih 

cepat. Kajian perbandingan menunjukkan bahawa carta sisi-atas VSI EWMA-𝛾2 

mengungguli carta sisi-atas MCV sedia ada untuk pengesanan anjakan menaik dalam 

MCV proses. Tambahan pula, kesan ralat pengukuran ke atas prestasi carta Shewhart-

MCV telah dikaji. Sehubungan itu, tesis ini juga mencadangkan dua carta satu-sisi 

Shewhart-MCV dengan kehadiran ralat pengukuran untuk mengesan anjakan MCV 

menurun dan menaik secara berasingan. Sifat-sifat taburan untuk populasi dan sampel 

MCV dengan model ralat kovariat linear telah diterbitkan. Formula untuk mengira 

had-had kawalan dan purata panjang larian (ARL) untuk carta-carta Shewhart-MCV 

berasaskan ralat pengukuran diterbitkan. Suatu prosedur langkah demi langkah yang 

menjelaskan kesan andaian palsu ketiadaan ralat pengukuran ke atas carta Shewhart-

MCV juga diperincikan. Dapatan kajian menunjukkan bahawa untuk carta sisi-bawah 
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Shewhart-MCV, nilai ARL menjadi lebih besar daripada yang dijangkakan apabila 

nilai unsur pepenjuru 𝜽 bertambah. Sebaliknya, untuk carta sisi-atas Shewhart-MCV, 

nilai ARL menjadi lebih kecil daripada yang dijangkakan apabila nilai unsur pepenjuru 

𝜽 meningkat. Justeru, carta sisi-bawah dan sisi-atas Shewhart-MCV tidak boleh lagi 

dipercayai apabila had-had kawalan yang digunakan dikira dengan mengabaikan 

kehadiran ralat pengukuran walhal pada kenyataanya, ralat pengukuran wujud.  

Tambahan pula, dalam tesis ini, carta-carta sisi-atas Shewhart-MCV dan EWMA-𝛾2 

dalam kehadiran ralat pengukuran telah dibangunkan. Suatu pendekatan yang berbeza 

dalam penerbitan formula populasi dan sampel MCV dengan model ralat kovariat 

linear digunakan untuk membangunkan kedua-dua carta satu-sisi Shewhart-MCV dan 

carta satu-sisi Shewhart-MCV. Formula untuk mengira had-had kawalan dan 

pengukuran prestasi carta-carta sisi-atas Shewhart-MCV dan EWMA-𝛾2 dalam 

kehadiran ralat pengukuran telah diperoleh. Kesan kehadiran ralat pengukuran ke atas 

kedua-dua carta terkemudian ini telah dikaji. Dapatan kajian menunjukkan bahawa 

lebih kecil nilai nisbah ralat pengukuran (𝜃2), maka lebih cepat carta Shewhart-MCV 

dan EWMA-𝛾2 dalam pengesanan keadaan luar kawalan, yakni, mencerminkan kesan 

negatif ralat pengukuran ke atas prestasi kedua-dua carta tersebut. Tambahan pula, 

dengan meningkatkan bilangan kali suatu barang diukur (m) dan nilai unsur pepenjuru 

matriks B, kesan kehadiran ralat pengukuran dapat dikurangkan. Perisian MATLAB 

digunakan untuk menjalankan semua analisis berangka manakala simulasi dengan 

perisian SAS digunakan untuk mengesahkan ketepatan pengiraan berangka yang 

diperoleh dengan menggunakan MATLAB. Akhir sekali, contoh-contoh yang 

menggunakan data sebenar dibentangkan untuk semua carta yang telah dicadangkan. 
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EXTENSIONS OF MULTIVARIATE COEFFICIENT OF VARIATION 

CONTROL CHARTS 

ABSTRACT 

Control charts for monitoring multivariate coefficient of variation (MCV) are 

applied when the interest is in monitoring the relative multivariate variability to the 

mean vector of a multivariate process. This thesis proposes an upper-sided variable 

sampling interval (VSI) exponentially weighted moving average (EWMA) chart to 

detect upward shifts in the MCV squared (𝛾2), that is, the upper-sided VSI EWMA-

𝛾2 chart. Formulae to compute the control limits and performance measures (using the 

Markov chain approach) of the upper-sided VSI EWMA-𝛾2 chart are given. The 

findings show that a large sample size (𝑛), a small number of variables monitored 

simultaneously (𝑝) and a small value of in-control MCV (𝛾0) result in a faster detection 

of process shifts. Comparative studies show that the upper-sided VSI EWMA-𝛾2 chart 

outperforms the existing upper-sided MCV charts in detecting upward shifts in the 

process MCV. In addition, the effects of measurement errors on the performances of 

the Shewhart-MCV chart are studied. Consequently, this thesis also proposes two one-

sided Shewhart-MCV charts in the presence of measurement errors for detecting 

downward and upward MCV shifts separately. The distributional properties of the 

population and sample MCVs with a linearly covariate error model are derived. The 

formulae to compute the control limits and average run lengths (ARLs) of these 

measurement errors based Shewhart-MCV charts are derived. A step-by-step 

procedure explaining the effects of a false assumption of no measurement error on the 

Shewhart-MCV charts is detailed. The findings show that for the lower-sided 
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Shewhart-MCV chart, the ARL value becomes larger than expected as the value of the 

diagonal elements of 𝜽 increases. On the contrary, for the upper-sided Shewhart-MCV 

chart, the ARL value becomes smaller than expected as the value of the diagonal 

elements of 𝜽 increases. Thus, the lower-sided and upper-sided Shewhart-MCV charts 

are no longer reliable when the control limits adopted are computed by ignoring the 

presence of measurement errors when in actuality measurement errors exist. 

