
ANCESTRY INFORMATIVE MARKERS  

SINGLE NUCLEOTIDE POLYMORPHISMS 

PANEL FOR ANCESTRY ESTIMATION IN THE 

MALAY POPULATION 

 

 

 

 

 

 

PADILLAH BINTI YAHYA 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

2021 



ANCESTRY INFORMATIVE MARKERS  

SINGLE NUCLEOTIDE POLYMORPHISMS 

PANEL FOR ANCESTRY ESTIMATION IN THE 

MALAY POPULATION 

 

 

 

by 

 

 

 

PADILLAH BINTI YAHYA 

 

 

 

Thesis submitted in fulfilment of the requirements  

for the Degree of  

Doctor of Philosophy 

 

 

August 2021



ii 
 

ACKNOWLEDGEMENTS 

 

In the name of Allah S.W.T, the Most Gracious and the Most Merciful. All praises to 

Allah, for giving me strength, patience, perseverance and optimism throughout my 

postgraduate journey. My biggest gratitude to Him, with His permission this thesis has 

finally been completed.  

 

My deepest appreciation to my main supervisor, Prof. Dr. Zilfalil Alwi, and my co-

supervisors, Associate Prof. Dr. Sarina Sulong and Associate Prof. Dr. Azian Harun 

for their guidance, support and kind supervision throughout my study.  My special 

thanks to Dr. Sissades Tongsima and his team members, Pongsakorn Wangkumhang, 

Alisa Wilantho, and Chumpol Ngamphiw at the National Center for Genetic 

Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 

Thailand, for their time, guidance, lessons and technical supports in completion this 

study. Special thanks also to W. Nur Hatin W. Isa, Nur Shafawati Ab Rajab and 

Nurfazreen Mohd Nasir who have provided me all the SNPs genotype data used in this 

study and help me a lot in data analyses. Thanks to my great and helpful friends, Nurul 

Fatihah Azman and Diana Rashid and all students and staff of MyHVP, USM for 

helping me throughout my study. I am deeply thankful to my families and my best 

friend, Juriah Mohamed, for standing by my side when times get hard. I couldn’t have 

achieved this without your support. Finally, I would like to thanks Public Service 

Department Malaysia (JPA) for the HLP scholarship, USM for providing all the 

facilities to carry out my study and Universiti Sains Malaysia Apex Grant: 

1002/PPSP/910343 and NTU Grant (Muhammed Ariff Research Grant (MAS): 

304.PPSP.6150148.N119 for supporting this study.   



iii 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ......................................................................................... ii 

TABLE OF CONTENTS ............................................................................................ iii 

LIST OF TABLES .................................................................................................... viii 

LIST OF FIGURES ................................................................................................... xii 

LIST OF SYMBOLS AND ABBREVIATIONS ................................................. xxxiv 

LIST OF APPENDICES ....................................................................................... xxxix 

ABSTRAK ................................................................................................................. xli 

ABSTRACT .............................................................................................................. xlii 

 

CHAPTER 1-INTRODUCTION 

1.1 Research background ........................................................................................ 1 

1.2 Problem statement ............................................................................................. 7 

1.3 Research justifications ...................................................................................... 8 

1.4 Objectives ........................................................................................................ 10 

1.4.1 General Objective ............................................................................ 10 

1.4.2 Specific Objectives .......................................................................... 11 

 

CHAPTER 2-LITERATURE REVIEW 

2.1 Ancestry .......................................................................................................... 12 

2.2 Genetic markers used in ancestry studies ........................................................ 14 

2.2.1 Single Nucleotide Polymorphisms (SNPs) ...................................... 16 

2.2.1(a)  SNPs as ancestry informative marker ....................... 20 

2.2.1(b)  SNPs genotyping ...................................................... 23 

2.3 Ancestry informative markers (AIMs) ............................................................ 24 

2.4 Methods for the selection of AIMs ................................................................. 29 

2.4.1 Informativeness for assignment (In) ................................................ 31 

2.4.2 Principal component analysis (PCA) ............................................... 33 

2.4.3 Iterative pruning principal component analysis (ipPCA) ................ 36 

2.4.4 Pairwise FST ..................................................................................... 39 

2.4.5 SNPs associated with pigmentation genes ...................................... 40 



iv 
 

2.5 Software and algorithm used in AIMs analysis .............................................. 42 

2.5.1 STRUCTURE .................................................................................. 43 

2.5.2 ADMIXTURE ................................................................................. 45 

2.5.3 FRAPPE .......................................................................................... 47 

2.5.4 PLINK ............................................................................................. 48 

2.5.5 Local Ancestry in admixed Populations (LAMP) ........................... 50 

2.5.6 SABER ............................................................................................ 51 

2.5.7 HAPMIX ......................................................................................... 52 

2.5.8 ANCESTRYMAP ........................................................................... 52 

2.5.9 Waikato Environment for Knowledge Analysis (WEKA) .............. 53 

2.5.10 K-nearest-neighbor (KNN) .............................................................. 55 

2.5.11  Naïve Bayes (NB) ............................................................................ 56 

2.6 Malay ancestry ................................................................................................ 58 

2.7 Theory of the origin of the Malays ................................................................. 60 

2.8 Genetic Ancestry of the Malays ...................................................................... 65 

 

CHAPTER 3-MATERIALS AND METHODS 

3.1 Single Nucleotide Polymorphisms (SNPs) genotype datasets ........................ 69 

3.2 Sample size ...................................................................................................... 73 

3.3 Population datasets .......................................................................................... 73 

3.3.1 MyHVP SNP dataset ....................................................................... 74 

3.3.2  Pan-Asian SNP Consortium dataset ............................................... 76 

3.3.3 SGVP SNP dataset .......................................................................... 77 

3.3.4 The International HapMap Phase 3 Project SNP dataset ................ 78 

3.4 Data analysis ................................................................................................... 79 

3.4.1 Analysis of Affymetrix GeneChip Mapping Xba 50 K Array data . 83 

3.4.1(a) SNPs data merging .................................................... 84 

3.4.1(b) SNPs data filtration .................................................... 88 

