UNIVERSITI SAINS MALAYSIA GERAN PENYELIDIKAN UNIVERSITI PENYELIDIKAN LAPORAN AKHIR

PRODUCT AND PROCESS VALIDATION FOR COLD CHAIN FREE, LIVE ATTENUATED CHOLERA VACCINE

PENYELIDIK

PROFESOR MADYA DR. CHAN YEAN YEAN

Project Progress : 100.00%
Budget Used : 9
Human Capital :
Current Outcome

	Number
Activities	10
Publication	0
Exhibition	0
Intellectual Properly	Product

Milestone

No.
.

Scale up and optimization of the fed batch fermentation process conditions for high cell density cultivation of VCUSM14P strain at 10 Hf fermentor (Bench scale)

Validation of large scale preparation of liquid vaccine formulation and evaluation of its purity, potency and viability by phenotypic and genotypic methods

Scale up and optimization of the fed batch fermentation process conditions for high cell density cultivation at 100 lt fermentor (Pilot scale)

4 Optimization of down stream processing unit operations
Colonization and protective efficacy of V . cholerae vaccine strain in animal models

Accelerated storage stability testing
7 Limited pre-dinical and toxicological studies of vaccine formulation at GLP Compliant Test Facilities, Malaysia

8
Product and process validation of cold chain free, live attenuated cholera vaccine. And Research write up

Project Completion Contribution	Expected Completion Date	Completed Percentage	Actual Completion Date	Contributed Progress
10	$31 / 05 / 2016$	100	$16 / 04 / 16$	10.00%
10	$30 / 06 / 2016$	100	$29 / 05 / 16$	10.00%
5	$31 / 08 / 2016$	100	$15 / 08 / 16$	5.00%
15	$31 / 08 / 2016$	100	$26 / 08 / 16$	15.00%
15	$30 / 04 / 2017$	100	$07 / 08 / 2017$	15.00%
15	$31 / 05 / 2017$	100	$14 / 07 / 2017$	15.00%
25	$30 / 09 / 2017$	100	$10 / 08 / 2017$	25.00%
5	$30 / 11 / 2017$	100	$15 / 01 / 2018$	5.00%

Overall Progress

Research Abstract

A Fed - batch fermentation process was standardized for high cell density cultivation of the attenuated cholera vaccine candidate (VCUSM14P). The fed-batch operation resulted in the highest cell density of 1.86 g cells / It. The concentrated biomass was used to formulate 480 vials of liquid attenuated vaccine containing ($6 \times$ $10^{\wedge} 8 \mathrm{CFU} / \mathrm{ml}$). The storage stability of the vaccine formulation was evaluated for its purity, potency and viability by phenolypic and genotypic methods over an extended storage period of 140 days at $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $60 \% \pm 5 \%$ relative humidity in the Binder iCH compliant Stability Chamber.

The viability of the vaccine strain (VCUSM14P) in the formulation after 140 days of storage was recorded with $6 \times 10^{\wedge} 6$ CFU $/ \mathrm{ml}$ which is 2 logs lower as compared to its storage at room temperature ($25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$) ie; $6 \times 10^{\wedge} \mathrm{B} \mathrm{CFU} / \mathrm{ml}$ and the reduction of CFUs might be altributed to the high hurnidity. To ascertain the genetic purity of VCUSM 14P culture in the formulation, the PCR was conducted by using two different primer sets. The results indicate that the VCUSM14P strain is intact and comparable to the positive control VCUSM14P (unformulated). The vaccine culture purity was validated by series of biochemical tests that are specific for Vibrio cholerae. Since colonization is critical for elicitation of the immune response, the VCUSM14P formulation was examined for their colonization in the infant mouse model. The colonization ability of formulated VCUSM14 strain was good and recorded with two logs higher than that of unformulated VCUSM14P strain. II effectively colonized and induced a higher titer of antibodies.

In order to assess whether the vaccine formulation is causing reactogenicity, studies were performed in ligated ileal loops of unvaccinated rabbits and analyzed for the fluid accumulation in comparison with wild type and unformulated VCUSM14P. The vaccine formulation was found to be non-reactogenic at doses of $10^{\wedge} 5-10^{\wedge} 6$ in rabbil lieal loop model. The protective efficacy of vaccine formulation was delermined by challenging immumized rabbits by the Reversible inlestinal Tie Adull Rabbit Diarrhoea (RITARD) model. Rabbits vaccinated with vaccine formulation or unformulated VCUSM14P survived the challenge and showed no signs of diarthoea and other symptoms of disease or death up to 5 days of the observation period. Whereas, 100% mortality was observed in unvaccinated (control) rabbits within 18 hours post challenge with wild type. In condusion, our results validate the cold chain free formulation of VCUSM14P is non-reactogenic and immunogenic in vivo, and protects animals from lethal V . cholerae 0139 challenge.

A Patent for "A monovalent vaccine formulation and a method for preparation thereof" was filed on 09/01/2018. Reference: Patent Application No: PI 2018700106 at Intellectual Properly Corporation of Malaysia (MyIPO)

Summary of Research Findings

The storage stability of the Live Attenuated Cholera Vaccine (LACV) formulation was evaluated for its purity, potency and viability by phenotypic and genotypic methods over an extended storage period of 140 days at $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $60 \% \pm 5 \%$ humidily. The giass lest tubes/viais containing the LACV formulation were incubated in the Binder ICH compliant Stability Chamber and monitored regulariy on weekly basis.

1) Accelerated stability testing of the Live Attenuated Cholera Vaccine (LACV) formulation at $25{ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $60 \% \pm 5 \%$ humidity:

The viability of the vaccine strain (VCUSM14P) in the formulation after 140 days of storage at 25 " C and 60% humidity was recorded with $6 \times 10^{\wedge} 6 \mathrm{CFU} / \mathrm{ml}$. The viability of the strain in the formulation was 2 logs lower after 140 days of storage as compared to its storage at room temperature ($25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$) ie: $6 \times 10^{\wedge} 8 \mathrm{CFU}$ iml and the reduction of colonies might be attributed to the high humidity.
2) Genetic purity verification of vaccine candidate in the formulation by Polymerase Chain Reaction (PCR):

To Identify the intact VCUSM14P culture in the formulation after 140 days storage at $25{ }^{\circ} \mathrm{C}$ and 60% humidity, PCR was performed by using two different primer sets PCR and gel electropheresis was conducted as the genetic punty of VCUSM14P culture in the cold chain free formulation. The first PCR reaction conducted was the Mctx reaction using Mct A 112 MS-F and ctxBCDS-R primer for the detection of the presence of the nutated ctXA gene in the samples to varify that the mulated ctxA gene does not revert babk to the toxigenic form. All the samples conlaling culture in the formulalions as well as the positive control which is the VCUSM14P strain from the glycerol stock have shown the band at 700bps region, while no band is observed in the negasive control column. This moicates that mutated ctxa gene is present in the culture and it is free from contamination. In the second PCR reaction, KanFse reaction using KanFse-2F and KanFse-P prmers were used to delect the