Furthermore, in this thesis, the upper-sided Shewhart-MCV and EWMA-𝛾2 charts in 

the presence of measurement errors are developed. A different approach in the 

formulae derivation of the population and sample MCVs with a linearly covariate error 

model is used in developing the two one-sided Shewhart-MCV charts and the upper-

sided Shewhart-MCV chart. The formulae for computing the control limits and 

performance measures of the upper-sided Shewhart-MCV and EWMA-𝛾2 charts in 

the presence of measurement errors are derived. The effect of the presence of 

measurement errors on these two latter charts is studied. The findings show that the 

smaller the value of the measurement error ratio (𝜃2), the faster are the Shewhart-MCV 

and EWMA-𝛾2 charts in detecting an out-of-control situation, indicating the negative 

effect of measurement errors on the performances on both charts. In addition, by 

increasing the number of times an item is measured (𝑚) and the value of the diagonal 

elements of matrix 𝑩, the effect of the presence of measurement errors is reduced. The 

MATLAB software is used to conduct all the numerical analyses, while simulation 

using the SAS software is employed to verify the accuracy of the numerical 

computations obtained using MATLAB. Finally, illustrative examples using real life 

data are presented for all the proposed charts.
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CHAPTER 1  
 

INTRODUCTION 

1.1 Statistical Process Control 

Statistical Process Control (SPC) is a powerful statistical technique developed 

in the 1920s. It is an efficient methodology for controlling the process stability and 

measuring the quality of a manufacturing process. SPC is an important evaluation tool 

because it is based on easy to follow principles and can be used in any manufacturing 

process (Montgomery, 2019). 

SPC involves seven graphical tools, which are called “the magnificent sevenˮ, 

namely, stem-and-leaf or histogram, check sheet, Pareto chart, cause-and-effect 

diagram, defect concentration diagram, scatter diagram and control chart 

(Montgomery, 2019). 

Of the seven important tools, the control chart is the focus of this thesis. The 

first control chart, called the Shewhart chart was developed in the 20th century by 

Walter A. Shewhart. A standard control chart is based on a certain statistical 

distribution and often consists of three control limits, i.e. lower control limit (LCL), 

central line (CL), and upper control limit (UCL). The x-axis of a control chart 

represents the sample number, whereas the y-axis represents the value of the statistic 

(for example, the sample mean, 𝑋̅). If a sample point plotted on a chart falls outside 

the control limits, the process is considered as out-of-control and corrective actions 

should be taken to remove the assignable cause(s). Otherwise, the process is in-control. 

Figure 1.1 shows an illustrative example of the standard Shewhart chart. 
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Figure 1.1 An illustrative example of the two-sided Shewhart chart 

A two-sided chart detects upward and downward shifts on the same chart, 

whereas one-sided charts detect either upward or downward shifts. Specifically, upper-

sided charts only detect an upward shift, whereas lower-sided charts only detect a 

downward shift in a process. 

The data for a process being monitored are obtained in real-time during 

manufacturing. The data are plotted on a control chart with pre-determined control 

limits. In general, the implementation of a control chart must be executed in two 

phases. Phase-I ensures that the process is suitable for the objectives and confirms 

what the process should look like. Phase-II monitors the process and makes sure that 

it continues to perform effectively (Montgomery, 2019). 

In Phase-I, a control chart is used to monitor if the process is in statistical 

control by analyzing the historical dataset. After ensuring that the Phase-I process is 

in-control, the control limits of the chart can be estimated from the said Phase-I data. 

In Phase-II, the chart is used to monitor the future data obtained from the same process 

by comparing the sample statistic for each future sample with the control limits 
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estimated from the Phase-I data. The main purpose of Phase-II is to determine if the 

process is in statistical control (Woodall, 2000). 

The two main types of control charts are control charts for variables and those 

for attributes. Control charts for variables are used to monitor the variation in the 

process when the measurement is variable (i.e. it can be measured in terms of 

continuous values). Examples of variables charts are the 𝑋̅, 𝑅 and 𝑆 charts. Control 

charts for attributes are used to monitor the variation in the process when the 

measurements can be taken as a discrete count, for example, the 𝑝, 𝑛𝑝 and 𝑐 charts 

(Montgomery, 2019). 

1.2 Problem Statement 

Control charts are usually designed to monitor the mean or variance of a 

process. However, practitioners may not be interested in the changes in the mean or 

the variance. They may be interested in monitoring the relative process variability to 

the process mean, also known as the coefficient of variation (CV) (Kang et al., 2007). 

In recent years, control charts for monitoring the CV for a multivariate process 

has gained growing attention. The standard multivariate coefficient of variation 

(MCV) chart is used to monitor the relative multivariate variability to the mean vector 

of a multivariate process. The standard MCV (or Shewhart-MCV) chart is very 

effective in detecting large shifts in the process MCV. Its disadvantage is that it is 

relatively insensitive to small shifts (Yeong et al., 2016). 

Owing to the skewness of the MCV distribution, the one-sided Shewhart-MCV 

charts are considered in this thesis. Yeong et al. (2016) mentioned that upward shifts 

in the process MCV are easier to be detected than downward shifts. Furthermore, 
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detecting upward shifts in the relative multivariate variability to the mean vector in the 

process MCV is more important as this indicates a large increase in the process 

variance relative to the process mean (Yeong et al., 2016). 

To improve the sensitivity of the Shewhart-MCV chart towards small shifts, 

Giner-Bosch et al. (2019) proposed an upper-sided exponentially weighted moving 

average (EWMA) chart for monitoring upward shifts in the process MCV, that is, the 

EWMA-𝛾2 chart. Past research has shown that varying at least one of the charts 

parameters as a function of prior observations increases the sensitivity of the chart. 

Therefore, to improve the efficiency of the EWMA-𝛾2 chart, the variable sampling 

interval (VSI) feature is incorporated into the aforesaid chart. Consequently, the new 

chart’s sensitivity in detecting small and moderate shifts increases. Thus, the upper-

sided VSI EWMA-𝛾2 chart is proposed in this thesis. The VSI EWMA-𝛾2 chart is a 

combination of the VSI technique of Saccucci et al. (1992) and the EWMA-𝛾2 chart 

of Giner-Bosch et al. (2019). The optimization algorithm for the VSI EWMA-𝛾2 chart 

is put forward. The average time to signal (ATS), standard deviation of the time to 

signal (SDTS) and expected average time to signal (EATS) performances show that 

the new upper-sided VSI EWMA-𝛾2 chart outperforms the existing upper-sided MCV 

charts. 

In real-life experiments, measurement errors occur due to factors which cannot 

be controlled, such as imprecise measurement devise or human errors. Such errors 

have significant impact on the process which deteriorate the performance of the chart. 

There is only very little research that deals with multivariate charts in the presence of 

measurement errors exists in the literature. To fill this gap, a new Shewhart-MCV chart 

employing the linearly covariate error model presented in Linna et al. (2001) is 
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developed. The effect of a false assumption of no measurement error on the proposed 

two one-sided Shewhart-MCV charts when measurement errors actually exist is 

studied in this thesis. The effect of the presence of measurement errors using different 

derivation methods on the upper-sided Shewhart-MCV and EWMA-𝛾2 charts is also 

studied. 