3.4.2 Ancestry informative marker (AIM) SNPs selection from the 

Affymetrix GeneChip Mapping Xba 50 K Array data. ................... 97 

3.4.2(a) Selection of AIM SNPs based on FST ........................ 97 

3.4.2(a)(i) ipPCA analysis ............................. 98 

3.4.2(a)(ii) Top FST calculation ..................... 105 



v 
 

3.4.2(a)(iii) WEKA suite for ancestry-predictive 

modeling ..................................... 111 

3.4.2(a)(iv) ADMIXTURE Analysis ............. 120 

3.4.2(b) Selection of AIM SNPs based on In ......................... 122 

3.4.2(b)(i) Principal Component Analysis 

(PCA) .......................................... 124 

3.4.2(b)(ii) Informativeness for assignment (In)

 .................................................... 129 

3.4.2(b)(iii) K-nearest-neighbor (KNN) ......... 132 

3.4.2(c) Selection of AIM SNPs based on PCA-correlated 

SNPs (PCAIMs) ...................................................... 133 

3.5 Analysis of Affymetrix SNP 6 Array and the OMNI 2.5 Illumina data ....... 135 

3.5.1 SNPs data merging and filtration .................................................. 139 

3.5.2 Malay AIM SNPs panel selection ................................................. 146 

 

CHAPTER 4-RESULTS 

4.1 Analysis of the Affymetrix GeneChip Mapping Xba 50 K Single Nucleotide 

Polymorphism (SNP) Array data. ................................................................. 150 

4.1.1 Analysis of population stratification using PCA ........................... 151 

4.1.2 Analysis of population stratification using ADMIXTURE ........... 154 

4.1.3 Genetic structure of Malay population as revealed by the ipPCA 

analysis .......................................................................................... 158 

4.1.4 ADMIXTURE analysis of sub-population SP1 to SP12 ............... 168 

4.1.5 Pairwise FST analysis of SP1 to SP12 ............................................ 171 

4.1.6 Selecting Ancestry Informative Marker (AIM) SNPs for the Malays 

from the Affymetrix GeneChip Mapping Xba 50-K SNPs data ... 173 

4.1.6(a) AIM SNPs based on ipPCA-FST .............................. 173 

4.1.6(b) ADMIXTURE analysis of all five ancestry Models 181 

4.1.6(c) AIM SNPs based on In ............................................. 192 

4.1.6(d) AIM SNPs based on PCAIMs ................................. 204 

4.1.6(e) Comparison of the performance of PCAIMs and In 

methods .................................................................... 214 

4.2 Analysis of the Affymetrix SNP-6 Array data .............................................. 216 

4.2.1 Analysis of population stratification using PCA ........................... 218 

4.2.2 Analysis of population stratification using ADMIXTURE ........... 220 



vi 
 

4.2.3 Analysis of population stratification using ipPCA ........................ 224 

4.2.4 ADMIXTURE analysis of sub-population SP1 to SP11 ............... 232 

4.2.5 Pairwise FST analysis of SP1 to SP11 ............................................ 236 

4.2.6 Selecting Ancestry Informative Marker (AIM) SNPs for the Malays 

from the Affymetrix SNP-6 data ................................................... 237 

4.2.6(a) AIM SNPs based on ipPCA-FST .............................. 237 

4.2.6(b) ADMIXTURE analysis of Model 1 to Model 5 ...... 244 

4.2.6(c) AIM SNPs based on In ............................................. 259 

4.2.6(d) AIM SNPs based on PCA-correlated SNPs ............ 272 

4.2.6(e) The combination of the minimal Malay AIM SNPs 

panel ......................................................................... 285 

4.3 WEKA suite as the predictive-ancestry model ............................................. 289 

 

CHAPTER 5-DISCUSSION 

5.1 Malay AIM SNPs from Affymetrix GeneChip Mapping Xba 50 K and 

Affymetrix SNP 6 Array SNPs databases ..................................................... 296 

5.1.1 Malay AIM SNPs from Genome-wide Affymetrix 50K SNPs Array

 ....................................................................................................... 301 

5.1.2 Malay AIM SNPs from Genome-wide Affymetrix SNP 6 Array . 304 

5.2 Methods of selecting the Malay AIM SNPs ................................................. 306 

5.2.1 ipPCA and FST ............................................................................... 306 

5.2.2 In .................................................................................................... 308 

5.2.3 PCA-correlated SNPs (PCAIMs) .................................................. 317 

5.2.4 Comparison of the three methods ipPCA-FST, In and PCAIMs ..... 326 

5.2.5 Overlapping AIM SNPs of ipPCA-FST, In and PCAIMs methods 334 

5.3 The performance of the panel of Malay AIM SNPs on the eight sub-ethnic 

groups of Malay population .......................................................................... 337 

5.4 The panel of Malay AIM SNPs related to other published AIM SNPs ........ 347 

5.5 Limitation of the study .................................................................................. 350 

5.6 Recommendations for future research .......................................................... 352 

 

CHAPTER 6-CONCLUSION 

6.1 Outcome of the study .................................................................................... 356 

6.2 Contribution of the study to the medical genetic and forensic communities 358 



vii 
 

6.3 Novelty of the study ...................................................................................... 359 

 

REFERENCES ......................................................................................................... 360 

 

APPENDICES 

LIST OF ABSTRACTS AND PUBLICATIONS 

 

 

 

  



viii 
 

LIST OF TABLES 

 
 

Page 

Table 3.1:       List of populations and number of individual used in this 

study (Affymetrix GeneChip Mapping Xba 50 K Array). ................. 71 

Table 3.2:       List of populations and number of individual used in this 

study (Affymetrix SNP 6 Array ). ...................................................... 72 

 
Table 4.1:        Number of individuals left after quality control analysis. ............... 151 

Table 4.2:  FST distances between the 12 sub-populations. ................................ 172 