1.3 Objectives of the Study 

The objectives of this study are as follows: 

(i) To propose the upper-sided VSI EWMA-𝛾2 chart. 

(ii) To investigate the effects of a false assumption of no measurement error on the 

two one-sided Shewhart-MCV charts. 

(iii) To propose the two one-sided Shewhart-MCV charts in the presence of 

measurement errors. 

(iv) To develop the upper-sided Shewhart-MCV and EWMA-𝛾2 charts in the 

presence of measurement errors using different derivation methods. 

The Shewhart-MCV and EWMA-𝛾2 charts are used when researchers are not 

interested in monitoring the mean vector or covariance matrix of a multivariate 

process, instead they are interested in monitoring the relative multivariate variability 

to the mean vector. All the above objectives are enhancements to the Shewhart-MCV 

chart proposed by Yeong et al. (2016) and EWMA-𝛾2 chart developed by Giner-Bosch 

et al. (2019). 

1.4 Significance of the Study 

This study aims to increase the sensitivity of existing MCV charts in detecting 

process shifts by incorporating the VSI scheme into the upper-sided EWMA-𝛾2 chart 



6 

proposed by Giner-Bosch et al. (2019). Besides that, this study investigates the effect 

of designing the two one-sided Shewhart-MCV charts by ignoring the presence of 

measurement errors in computing the control limits when in fact such errors exist. 

Moreover, this study demonstrates the negative effect of measurement errors on the 

upper-sided Shewhart-MCV and EWMA-𝛾2 charts when the control limits of the 

charts are specially designed for such errors. The effect of multiple times an item is 

measured is also investigated. The proposed Shewhart-MCV and EWMA-𝛾2 charts 

with measurement errors are recommended for use because when there is no 

measurement error, researchers can set the level of measurement error as zero. 

Researchers will be able to compute the control limits and study the 

performances of the proposed charts. Researchers will also be able to implement the 

proposed charts, as step-by-step procedures are explained clearly. 

1.5 Limitations of the Study 

In this study, the sample size (𝑛) that is larger than the number of variables 

monitored simultaneously (𝑝) is considered. In the future, problems involving high-

dimensional cases, where 𝑝 is of the same order or larger than 𝑛, should be addressed 

by using other methods, such as regularized or shrinkage estimates that reduces the 

dimension of the process monitored. Moreover, the analyses in this thesis assume that 

the underlying process is normally distributed. In order to cater for a nonnormal 

underlying process, a nonparametric approach can be developed in the future, for 

monitoring the process MCV.  
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1.6 Organization of the Thesis 

Chapter 1 begins with a summary of SPC, followed by the problem statement 

and objectives of the thesis. Chapter 2 presents a literature review of the existing CV 

and MCV charts and an overview of the univariate and multivariate charts with 

measurement errors. The properties of the two one-sided Shewhart-MCV charts and 

the upper-sided EWMA-𝛾2 chart, along with their performance measures, are 

described. The linearly covariate error model is also introduced in this chapter. 

Chapter 3 discusses the proposed upper-sided VSI EWMA-𝛾2 chart, together 

with the performance measures and optimal design of the chart. The proposed chart is 

then compared with the existing upper-sided MCV charts, such as the Shewhart-MCV, 

variable parameters (VP) MCV, and EWMA-𝛾2 charts. An illustrative example is 

given to show the implementation of the proposed VSI EWMA-𝛾2 chart in real life. 

Chapter 4 proposes the two one-sided Shewhart-MCV charts which consider 

measurement errors. The effects of a false assumption of no measurement error on the 

two one-sided Shewhart-MCV charts are studied. The performances of the proposed 

charts with and without measurement errors are studied. An illustrative example is 

provided. 

Chapter 5 puts forward the upper-sided Shewhart-MCV and EWMA-𝛾2 charts 

in the presence of measurement errors. The formulae for computing the control limits 

and performance measures of the charts in the presence of measurement errors are 

derived. Finally, illustrative examples for the proposed charts are provided. 

Chapter 6 summarizes the contributions and findings in the thesis. Future 

research topics are also identified in this chapter. 
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The programs written in the MATLAB software and Statistical Analysis 

System (SAS) are presented in Appendices A, B, C, D and E. In Appendix A, 

MATLAB programs for computing the optimal parameters and ARL using the Markov 

chain approach for the upper-sided VSI EWMA-𝛾2 chart and the three comparative 

upper-sided MCV charts, namely, the Shewhart-MCV, VP MCV and EWMA-𝛾2 

charts are provided. A MATLAB program for the performance evaluation of the two 

one-sided Shewhart-MCV charts by ignoring the presence of measurement errors is 

given in Appendix B. The MATLAB codes for computing the performance measures 

of the upper-sided Shewhart-MCV chart in the presence of measurement errors are 

presented in Appendix C. The MATLAB program incorporating the Markov chain 

approach to obtain the ARL and the optimal parameters of the upper-sided EWMA-𝛾2 

chart in the presence of measurement errors are shown in Appendix D. The Monte 

Carlo simulation programs for all the proposed charts are presented in Appendix E. 
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CHAPTER 2  
 

A REVIEW OF RELATED CHARTS AND THEIR PERFORMANCE 

MEASURES 

2.1 Introduction 

Most of the existing charts focus on monitoring the mean or variance of the 

quality characteristic of interest (Yeong et al. (2016). In processes when the mean and 

variance are not constant, that is, the variance is a function of the mean, traditional 

charts, such as 𝑋̅, 𝑅 and 𝑆 charts are not useful. In such a case, monitoring the sample 

CV for a univariate process is preferable. The CV chart is used when the process 

standard deviation is proportional to the process mean. A univariate chart is used for 

monitoring one variable, whereas a multivariate chart is used for monitoring a 

multivariate process. In this thesis, the interest is in improving the performance of 

existing MCV charts in monitoring the relative process variability to the mean vector 

of a multivariate process. The effects of the presence of measurement errors on different 

types of MCV charts are also studied. 

This chapter is structured as follows: Section 2.2 gives an overview of the 

univariate and multivariate CV charts. Section 2.3 gives an overview of the univariate 

and multivariate charts in the presence of measurement errors. Section 2.4 gives the 

basic definitions and assumptions of the sample MCV. Section 2.5 presents the control 

limits and performance measures for two types of MCV charts, namely, Shewhart-MCV 

and EWMA-𝛾2 charts. Finally, Section 2.6 briefly reviews the linearly covariate error 

model. 
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2.2 Literature Review of the Univariate and Multivariate CV Charts 

This section is divided into two subsections. Section 2.2.1 reviews previous 

studies on the CV charts and Section 2.2.2 presents previous works on the MCV charts. 

2.2.1 An overview of CV charts 

Many definitions are given for the distribution of the CV, including those by 

Hendricks and Robey (1936), Iglewicz (1967) and Verrill (2003). The first univariate 

Shewhart-CV chart was proposed by Kang et al. (2007), where neither the mean nor the 

variance in the process is constant, but the CV is. The formula to compute the ARL is 

derived. The two-sided EWMA chart for monitoring the CV was introduced by Hong 

et al. (2008), who derived formulae to compute the ARL and standard deviation of the 

run length (SDRL). Subsequently, Castagliola et al. (2011) investigated the two one-

sided EWMA charts for monitoring the CV squared, instead of the CV itself. The 

formulae to compute the ARL and SDRL were derived for known shift sizes, whereas 

the expected ARL (EARL) was derived for unknown shift sizes. 

Calzada and Scariano (2013) developed an upper-sided synthetic (Syn) chart for 

monitoring the CV and called it Syn-CV. The comparative studies show that the Syn-

CV chart outperforms the Shewhart-CV chart proposed by Kang et al. (2007) and the 

EWMA CV-squared chart proposed by Castagliola et al. (2011) for large upward shifts 

in the process CV. For small upward shifts, the EWMA CV-squared chart outperforms 

the Syn-CV chart. Castagliola et al. (2013a) presented a new efficient method for 

monitoring the CV chart using run rules (RR). Castagliola et al. (2013b) investigated 

the CV chart using the VSI scheme. They derived formulae of the performance 

measures for known shift sizes, in terms of the ATS and SDTS criteria, and for unknown 

shift sizes, in terms of the EATS criterion. The comparison shows that the VSI CV chart 
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outperforms the Shewhart-CV chart. Thereafter, Zhang et al. (2014) proposed a 

modified EWMA chart to monitor the CV. 

Castagliola et al. (2015a) presented the CV chart using the variable sample size 

(VSS) scheme. They derived the performance measures in terms of ARL, SDRL, 

average sample size (ASS) and EARL. The comparative results revealed that the VSS 

CV chart outperforms the Shewhart-CV, VSI CV and Syn-CV charts. Castagliola et al. 

(2015b) considered a new method to monitor two one-sided CV charts in a short 

production runs environment. They derived formulae to compute the performance 

measures of the proposed charts, in terms of truncated average run length (TARL) and 

truncated standard deviation of the run length (TSDRL). You et al. (2016) proposed a 

side-sensitive group runs chart for monitoring the CV. Khaw et al. (2017) studied the 

CV chart using the variable sample size and sampling interval (VSSI) scheme. The 

formulae of the performance measures are derived using the Markov chain approach. 

The comparative studies showed that the VSSI CV chart outperforms all existing CV 

charts, such as the VSI CV, VSS CV, EWMA CV-squared, Syn-CV, RR CV and 

Shewhart-CV charts, except the EWMA CV-squared chart when the shift is very small. 

Yeong et al. (2017b) proposed a direct procedure to monitor the CV using the 

VSS scheme. Yeong et al. (2017c) presented the upper-sided VSI EWMA chart for 

monitoring the CV squared, and they derived formulae for the performance measures, 

in terms of the ATS, SDTS and EATS criteria using the Markov chain approach. The 

comparative studies showed that the chart proposed by Yeong et al. (2017c) 

outperforms the upper-sided Shewhart-CV chart proposed by Kang et al. (2007), Syn 

CV chart proposed by Calzada and Scariano (2013), and EWMA CV-squared chart 

proposed by Castagliola et al. (2011). Muhammad et al. (2018) developed the VSS 
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EWMA chart for monitoring the CV squared, and they derived formulae for computing 

the ARL, SDRL, ASS and EARL values. The results showed that the VSS EWMA CV-

squared chart outperforms the existing CV charts. 

Later, Yeong et al. (2018) suggested the CV chart using the VP scheme and they 

derived formulae to compute the ATS and SDTS values. The results showed that the 

VP CV chart outperforms the VSI CV, VSS CV, VSSI CV, EWMA CV-squared, Syn-

CV and Shewhart-CV charts for large and moderate CV shifts but the EWMA CV-

squared outperforms the VP CV chart for small CV shifts. Noor-ul-Amin and Riaz 

(2020) proposed the EWMA chart for monitoring the CV using log-normal 

transformation based on ranked set sampling. Finally, Yeong et al. (2021) presented the 

side-sensitive Syn CV chart. The comparative studies show that the side-sensitive Syn 

CV chart outperforms the existing Shewhart-CV and Syn-CV charts. 

2.2.2 An overview of MCV charts 

Many definitions for the MCV are available, such as those by Voinov and 

Nikulin (1996), Albert and Zhang (2010), and Aerts et al. (2015). The first multivariate 

chart for monitoring the MCV was the two one-sided Shewhart-type MCV charts 

proposed by Yeong et al. (2016). The two one-sided Shewhart-MCV charts are the 

upper-sided and lower-sided Shewhart-MCV charts used to monitor upward and 

downward shifts in the MCV, respectively. Like any Shewhart-type charts, the chart 

proposed by Yeong et al. (2016) for monitoring the MCV is sensitive to large shifts but 

insensitive to moderate and small shifts. To improve the performance of the Shewhart-

MCV chart proposed by Yeong et al. (2016), Lim et al. (2017) proposed two one-sided 

run sum (RS) charts for monitoring the process MCV. The chart proposed by Lim et al. 
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(2017) showed that the RS technique effectively enhances the detection ability of the 

Shewhart-MCV chart proposed by Yeong et al. (2016). 