Table 4.3:  The accuracy of each AIM SNPs model selected based on 

FST. .................................................................................................... 175 

Table 4.4:  The accuracy of classification of individuals to their sub-

population using Model 1 (144 AIM SNPs)..................................... 176 

Table 4.5:  The accuracy of classification of individuals to their sub-

population using Model 2 (229 AIM SNPs)..................................... 177 

Table 4.6:  The accuracy of classification of individuals to their sub-

population using Model 3 (433 AIM SNPs)..................................... 178 

Table 4.7:  The accuracy of classification of individuals to their sub-

population using Model 4 (1772 AIM SNPs)................................... 179 

Table 4.8:  The accuracy of classification of individuals to their sub-

population using Model 5 (3145 AIM SNPs)................................... 180 

Table 4.9:  The accuracy of each AIM SNPs model selected based on 

In score. ............................................................................................. 200 



ix 
 

Table 4.10:  The accuracy of classification of individuals to their sub-

population using 250 AIM SNPs selected based on In 

score. ................................................................................................. 200 

Table 4.11:  The accuracy of classification of individuals to their sub-

population using 2000 AIM SNPs selected based on In 

score. ................................................................................................. 201 

Table 4.12:  The accuracy of classification of individuals (after ipPCA 

pruning) to their sub-population using 250 AIM SNPs 

selected based on In score. ................................................................ 202 

Table 4.13:  The accuracy of classification of individuals (after ipPCA 

pruning) to their sub-population using 2000 AIM SNPs 

selected based on In score. ................................................................ 203 

Table 4.14:  The accuracy of each AIM SNPs model selected based on 

PCA-correlated SNPs. ...................................................................... 210 

Table 4.15:  The accuracy of classification of individuals to their sub-

population using 250 AIM SNPs selected based on PCA-

correlated SNPs. ............................................................................... 210 

Table 4.16:  The accuracy of classification of individuals to their sub-

population using 2000 AIM SNPs selected based on PCA-

correlated SNPs. ............................................................................... 211 

Table 4.17:  The accuracy of classification of individuals to their sub-

population (after ipPCA pruning) using 250 AIM SNPs 

selected based on PCA-correlated SNPs. ......................................... 212 



x 
 

Table 4.18:  The accuracy of classification of individuals to their sub-

population (after ipPCA pruning) using 2000 AIM SNPs 

selected based on PCA-correlated SNPs. ......................................... 213 

Table 4.19:  List of the populations and number of individuals after 

quality control analysis using PLINK. ............................................. 217 

Table 4.20:  FST value between the sub-populations. ............................................ 236 

Table 4.21:  The accuracy of each AIM SNPs model selected based on 

FST. .................................................................................................... 238 

Table 4.22:  The accuracy of classification of individuals to their sub-

population using Model 1 (101 AIM SNPs)..................................... 239 

Table 4.23:  The accuracy of classification of individuals to their sub-

population using Model 2 (157 AIM SNPs)..................................... 240 

Table 4.24:  The accuracy of classification of individuals to their sub-

population using Model 3 (294 AIM SNPs)..................................... 241 

Table 4.25:  The accuracy of classification of individuals to their sub-

population using Model 4 (1250 AIM SNPs)................................... 242 

Table 4.26:  The accuracy of classification of individuals to their sub-

population using Model 5 (2240 AIM SNPs)................................... 243 

Table 4.27:  The accuracy of each AIM SNPs model selected based on 

In score. ............................................................................................. 268 

Table 4.28:  The accuracy of classification of individuals to their sub-

population based on 100 SNPs selected using In method. ................ 269 

Table 4.29:  The accuracy of classification of individuals to their sub-

population based on 200 SNPs selected using In method. ................ 270 



xi 
 

Table 4.30:  The accuracy of classification of individuals to their sub-

population based on 2000 SNPs selected using In method. .............. 271 

Table 4.31:  The accuracy of each AIM SNPs model selected based on 

PCAIMs. ........................................................................................... 281 

Table 4.32:  The accuracy of classification of individuals to their sub-

population based on 100 SNPs selected using PCAIMs. ................. 282 

Table 4.33:  The accuracy of classification of individuals to their sub-

population based on 200 SNPs selected using PCAIMs. ................. 283 

Table 4.34:  The accuracy of classification of individuals to their sub-

population based on 2000 SNPs selected using PCAIMs. ............... 284 

Table 4.35:  The accuracy of classification of individuals to their sub-

population using the combination of 555 SNPs selected 

based on FST, In and PCAIMs. .......................................................... 286 

 
Table 5.1:  The classification accuracy of individuals to each sub-

ethnic group of Malays using the 250 AIM SNPs selected 

based on PCAIMs method. ............................................................... 343 

Table 5.2:  The classification accuracy of individuals to each sub-

ethnic group of Malays using the 2000 AIM SNPs selected 

based on PCAIMs method. ............................................................... 344 

Table 5.3:  The classification accuracy of individuals to each sub-

ethnic group of Malays using the 250 AIM SNPs selected 

based on In method. ........................................................................... 345 

Table 5.4:  The classification accuracy of individuals to each sub-

ethnic group of Malays using the 2000 AIM SNPs selected 

based on In method. ........................................................................... 346 



xii 
 

LIST OF FIGURES 

 

   Page 

 

Figure 2.1:  Map of the Malay Archipelago. Available from: 

https://www.google.com/url [Accessed 21 July 2019]....................... 64 

Figure 2.2:  Map showing the out of Taiwan theory (red line) (adapted 

from Oppenheimer and Richards, 2001). ........................................... 65 

 
Figure 3.1:  Overview of the data analysis carried out on the 

Affymetrix GeneChip Mapping Xba 50 K Array SNPs 

database to identify the AIM SNPs panel for ancestry 

inference of the Malay population. ..................................................... 81 

Figure 3.2:  Overview of the data analysis carried out on the 

Affymetrix SNP 6 Array and Illumina SNPs database to 

identify the AIM SNPs panel for ancestry inference of the 

Malay population. ............................................................................... 82 

Figure 3.3:  An example of SNPs genotype data (MY-KD population). 