Abbasi and Adegoke (2018) studied the MCV chart in Phase-I of SPC because 

previous works on monitoring the MCV have been done in Phase-II. Abbasi and 

Adegoke (2018) demonstrated the importance of Phase-I procedure, which reflect real-

life situation and are dependent on the historical samples. Phase-I procedure involves 

the estimation of the control limits from a historical dataset that comes from the in-

control process (i.e. if the in-control parameters are unknown, the dataset from Phase-I 

is used to estimate the control limits). 

To improve the sensitivity of the Shewhart-MCV chart in detecting small and 

moderate shifts, Khaw et al. (2018) proposed three adaptive schemes for monitoring the 

process MCV. The three adaptive schemes are the VSI, VSS and VSSI schemes. Khaw 

et al. (2018) designed the aforementioned charts using the Markov chain approach and 

they compared the performances of their charts with the Shewhart-MCV chart proposed 

by Yeong et al. (2016) for known shift sizes, in terms of the ATS and SDTS criteria and 

for unknown shift sizes, in terms of the EATS criterion. The performance comparison 

shows that the VSSI MCV chart outperforms the existing MCV charts. Khaw et al. 

(2018) showed that by allowing the sample size and sampling interval to vary, 

researchers can have better control in process monitoring, which allows a quicker 

detection of an out-of-control signal. 

Giner-Bosch et al. (2019) proposed an upper-sided EWMA chart for monitoring 

upward shifts in the process MCV-squared (𝛾2), that is, the EWMA-𝛾2 chart. Giner-

Bosch et al. (2019) designed their proposed chart using the Markov chain approach, 

derived formulae to compute the control limits and performance measures, and 
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determined the optimal parameters of the proposed chart. A performance comparison 

of the upper-sided Shewhart-MCV chart proposed by Yeong et al. (2016), upper-sided 

RS MCV chart proposed by Lim et al. (2017) and upper-sided EWMA-𝛾2 chart 

proposed by Giner-Bosch et al. (2019) showed that the upper-sided EWMA-𝛾2 chart 

outperforms the other two MCV charts, in terms of ARL and SDRL criteria. 

Khaw et al. (2019) proposed an upper-sided Syn chart for monitoring the MCV 

and they derived formulae and optimization algorithms for investigating the chart’s 

performance. The comparison results of the upper-sided Syn MCV chart with the upper-

sided Shewhart-MCV and RS MCV charts proposed by Yeong et al. (2016) and Lim et 

al. (2017), respectively, indicated that the upper-sided Syn MCV chart outperforms the 

other two upper-sided MCV charts, in terms of the ARL, SDRL and EARL criteria. 

Nguyen et al. (2019a) proposed a VSI Shewhart-type chart for monitoring the 

MCV. They used time varying sampling intervals, where the sampling interval to take 

the next sample depends on the location of the previous sample plotted on the chart. 

This procedure helps the chart to detect process shifts faster. Moreover, Nguyen et al. 

(2019b) proposed two one-sided Syn charts for monitoring the MCV. They used a 

Markov chain approach under the zero-state and steady-state conditions to evaluate the 

performances of the proposed charts. A comparison between the charts proposed by 

Nguyen et al. (2019b) and the RS MCV chart developed by Lim et al. (2017) showed 

that the former outperforms the RS MCV chart for detecting upward shifts in the process 

MCV under the zero-state condition. However, the latter performs better than the former 

in detecting downward MCV shifts. Finally, Nguyen et al. (2019b) compared the 

performance of the upper-sided Syn MCV chart with three adaptive upper-sided MCV 

charts developed by Khaw et al. (2018) under the steady-state condition. The 



15 

comparison showed that the upper-sided Syn MCV chart performs better than the upper-

sided VSI MCV chart in most cases. 

Haq and Khoo (2019a) proposed two adaptive EWMA (AEWMA) charts for 

monitoring the univariate and multivariate CV, that is, the AEWMA CV and the 

AEWMA MCV charts, respectively. They used the Monte Carlo simulation approach 

to compute the values of the performance measures. Haq and Khoo (2019a) 

demonstrated that the AEWMA CV chart performs better than the existing EWMA and 

cumulative sum (CUSUM) CV charts for detecting large shifts in the process. The 

AEWMA MCV chart was found to perform better than the Shewhart-MCV chart 

proposed by Yeong et al. (2016). 

Chew et al. (2019) proposed an upper-sided VP chart for monitoring the MCV. 

They derived formulae and optimization algorithms to obtain the performance measures 

using the Markov chain approach. The performance comparison in terms of the ATS, 

SDTS and EATS criteria revealed that the upper-sided VP MCV chart outperforms the 

upper-sided Shewhart-MCV chart proposed by Yeong et al. (2016), the upper-sided 

VSSI MCV chart proposed by Khaw et al. (2018) and the upper-sided Syn MCV chart 

proposed by Khaw et al. (2019). 

Khatun et al. (2019) proposed two one-sided charts for monitoring the MCV in 

short production runs. They derived formulae to compute the performance measures of 

the proposed MCV charts in terms of TARL, TSDRL and expected truncated average 

run length (ETARL) criteria. Chew and Khaw (2020) developed a lower-sided chart for 

monitoring the MCV using the VSSI scheme by means of the Markov chain approach. 

The lower-sided VSSI MCV chart monitors downward shifts in the process MCV. The 
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results showed that the lower-sided VSSI MCV chart outperforms the existing lower-

sided Shewhart, VSI and VSS MCV charts. 

Chew et al. (2020a) investigated the efficiency of the RR MCV chart using the 

Markov chain approach in terms of the ARL and EARL criteria. The results showed 

that the RR MCV chart surpasses the Shewhart-MCV chart for detecting small and 

moderate shifts in the process MCV. Thereafter, Chew et al. (2020b) evaluated the 

performance of the RR MCV chart for short production runs in terms of the TARL and 

ETARL criteria using the Markov chain approach. The RR MCV chart outperforms the 

Shewhart-MCV chart in detecting small and moderate MCV shifts in short production 

runs.  

2.3 An Overview of Existing Univariate and Multivariate Charts with 

Measurement Errors  

Many researchers in SPC have studied the effect of measurement errors on 

univariate charts. Bennett (1954) was the person to study the effects of the linearly 

covariate error model on the Shewhart-type chart based on 𝑋 = 𝑌 + 𝜀, where 𝑋 and 𝑌 

are the observed and true values of the quality characteristic, respectively, and 𝜀 is the 

random error term. Thereafter, Abraham (1977) studied the effects of measurement 

errors on control charts using the same formula proposed by Bennett (1954). Kanazuka 

(1986) studied the effects of measurement errors on the power of 𝑋̅ and 𝑅 charts. Mittag 

(1995) studied the performance of the Shewhart chart in the presence of measurement 

errors. Later, Mittag and Stemann (1998) studied the effects of measurement errors on 

joint 𝑋̅ and 𝑆 charts. Linna and Woodall (2001) proposed a linearly covariate error 

model for 𝑋̅ and 𝑆2 charts using a different formula from that proposed by Bennett 

(1954). Stemann and Weihs (2001) studied the effects of measurement errors on the 
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EWMA chart for mean and standard deviation using the formula proposed by Bennett 

(1954). Maravelakis et al. (2004) investigated the effect of measurement errors on the 

EWMA-type chart using the formula introduced by Linna and Woodall (2001). Costa 

and Castagliola (2011) studied the joint effect of autocorrelation and measurement 

errors on the 𝑋̅ chart. Maravelakis (2012) adopted the model proposed by Linna and 

Woodall (2001) to study the effects of measurement errors on the CUSUM chart. 

More recently, Saghaei et al. (2014) studied the effect of measurement errors on 

the economic design of the EWMA chart. Haq et al. (2015) studied the EWMA chart in 

the presence of measurement errors based on ranked set sampling. Hu et al. (2015) 

investigated the effect of measurement errors on the Syn 𝑋̅ chart. Dizabadi et al. (2016) 

explored the effect of measurement errors on the performance of maximum EWMA and 

mean squared deviation chart with the linearly increasing-type variance. Yeong et al. 

(2017a) carried out a study on the effect of measurement errors on the univariate CV 

chart. Nguyen et al. (2019c) proposed the VSI Shewhart chart for monitoring the CV 

with measurement errors. Tran et al. (2019a) investigated the performances of Shewhart 

and EWMA charts for monitoring the CV when measurement errors are present. 

Finally, Tran et al. (2019b) proposed the CUSUM chart for monitoring the CV in the 

presence of measurement errors. 

Only a few researchers have studied the effects of the linearly covariate error 

model on multivariate charts. The multivariate chart with measurement errors was first 

proposed by Linna et al. (2001) who analyzed the performance of the fixed sampling 

rate Hotelling’s 𝑇2 chart in the presence of measurement errors. They used the 

following formula: 𝑿 = 𝑨 + 𝑩𝒀 + 𝜺, where 𝑨 is a 𝑝 × 1 vector of constants, 𝑩 is a 𝑝 × 

p diagonal matrix of constants, 𝒀 is a 𝑝 × 1 vector of quality characteristics, 𝑿 is a 𝑝 × 
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1 vector of observed values and 𝜺 is a 𝑝 × 1 random vector (assumed to be independent 

of 𝒀) which follows a multivariate normal distribution with a mean vector of zeros and 

covariance matrix 𝜮, denoted as 𝜺 ~ MVN(0, 𝜮). Chattinnawat and Bilen (2017) studied 

the effects of multivariate inspection errors on the performance of Hotelling’s 𝑇2 chart 

for multivariate individual observations. Amiri et al. (2018) investigated the effect of 

measurement errors in a joint monitoring of the mean vector and covariance matrix of 

a multivariate process using a multivariate chart. Sabahno et al. (2018) analyzed the 

effect of the presence of measurement errors on the VSI Hotelling’s 𝑇2 charts. Sabahno 

et al. (2019) also investigated the performance of the VSS Hotelling’s 𝑇2 chart with 

measurement errors. Finally, Sabahno et al. (2020) proposed an adaptive multivariate 

VP chart for a simultaneous monitoring of the mean vector and covariance matrix in the 

presence of measurement errors using the Markov chain approach. 

2.4 Basic Definitions and Assumptions of the Sample MCV 

Suppose that there exist 𝑝-dimensional quality characteristics of size 𝑛, that is, 

𝑿𝑗, 𝑗 = 1, 2, …, 𝑛, where 𝑛 is the sample size, from a multivariate normal (MVN) 

distribution with a nonzero mean vector (𝝁) and a covariance matrix (𝜮), denoted as 

𝑿 ~ MVN(𝝁, 𝜮). The population MCV is defined as follows (Voinov and Nikulin, 

1996): 

𝛾 = (𝝁T𝜮−1𝝁)−
1
2. (2.1) 

To estimate the sample MCV denoted as 𝛾, 𝝁 and 𝜮 in Equation (2.1) are 

estimated with the sample mean vector (𝑿̅) and the sample covariance matrix (𝑺), 

respectively, as 

𝑿̅ = (
1

𝑛
∑ 𝑋𝑗1
𝑛
𝑗=1 , … ,

1

𝑛
∑ 𝑋𝑗𝑝
𝑛
𝑗=1  )

T

  
(2.2) 

and 
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𝑺 =  
1

𝑛 − 1
∑(

𝑛

𝑗=1

𝑿𝑗 − 𝑿̅)(𝑿𝑗 − 𝑿̅)
T
. (2.3) 

Consequently, 𝛾 is computed as 

𝛾 = (𝑿̅T𝑺−1𝑿̅)−
1
2, (2.4) 

as mentioned in Yeong et al. (2016). 

Yeong et al. (2016) adopted Wijsman (1957) theorem and showed that letting 

𝑇2 = 𝑛𝑿̅T𝑺−1𝑿̅ gives 

𝑇2

𝑛 − 1
.
𝑛 − 𝑝

𝑝
~ 𝐹𝐹′(𝑝, 𝑛 − 𝑝, 𝛿), (2.5) 

where 𝐹𝐹′(𝜈1, 𝜈2, 𝛿) is a singly non-central 𝐹 distribution with 𝜈1 and 𝜈2 degrees of 

freedom and non-centrality parameter 𝛿 = 𝑛𝝁T𝜮−1𝝁. In general, this distribution is 

written as the doubly non-central 𝐹 distribution, denoted as 𝐹𝐹′′(𝜈1, 𝜈2, 𝛿1, 𝛿2) with the 

second non-centrality parameter 𝛿2 = 0. For more details, see Walck (2007). 