A and B indicates homozygous allele, H for heterozygous 

allele and U for missing genotype. ..................................................... 84 

Figure 3.4:  Running the PLINK software in command prompt ‘C:\’ to 

create a PED and MAP file to be used for further analysis. ............... 86 

Figure 3.5:  The PED output file which combined all genotypes of the 

493 individuals from 19 populations. ................................................. 87 

Figure 3.6:  The MAP output file of the combined genotypes which 

listed all 52,501 SNPs on autosomal chromosome 1 to 22 

with the SNP identifier and SNP position. ......................................... 87 



xiii 
 

Figure 3.7:  The quality control process was carried out using PLINK 

software where the malay_data was trimmed for minor 

allele frequency (maf) less than 1%, missingness per 

marker (geno) more than 5% , HWE p < 10-6 and 

individual with missing genotype (mind) more than 10%. 

The cleaned SNPs data will be saved as malay_data_qc. .................. 90 

Figure 3.8:  The quality control log showing the filtering processes 

performed by the PLINK software. In this filtering 

process, one individual was removed for low genotyping 

(mind more than 10%) and 2342 markers were excluded 

based on HWE test p< 10-6, 1427 SNPs failed missingness 

test of 5% and 1200 SNPs failed minor allele frequency 

test of 1%. The remaining SNPs left for further quality 

control processes were 47,649. ........................................................... 91 

Figure 3.9:  One individual was removed from the PED file and saved 

in malay_data_qc.irem file. The individual was from MY-

BG sub-ethnic group........................................................................... 91 

Figure 3.10:  The MAP file created by PLINK software 

(malay_data_qc.map) showing the final list of 47,649 

SNPs after the filtration process. ........................................................ 92 

Figure 3.11:  The PED file created by PLINK software 

(malay_data_qc.ped) showing list of genotypes left (492) 

after the filtration process. .................................................................. 92 



xiv 
 

Figure 3.12:  PLINK software listed all individuals failed IBD test at 

0.185 threshold value and removed them from the PED 

file. ...................................................................................................... 93 

Figure 3.13:  Running the LD filtration processes using PLINK 

software. SNPs which failed the set LD criteria were saved 

in a file, malay_data_qc_ibd.prune.out and further 

removed from cleaned SNPs data. ...................................................... 95 

Figure 3.14:  SNPs which were not in LD were extracted out using 

PLINK software and saved in PED and MAP file format 

for further analysis. ............................................................................. 95 

Figure 3.15:  Final cleaned SNPs (35,457) were saved in a MAP file for 

further analysis. .................................................................................. 96 

Figure 3.16:  Genotypes of the final 478 individuals (in ACTG code) 

were saved in a PED file format for further analysis. ........................ 96 

Figure 3.17:  The cleaned SNPs data ‘AllsampruneLD_malay.ped’ 

which was in ACTG code format is converted to ipPCA 

format using in-house python script and saved as 

AllsampruneLD.txt. ............................................................................ 99 

Figure 3.18:  Five packages are needed to run the ipPCA in the RStudio 

which including the R stats package (stats), 3D scatter 

plot, misc functions (e1071), matrix and matrix 

exponential (expm). .......................................................................... 100 

Figure 3.19:  Example of ipPCA_result.html output file. The final node 

(pink boxes) contained homogenous clusters where the 

samples in each cluster were identified by their sample id. ............. 102 



xv 
 

Figure 3.20:  Example of ipPCA_scatter_by_ipPCA.html output file. 

The final node (pink boxes) contained homogenous 

clusters. ............................................................................................. 103 

Figure 3.21:  Example of ipPCA_scatter_by_label.html output file. The 

final node (pink boxes) contained homogenous clusters 

where the colors of each group are related to predefined 

group. ................................................................................................ 103 

Figure 3.22:  Example of ipPCA_eigenvalue_plots.html output file 

showing the eigen value plots and the number of final 

samples in each cluster. .................................................................... 104 

Figure 3.23:  The PED file of the 12 SPs in ACTG code saved as 

output.ped. ........................................................................................ 104 

Figure 3.24:  Pairwise FST calculated between the 12 SPs using the 

python script 7_fst.py. ...................................................................... 107 

Figure 3.25:  Example of pairwaise FST of all 35,457 SNPs calculated 

between SP1 and SP2. The FST values are listed in column 

sixth. ................................................................................................. 107 

Figure 3.26:  The list of SNPs which have high FST value (Model 1 with 

144 SNPs). ........................................................................................ 108 

Figure 3.27:  Example of the PED file ‘output1_Top3_weka.ped’ of 

Model 1 (SP2-YRI population) generated in ACTG code. .............. 108 

Figure 3.28:  The MAP file of Model 1 with 144 top SNPs. ................................. 109 

Figure 3.29:  The output1_Top3_weka_recode.raw in ‘012’ code. The 

missing genotype ‘NA’ need to be changed to ‘-1’ in order 

to be converted to .csv file and further used in WEKA 



xvi 
 

suite. This file contained FID (family ID), IID (individual 

ID), paternity and maternity information which is set as 

‘0’, sex information set as ‘3’, phenotype set as ‘-9’ and 

the genotype in ‘012’ code. .............................................................. 109 

Figure 3.30:  Example of the merged .csv files of all 12 sub-populations 

(Model 1). The ID of the sub-population is assigned under 

column ‘Class’ (example SP1-Indian). ............................................. 110 

Figure 3.31:  Example of the input file for WEKA which contained the 

attributes and class information. ....................................................... 116 

Figure 3.32:  The Preprocess screen displaying the class label and 

number of samples in every class (up right) and the bar 

chart can be visualized (lower right) if the class is 

selected. ............................................................................................ 117 

Figure 3.33:  The output results of the ancestry-predictive model 

performance evaluation which showing correctly and 

incorrectly classified instances and the respective 

statistical errors based on 144 AIM SNPs panel (Model 1). ............ 118 

Figure 3.34:  The area under ROC (AUC) plot of the SP3 (Malay-I) 

indicating good classification accuracy with AUC value of 

0.9556. .............................................................................................. 119 

Figure 3.35:  ADMIXTURE analysis results representing the genetic 

structure pattern of the eight world populations. .............................. 121 

Figure 3.36:  Input SNPs data in 012 coded for PCA analysis and 

missing data ‘N’ were converted to numerical value by 

imputation using mean values. ......................................................... 123 



xvii 
 

Figure 3.37:  The calculated eigenvalue and cumulative variance of the 

SNPs data.......................................................................................... 125 

Figure 3.38:  The scree plot showing the three first eigenvalues which 

larger than the others. ....................................................................... 126 

Figure 3.39:  Loading values for calculation of score values for every 

SNPs. ................................................................................................ 127 

Figure 3.40:  The score values for every SNPs. ..................................................... 128 

Figure 3.41:  Rosenberg’s information-theoretic informativeness for 

assignment (In) scores was calculated for all 35,457 SNPs 

in pairwise manner (Malay versus other populations). .................... 130 

Figure 3.42:  The final 250 SNPs which had the largest In score were 

selected to developed the ancestry-predictive model for 

the Malay population. ....................................................................... 131 

Figure 3.43:  The test sample represented by the circle shape where its 

ancestry is determined by the ancestry of its nearest 

neighbours (the square shapes based on the majority 

voting) at K=5. ................................................................................. 133 

Figure 3.44:  The SNPs genotype of the eight Malaysian Chinese........................ 136 

Figure 3.45:  The SNPs genotype of the 17 Malaysian Indian. ............................. 136 

Figure 3.46:  The SNPs genotype of the 10 Malay samples. ................................. 137 

Figure 3.47:  The SNPs genotype of the 18 Malay samples. ................................. 137 

Figure 3.48:  The SNPs genotype of 24 Malay Kedah samples generated 

from OMNI 2.5 Illumina platform. .................................................. 138 

Figure 3.49:  The SNPs genotype of 24 Malay Kelantan samples 

generated from OMNI 2.5 Illumina platform. .................................. 138 



xviii 
 

Figure 3.50:  The Affymetrix SNPs data of the 28 Malays, 17 Indians 

and 8 Chinese were merged into one PED file before 

filtration process. .............................................................................. 141 

Figure 3.51:  Quality control performed on the Affymetrix SNPs data 

using PLINK software. ..................................................................... 141 

Figure 3.52:  Quality control performed on the Illumina SNPs data 

using PLINK software. ..................................................................... 142 

Figure 3.53:  The PED file of the filtered Affymetrix SNPs data 

comprising 53 genotypes. ................................................................. 142 

Figure 3.54:  The MAP file of the filtered Affymetrix SNPs data 

comprising 248,615 SNPs. ............................................................... 143 

Figure 3.55:  The PED file of the filtered Illumina SNPs data 

comprising 48 genotypes. ................................................................. 143 

Figure 3.56:  The MAP file of the filtered Illumina SNPs data 

comprising 249,243 SNPs. ............................................................... 144 

Figure 3.57:  The PED file of the merged SNPs data comprising 1766 

genotypes. ......................................................................................... 144 

Figure 3.58:  The MAP file of the merged SNPs data comprising 37,487 

SNPs. ................................................................................................ 145 

Figure 3.59:  The 1766 individuals were clustered into 11 final nodes 

(pink boxes) which correspond to 11 sub-populations by 

ipPCA analysis. All (160) Malay samples except five were 

clustered in Node 21. ........................................................................ 148 



xix 
 

Figure 3.60:  Results of the WEKA analysis of Model 4 (1250 AIM 

SNPs selected based on FST) showing classification 

accuracy of more than 90%. ............................................................. 149 

  
Figure 4.1:  PCA plot showing four main clusters; Yoruba, Indian, 

Semang and mixture of Malays, Proto-Malay, Indonesian 

and Chinese Yunnan individuals. ..................................................... 153 

Figure 4.2:   PCA plot showing the heterogeneous clusters are not well 

separated albeit slightly separation of the Proto-Malay 

individuals from the others (orange circles). .................................... 153 

Figure 4.3:  The genetic structure pattern of the admixed Malay 

population revealed by the ADMIXTURE analysis (K=2 

to K=5) based on the 35,457 cleaned SNPs. .................................... 156 

Figure 4.4:  The genetic structure pattern of the admixed Malay 

population revealed by the ADMIXTURE analysis (K=5 

to K=9) based on the 35,457 cleaned SNPs. It 

demonstrated genetic ancestry shared with the Indonesian 

(more than 50%), Chinese (~20%), Indian (~20%) and 

Proto-Malay (MY-TM) populations. ................................................ 157 

Figure 4.5:  Eigen value plots of sub populations SP1 to SP13 

(correspond to their respective final nodes) and the 

eigendev values of each assigned sub populations. .......................... 163 

Figure 4.6:  Scattered plots of sub populations SP1 to SP13 

(correspond to their respective final nodes). Individuals in 

SP4, SP5, SP6, SP7, SP9 and SP13 are seen more 



xx 
 

scattered than other sup-populations indicating the 

heterogeneous genetic components. ................................................. 166 

Figure 4.7:  ipPCA based on 35,457 SNP data divided the 19 

populations into 13 sub-populations where Malay 

individuals were seen clustered into five different sub-

populations (SP3, SP4, SP8, SP12 and SP13) with most of 

them grouped in SP3, SP4 and SP8 .................................................. 167 

Figure 4.8:  ADMIXTURE analysis at K=2 to K=5 after ipPCA 

pruning (387 individuals and 35,457 SNPs)..................................... 169 

Figure 4.9:  ADMIXTURE analysis at K=6 to K=9 after ipPCA 

pruning (387 individuals and 35,457 SNPs)..................................... 170 

Figure 4.10:  Neighbour-joining (NJ) tree of the 12 sub-populations 

based on pairwise FST distances. ....................................................... 172 

Figure 4.11:  ADMIXTURE analysis using 144 AIM SNPs (Model 1) at 

K=2 to K=5 failed to reveal genetic pattern differences 

between the Malay population and the Indonesian, Proto-

Malay and Chinese populations........................................................ 182 

Figure 4.12:  ADMIXTURE analysis of 144 AIM SNPs (Model 1) at 

K=6 to K=9 showed spurious results which failed to give 

any conclusive results. ...................................................................... 183 

Figure 4.13:  ADMIXTURE analysis using the 229 AIM SNPs ( Model 

2) at K=2 to K=5 failed to reveal genetic pattern 

differences between the Malay population and the 

Indonesian, Proto-Malay and Chinese populations. ......................... 184 



xxi 
 

Figure 4.14:  ADMIXTURE analysis of the 229 AIM SNPs (Model 2) 

revealed spurious results at K=6 to K=9. ......................................... 185 

Figure 4.15:  ADMIXTURE analysis results of Model 3 (433 AIM 

SNPs) at K=2 to K=5 revealed genetic structure pattern 

differences of the Malay population from the Yoruba, 

Indian, Semang, Proto-Malay and Chinese populations. 