Yeong et al. (2016) adopted Wijsman’s theorem and derived the distribution of 

𝛾. From Equation (2.4), 𝑛𝛾−2 = 𝑛𝑿̅T𝑺−1𝑿̅.  Consequently, Equation (2.5) gives 

𝑛𝛾−2

𝑛 − 1
.
𝑛 − 𝑝

𝑝
=

𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝛾2
~ 𝐹𝐹′(𝑝, 𝑛 − 𝑝, 𝛿), (2.6) 

where 𝛿 = 𝑛𝝁T𝜮−1𝝁. From Equation (2.1), 𝛿 can be written as 𝛿 = 𝑛𝛾−2. 

Using the following equivalence (𝐹𝐹′′(𝜈1, 𝜈2, 𝛿1, 𝛿2))
−1
≡ 𝐹𝐹′′(𝜈2, 𝜈1, 𝛿2,𝛿1), 

and with some algebraic manipulations in Equation (2.6), gives 

(𝑛 − 1)𝑝

𝑛(𝑛 − 𝑝)
𝛾2~ 𝐹𝐹′′(𝑛 − 𝑝, 𝑝, 0, 𝛿). (2.7) 

Yeong et al. (2016) derived an expression for the cumulative distribution 

function (CDF) of 𝛾 as follows: 
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𝐹𝛾̂(𝑢|𝑛, 𝑝, 𝛿) = 𝑃(𝛾 ≤ 𝑢) 

                                                    = 𝑃 (
1

𝛾
≥
1

𝑢
) 

                           = 𝑃 (
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝛾2
≥

𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢2
) 

                                 = 1 − 𝐹𝐹′ (
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢2
| 𝑝, 𝑛 − 𝑝, 𝛿) , (2.8) 

where 𝐹𝐹′( . |𝑝, 𝑛 − 𝑝, 𝛿) is the singly non-central F distribution function with 𝑝 and 

𝑛 − 𝑝 degrees of freedom and non-centrality parameter 𝛿 = 𝑛𝛾−2. 

Yeong et al. (2016) demonstrated that with some manipulations, letting 

𝐹𝛾̂
−1(𝛼|𝑛, 𝑝, 𝛿) = 𝑢 gives 𝐹𝛾̂(𝑢|𝑛, 𝑝, 𝛿) = 𝛼. Thus, the inverse CDF of 𝛾 can be derived 

as follows. Equation (2.8) gives 

1 − 𝐹𝐹′ (
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢2
| 𝑝, 𝑛 − 𝑝, 𝛿) = 𝛼. 

Then 

𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢2
= 𝐹𝐹′

−1(1 − 𝛼|𝑝, 𝑛 − 𝑝, 𝛿). 

It follows that 

𝑢 = √
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝
[

1

𝐹𝐹′
−1(1 − 𝛼|𝑝, 𝑛 − 𝑝, 𝛿)

] . 

As 𝐹γ̂
−1(𝛼|𝑛, 𝑝, 𝛿) = 𝑢, the following is obtained 

𝐹𝛾̂
−1(𝛼|𝑛, 𝑝, 𝛿) = √

𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝
[

1

𝐹𝐹′
−1(1 − 𝛼|𝑝, 𝑛 − 𝑝, 𝛿)

] , (2.9) 

where 𝐹𝐹′
−1( . |𝑝, 𝑛 − 𝑝, 𝛿) is the inverse CDF of the singly non-central 𝐹 distribution 

with 𝑝 and 𝑛 − 𝑝 degrees of freedom and non-centrality parameter 𝛿 = 𝑛𝛾−2. 
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Moreover, the CDF of the sample MCV-squared, denoted as 𝛾2, can be derived 

as follows: 

 𝐹γ̂2(𝑢|𝑛, 𝑝, 𝛿) = 𝑃(𝛾2 ≤ 𝑢) 

  = 𝑃 (
1

𝛾2
≥
1

𝑢
) 

                                  = 𝑃 (
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝛾2
≥
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢
) 

                                         = 1 − 𝐹𝐹′ (
𝑛(𝑛 − 𝑝)

(𝑛 − 1)𝑝𝑢
| 𝑝, 𝑛 − 𝑝, 𝛿) , (2.10) 

where 𝐹𝐹′( . |𝑝, 𝑛 − 𝑝, 𝛿) is the singly non-central 𝐹 distribution with 𝑝 and 𝑛 − 𝑝 

degrees of freedom and non-centrality parameter 𝛿 = 𝑛𝛾−2, as discussed in Giner-

Bosch et al. (2019). 

The MCV chart plots the successive MCV samples. An out-of-control signal is 

detected when 𝛾, computed using Equation (2.4), deviates from the in-control MCV 

(i.e. 𝛾0) and plots beyond the limits of the MCV chart. The Phase-I data are collected in 

advance to set up the control limits of the MCV chart. For sample 𝑖 in the Phase-I data, 

𝑿̅ and 𝑺 can be computed using Equations (2.2) and (2.3), respectively. Furthermore, 𝛾 

is computed using Equation (2.4) for sample 𝑖 (𝑖 = 1, 2, …) (Yeong et al., 2016). 

Following the suggestion of Yeong et al. (2016), to check whether the process 

MCV is constant, a similar approach to that in Kang et al. (2007) for the univariate case 

is adopted. For the multivariate case, by applying a regression analysis on 𝛾𝑖
2 against 

𝑿̅𝑖
T𝑿̅𝑖, for 𝑖 = 1, 2, …, 𝑤, if no significant relationship between 𝛾𝑖

2 and 𝑿̅𝑖
T𝑿̅𝑖 is 

concluded, then the process MCV is assumed to be constant. Here, 𝑤 is the number of 

Phase-I samples. Yeong et al. (2016) suggested estimating 𝛾0 using the root mean 

square method as follows: 
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𝛾0 = √
∑ 𝛾𝑖

2𝑤
𝑖=1

𝑤
. (2.11) 

2.5 Performance Measures of the MCV Charts 

This section is divided into two subsections. Sections 2.5.1 and 2.5.2 present the 

performance measures of the Shewhart-MCV and EWMA MCV charts, respectively, 

in terms of the ARL, SDRL and EARL criteria. 

2.5.1 Performance measures of the Shewhart-MCV chart 

Owing to the skewness of the 𝛾 distribution, Yeong et al. (2016) suggested two 

one-sided Shewhart-MCV charts for monitoring upward and downward MCV shifts 

separately. The upper-sided chart that detects the upward MCV shifts is the upper-sided 

Shewhart-MCV chart. The lower-side chart that detects the downward MCV shifts is 

the lower-sided Shewhart-MCV chart. 