However Malay and Indonesian populations cannot be 

differentiated at K=5......................................................................... 186 

Figure 4.16:  ADMIXTURE analysis results of Model 3 (433 AIM 

SNPs) at K=6 to K=9. Using this AIM SNPs Yoruba, 

Indian, Jahai, Kensui, Proto-Malay, Chinese Wa and 

Chinese Jinuo genetic patterns could be differentiated to 

each other at K=8 albeit mask with spurious alleles. ....................... 187 

Figure 4.17:  ADMIXTURE analysis results of Model 4 (1772 AIM 

SNPs) at K=2 to K=5. Five distinct populations were 

revealed at K=5; Yoruba, Indian, Semang, Proto-Malay, 

and Chinese. ..................................................................................... 188 

Figure 4.18:  ADMIXTURE analysis results of Model 4 (1772 AIM 

SNPs) at K=6 to K=9. The results were comparable to the 

full 35,457 SNPs. At K=8 all 12 sub-populations 

demonstrated distinctive genetic pattern. ......................................... 189 

Figure 4.19:  ADMIXTURE analysis results of Model 5 (3145 AIM 

SNPs) at K=2 to K=5. Five distinct populations were 

revealed at K=5; Yoruba, Indian, Semang, Proto-Malay, 

and Chinese. Indonesian and Malay populations can also 



xxii 
 

be differentiated based on the differences amount of 

contribution of yellow colour block (Indian genetic 

component). ...................................................................................... 190 

Figure 4.20:  ADMIXTURE analysis results of Model 5 (3145 AIM 

SNPs) at K=6 to K=9. The results were comparable to the 

full 35,457 SNPs. At K=8 all 12 sub-populations 

demonstrated distinctive genetic pattern. ......................................... 191 

Figure 4.21:  The performance of AIM SNPs in assigning the Malay 

individuals into correct Malay cluster using In ranking.................... 194 

Figure 4.22:  Comparison of PCA score using full set of SNPs (a) and 

250 AIM SNPs (b). Both sets of SNPs enable the 

clustering of individuals according to their genetic 

ancestry. The 250 AIM SNPs was also enable the 

separation of individuals from all four closely related 

populations namely MY-TM, Indonesian, Malays and 

Chinese (Yunnan) (c). ...................................................................... 195 

Figure 4.23:  The genetic structure pattern of the admixed Malays 

population revealed by the ADMIXTURE analysis based 

on the 250 SNPs data at K=2 to K=5. .............................................. 196 

Figure 4.24:  The genetic structure pattern of the admixed Malays 

population revealed by the ADMIXTURE analysis based 

on the 250 SNPs data at K=6 to K=9. .............................................. 197 

Figure 4.25:  The genetic structure pattern of the admixed Malays 

population revealed by the ADMIXTURE analysis based 

on the 2000 SNP data at K=2 to K=5. .............................................. 198 



xxiii 
 

Figure 4.26:  The genetic structure pattern of the admixed Malays 

population revealed by the ADMIXTURE analysis based 

on the 2000 SNP data at K=6 to K=9. .............................................. 199 

Figure 4.27:  ADMIXTURE analysis of 250 AIM SNPs selected based 

on PCA-correlated SNPs at K=2 to K=5. ......................................... 206 

Figure 4.28:  ADMIXTURE analysis of 250 AIM SNPs selected based 

on PCA-correlated SNPs at K=6 to K=9. ......................................... 207 

Figure 4.29:  ADMIXTURE analysis of 2000 AIM SNPs selected based 

on PCA-correlated SNPs at K=2 to K=5. ......................................... 208 

Figure 4.30:  ADMIXTURE analysis of 2000 AIM SNPs selected based 

on PCA-correlated SNPs at K=5 to K=9. ......................................... 209 

Figure 4.31:  Comparison of number of overlapping AIM SNPs selected 

using both In and PCAIMs methods. ................................................ 215 

Figure 4.32:  Comparison of the performance of AIM SNPs selected 

between In and PCAIMs approaches. ............................................... 215 

Figure 4.33:  PCA analysis demonstrated five distinct clusters where 

populations demonstrated close genetic ancestry were 

grouped together in one cluster. ....................................................... 218 

Figure 4.34:  Independent PCA analysis of Group 4 and 5 showing 

cluster of Malay population separated from Japanese and 

Chinese group (a). Independent PCA analysis of Group 2 

and 3 also enable the separation Indian population from 

the European and Mexican populations (b). Individuals of 

Malaysian and Singaporean Malays were seen clustered 



xxiv 
 

together albeit demonstrated several individuals’ outliers 

(c) and (d). ........................................................................................ 219 

Figure 4.35:  ADMIXTURE analysis of all 17 populations (Indian 

representing by MAL-IN and sgvp-ins; Malay 

representing by MAL-MY and sgvp-mas; Chinese 

representing by MY-CH, sgvp-chs, CHB, and CHD) using 

37 487 SNPs at K=2 to K=10. Unique genetic patterns of 

all populations demonstrated at K=8, albeit at this number 

of K, TSI and CEU showed homogenous similar genetic 

patterns and GIH and Indian populations demonstrated 

slightly different genetic patterns from each other. .......................... 223 

Figure 4.36:  Eigen value plots of sub populations SP1 to SP11 

(correspond to their respective final nodes) and the 

eigendev values of each assigned sub populations. .......................... 227 

Figure 4.37:  Scattered plots of sub populations SP1 to SP11 

(correspond to their respective final nodes). Individuals in 

SP2, SP4 and SP10 are seen more scattered than other 

sup-populations indicating the heterogeneous genetic 

components. ...................................................................................... 230 

Figure 4.38:  ipPCA analysis re-clustered individuals into 11 sub-

populations where Malay individuals were all clustered in 

SP6 except five Singaporean Malay individuals which 

were clustered with Chinese ancestor in SP5. .................................. 231 

Figure 4.39:  ADMIXTURE analysis of the all 11 SPs at K=2 to K=9 

based on 37 487 SNPs. Genetic pattern of Malay 



xxv 
 

population can be differentiated from all other world 

population at K=7. Contribution of Indian (purple colour 

block) and Chinese (green colour block) ancestor genetic 

components can be seen in the Malays............................................. 235 

Figure 4.40:  ADMIXTURE analysis of Model 1 (101 AIM SNPs) at 

K=2 to K=6. Malay population hardly differentiated from 

the Chinese and Japanese populations. ............................................. 246 

Figure 4.41:  ADMIXTURE analysis of Model 2 (157 AIM SNPs) at 

K=2 to K=8. Malay population demonstrated admixed 

genetic pattern which can be differentiated from other 

world populations at K=7. ................................................................ 249 

Figure 4.42:  ADMIXTURE analysis of Model 3 (294 AIM SNPs) at 

K=2 to K=8. ...................................................................................... 252 

Figure 4.43:  ADMIXTURE analysis of Model 4 (1250 AIM SNPs) at 

K=2 to K=9. Malay population demonstrated unique 

genetic pattern at K=7. All other world populations were 

also demonstrated distinctive genetic pattern at K=8. ...................... 255 

Figure 4.44:  ADMIXTURE analysis of Model 5 (2240 AIM SNPs) at 

K=2 to K=9. The results are comparable with the full 

number of SNPs. ............................................................................... 258 

Figure 4.45:  The performance of small number of SNPs selected based 

on In . ................................................................................................. 261 

Figure 4.46:  ADMIXTURE analysis of 100 AIM SNPs selected based 

on In  algorithm at K=2 to K=5. Higher K gave spurious 

results. ............................................................................................... 262 



xxvi 
 

Figure 4.47:  ADMIXTURE analysis of 200 AIM SNPs selected based 

on In algorithm at K=2 to K=7. Higher K gave spurious 

results. ............................................................................................... 264 

Figure 4.48:  ADMIXTURE analysis of 2000 AIM SNPs selected based 

on In algorithm at K=2 to K=9. Malay genetic structure 

can be differentiated from other world population 

including the Chinese and Japanese. ................................................ 267 

Figure 4.49:  Comparison of the performance of the PCAIMs methods 

at k=2 and k=3 with the In method. In this study PCAIMs 

method demonstrated slightly better performance 

compared to In method...................................................................... 273 

Figure 4.50:  Comparison of shared or overlap SNPs selected using 

PCAIMs methods at k=2 and k=3 with the In method. 

Percentage of overlap SNPs selected between the PCAIMs 

and In method are quite low. ............................................................. 273 

Figure 4.51:  ADMIXTURE analysis of 100 AIM SNPs selected based 

on PCAIMs algorithm at K=2 to K=6. Higher K gave 

spurious results. Genetic pattern of Malay population 

slightly different from the other world population, 

however Chinese and Japanese population cannot be 

differentiated using this 100 AIM SNPs. ......................................... 275 

Figure 4.52:  ADMIXTURE analysis of 200 AIM SNPs selected based 

on PCAIMs algorithm at K=2 to K=7. Spurious results 

were seen at K=6 and K=7. Genetic pattern of Malay 

population slightly different from the other world 



xxvii 
 

population, however Chinese and Japanese population 

cannot be differentiated using this 200 AIM SNPs. ......................... 277 

Figure 4.53:  ADMIXTURE analysis of 2000 AIM SNPs selected based 

on PCAIMs algorithm at K=2 to K=9. The results were 

comparable with the full SNPs (37,487). ......................................... 279 

Figure 4.54:  ADMIXTURE analysis of the 555 SNPs showing the 

genetic pattern of the Malay population compared to the 

aother 11 world populations at K=2 to K=8. Malay genetic 

structure distictly differentiated from the Chinese and 

Japanese using this 555 set of AIM SNPs at K=7. ........................... 288 

 
Figure 4.55:  Results of the kappa statistic consistently increases with 

the increases of correctly classified percentage. Kappa 

statistic of Model 4 is 0.88 which indicates nearly 

complete agreement with the prediction of true class. ..................... 292 

Figure 4.56:  The performance of AIM SNPs selected by In method 

better than PCAIMs (478 instances) with high kappa 

statistic. ............................................................................................. 292 

Figure 4.57:  The performance of classification of all ancestry-

predictive model for the Malay-1 sub-population. ........................... 293 

Figure 4.58:  The performance of classification of all ancestry-

predictive models is quite low for the Malay-2 sub-

population which could be contributed by the small 

number of samples studied. .............................................................. 293 



xxviii 
 

Figure 4.59:  Comparison of the classification performance of ancestry-

predictive models developed based on FST, In and PCAIMs 

methods............................................................................................. 295 

Figure 4.60:  Comparison of classification performance of all ancestry-

predictive models which revealed the poor performance of 

the small number of AIM SNPs where the TP and F-

measure were seen dropped below 70%. ......................................... 295 

Figure 5.1:  Comparison of 250 AIM SNPs selected using In approach 

with the Full number of SNPs and 2000 AIM SNPs. It is 

demonstrated that 250 AIM SNPs can be used to 

differentiate Malay population with the other six 

populations at K=5. Increasing the number of SNPs to 

2000 enable a clearer plot of admixed genetic structure of 

the Malays and the distinct genetic pattern of the Jahai 

(brown colour) and Kensiu (blue colour) of sub-ethnic 

Semang, the Proto-Malay (orange colour) as well as the 

Chinese Jinuo (pink colour) and Wa (purple colour) of 

sub-ethnic Yunnan. ........................................................................... 312 

Figure 5.2:  Comparison of ADMIXTURE results analysis of the 250 

AIM SNPs selected using In approach with 2000 AIM 

SNPs and full SNPs set for the populations re-assigned by 

ipPCA algorithm (SP1 to SP12). ...................................................... 313 