For the lower-sided Shewhart-MCV chart, the LCL is set such that the Type-I 

error rate is equal to 𝛼0. Thus, the LCL is equal to 

LCL = 𝐹𝛾̂
−1(𝛼0|𝑛, 𝑝, 𝛿0), (2.12) 

where 𝛿0 = 𝑛𝛾0
−2. When 𝛾 < LCL, the process is considered as out-of-control, and 

corrective actions should be taken to locate and remove the assignable cause(s). 

Similarly, for the upper-sided Shewhart-MCV chart, the UCL is set such that 

the Type-I error rate is equal to 𝛼0. Thus, the UCL is equal to 

UCL = 𝐹𝛾̂
−1(1 − 𝛼0|𝑛, 𝑝, 𝛿0). (2.13) 

when 𝛾 > UCL, the process is considered as out-of-control, and corrective actions 

should be taken to locate and remove the assignable cause(s). 
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Figure 2.1 shows a graphical view of the two one-sided Shewhart-MCV charts. 

The lower-sided Shewhart-MCV chart is on the left and the upper-sided MCV chart is 

on the right. 

 

Figure 2.1 A graphical view of the two one-sided Shewhart-MCV charts 

The computation of 𝑃, i.e. the probability of signalling an out-of-control by the 

lower-sided and upper-sided Shewhart-MCV charts are given in Equations (2.14) and 

(2.15), respectively. 

𝑃 = 𝑃(𝛾 < LCL) = 𝐹𝛾̂(LCL|𝑛, 𝑝, 𝛿1) (2.14) 

and 

𝑃 = 𝑃(𝛾 > UCL) = 1 − 𝐹𝛾̂(UCL|𝑛, 𝑝, 𝛿1), (2.15) 

where 𝛿1 = 𝑛𝛾1
−2. 

The performance of a control chart can be measured in terms of the ARL 

criterion, that is, the number of samples that needs to be drawn on the average to obtain 

a sample statistic plotted beyond the chart’s control limits. The ARL1 and SDRL1 for 

the Shewhart-MCV chart can be computed as 

ARL1 =
1

𝑃
 (2.16) 

and 
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SDRL1 =
√1 − 𝑃

𝑃
, (2.17) 

where 𝑃 is defined in Equations (2.14) and (2.15) for the lower-sided and upper-sided 

Shewhart-MCV charts, respectively. When the shift size 𝜏 = 1, the in-control ARL 

(ARL0) and SDRL (SDRL0) are obtained. When 𝜏 ≠ 1, the out-of-control ARL (ARL1) 

and SDRL (SDRL1) are obtained. Note that 𝜏 = 𝛾1 𝛾0⁄ . 

The computation of ARL1 requires a known shift size (𝜏). However, when 𝜏 is 

unknown, researchers are often interested in detecting shifts that fall in the interval 

(𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥). In this case, the statistical performance of the Shewhart-MCV chart can 

be computed using the out-of-control EARL (EARL1) defined as 

EARL1 = ∫ ARL1 × 𝑓𝜏(𝜏)
𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

𝑑𝜏, (2.18) 

where 𝜏𝑚𝑎𝑥 is the upper bound of the shift size, 𝜏𝑚𝑖𝑛 is the lower bound of the shift 

size, 𝑓𝜏(𝜏) is the probability density function (PDF) of the shift size 𝜏, and ARL1 is 

defined in Equation (2.16). The in-control EARL (EARL0) is set as ARL0. 

 The actual shape of 𝑓𝜏(𝜏) is difficult to determine. Castagliola et al. (2011) 

suggested a uniform distribution over two different ranges of shifts, i.e. (𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥) = 

(1, 2] for monitoring the upward MCV shifts and (𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥) = [0.5, 1) for monitoring 

the downward MCV shifts. The Gauss-Legendre quadrature method is used to compute 

the integration in Equation (2.18). More details on the Gauss-Legendre quadrature 

method can be found in Kovvali (2011). 

2.5.2 Performance measures of the EWMA-𝜸𝟐 chart 

For the EWMA-𝛾2 chart, the MCV-squared (𝛾2) is monitored instead of the 

MCV (𝛾) itself. Castagliola et al. (2011) showed that monitoring 𝑆2 using the EWMA 
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chart is more efficient than monitoring 𝑆 using the same chart. As a similar idea to that 

of Castagliola et al. (2011), monitoring 𝛾2 instead of 𝛾 is also expected to be more 

efficient for the MCV chart. For more details, see Giner-Bosch et al. (2019). 

The EWMA-MCV chart proposed in this thesis is an upper-sided chart (i.e. it 

detects upward MCV shifts). The detection of upward shifts in the MCV is given more 

interest because Castagliola et al. (2011) showed that the detection effectiveness of the 

said shifts the upper-sided CV chart is higher than that of the two-sided CV chart. Giner-

Bosch et al. (2019) proposed the upper-sided EWMA-𝛾2 chart for monitoring upward 

shifts in the process MCV, based on the following statistics: 

𝑍𝑖 = 𝜆𝛾𝑖
2 + (1 − 𝜆)𝑍𝑖−1, (2.19) 

where 𝜆 (∈ (0, 1]) is a smoothing constant to be determined and 𝛾𝑖
2 is the value of the 

sample MCV squared at sample 𝑖. Notably, the initial value 𝑍0 is taken as the in-control 

mean of 𝛾2, and the approximate form is computed using either Equation (2.24) or 

(2.28), depending on the value of 𝑝. 

Giner-Bosch et al. (2019) provided an accurate approximation to compute 

𝜇0(𝛾
2) and 𝜎0(𝛾

2) because there is no closed form for the in-control mean and standard 

deviation of 𝛾2. They computed the first and second raw moments of the doubly non-

central 𝐹 distribution with 𝑛 − 𝑝 and 𝑝 degrees of freedom and non-centrality 

parameters 0 and 𝛿0 = 𝑛𝛾0
−2, denoted as 𝐹′′~ 𝐹𝐹′′(𝑛 − 𝑝, 𝑝, 0, 𝛿0). 

The expressions used to denote the first and second raw moments of 𝐹′′ are 

𝜇1
′ (𝐹′′) =

𝑝

2
 Ϲ (

𝑝

2
− 1, −

𝛿0
2
) , (2.20) 

and 