Figure 5.3:  Classification performance of 250 AIM SNPs is 

comparable to the 2000 AIM SNPs with the TP value of 

all above 0.8, except for sub-populations Malay-1 and 



xxix 
 

Malay-2. This is due to the small number of individual 

representing the sub-populations which contributed to the 

lower TP value. ................................................................................. 314 

Figure 5.4:  Overall classification performance of 2000 AIM SNPs is 

better than 250 AIM SNPs. Assigning of individuals to 

their sub-populations (SP1 to SP12 respectively) reducing 

the number of individuals representing each population 

hence classification performance of all sub-population 

dramatically reduced. ....................................................................... 314 

Figure 5.5:  Comparison of AIM SNPs selected using In approach with 

the full SNPs set. It was noted that Malay population can 

only be differentiated from the other Asian populations 

using 2000 AIM SNPs. ..................................................................... 316 

Figure 5.6:  Classification performance of 2000 AIM SNPs selected 

using In method is remarkable for the Malay population 

(SP6) and for almost all the others population except for 

SP5, SP10 and SP11. ........................................................................ 317 

Figure 5.7:  Comparison of PCAIMs AIM SNPs panel for the 50K 

SNPs data. The 2000 AIM SNPs panel demonstrated 

comparable ADMIXTURE results as the full SNPs at 

K=8. The 250 AIM SNPs unable to differentiate Malays 

from the Proto-Malay, Indonesian and Chinese (Yunnan) 

populations at K=5 (higher K gave spurious results). The 

2000 AIM SNPs panel clearly revealed the genetic 

characteristic of the Malays (shared major genetic 



xxx 
 

characteristic with Indonesian (green colour block) with 

the combination of traces of Indian (yellow colour block), 

Chinese (purple/pink colour block) and the Proto-Malay 

(orange colour block) genetic component). ...................................... 320 

Figure 5.8:  Comparison of PCAIMs AIM SNPs panel for the 50K 

SNPs data. Genetic characteristic of the 12 sub-

populations which assigned by the ipPCA analysis 

comparable to the full SNPs set when analyse using the 

2000 AIM SNPs panel (at K=8). However both Malay-1 

and Malay-2 sub-populations did not form distinct genetic 

characteristic when ADMIXTURE analysis was run using 

250 AIM SNPs panel at K=5 (higher K gave spurious 

results). The 250 AIM SNPs panel enable the 

differentiation of the Malays from the Yoruba, Indian, 

Kensiu and Jahai populations. .......................................................... 321 

Figure 5.9:  The 2000 AIM SNPs demonstrated a better classification 

performance than 250 AIM SNPs for the Malay-2, 

Indonesian and Proto-Malay population but comparable or 

slightly lower for the pooled Malays, Malay-1, Chinese, 

Indian, Yoruba and Semang populations.......................................... 322 

Figure 5.10:  Overall performance of 2000 AIM SNPs panel is better 

than 250 AIM SNPs for all sub-populations assigned by 

the ipPCA. However 250 AIM SNPs panel successfully 

classified the Malay-1 individuals at almost 0.8 TP value. .............. 322 



xxxi 
 

Figure 5.11:  Comparison of ADMIXTURE results of AIM SNPs panel 

with full SNPs set. The small number of SNPs (100 and 

200 AIM SNPs) selected using PCAIMs enables the 

differentiation of Malays genetic structure from the other 

11 populations. A distinct Malay genetic structure can be 

seen at K=8 when 2000 AIM SNPs were used to run the 

ADMIXTURE analysis. ................................................................... 325 

Figure 5.12:  Classification performance of three AIM SNPs panel 

selected using PCAIMs. Overall performance of the 2000 

AIM SNPs panel is better than the 100 and 200 AIM SNPs 

panel. All AIM SNPs panel enable the classification of 

individuals to their correct sub-populations with TP value 

more than 0.4 except for sub-populations SP5, SP10 and 

SP11. ................................................................................................. 326 

Figure 5.13:  Comparison of ADMIXTURE plots at K=6 developed 

from panel of 200 AIM SNPs selected by the In and 

PCAIMs method. The Malay population hardly 

differentiated from the others Asian population. Heavy 

background noise was also seen in both In and PCAIMs 

plots. ................................................................................................. 329 

Figure 5.14:  ADMIXTURE plot developed from the 157 AIM SNPs 

selected by ipPCA-FST method. Genetic structure of the 

Malay population could be differentiated from the others 

population including the Asian population albeit with 



xxxii 
 

heavy background noise interrupted their genetic 

characteristic plot as compared to the full SNPs set. ........................ 329 

Figure 5.15:  Comparison of ADMIXTURE plots at K=8 developed 

from panel of 2000 AIM SNPs selected by the In and 

PCAIMs method. The Malay population could be 

differentiated from the others population albeit slight 

background noise was observed in both In and PCAIMs 

plots. ................................................................................................. 330 

Figure 5.16:  ADMIXTURE plot developed from the 1250 AIM SNPs 

selected by ipPCA-FST method. Malay population formed 

distinct genetic structure which could be differentiated 

from the others population. Genetic structure of others 

population consistently re-produced using the 1250 AIM 

SNPs except for SP10. ...................................................................... 330 

Figure 5.17:  Comparison of genetic structure revealed by a minimal 

number of AIM SNPs panel (at K=5) selected by FST, In 

and PCAIMs method. Overall performance of the AIM 

SNPs panel is comparable albeit more noise can be seen in 

In and PCAIMs plots. ........................................................................ 333 

Figure 5.18:  Comparison of genetic structure revealed by 1772 and 

2000 AIM SNPs panel (at K=8) selected by FST, In and 

PCAIMs method. The performance of all three methods is 

comparable to each other. The admixed genetic structure 

of the Malay population is successfully revealed using 

these numbers of SNPs. .................................................................... 334 



xxxiii 
 

Figure 5.19:  Schematic diagram of Malay ancestry customized chip   

(http://www.affymetrix.com). Probes complementary to 

the 1772 AIM SNPs loci and the 1250 AIM SNPs loci 

could be incorporated onto a chip and further be validated 

on the Malay population. .................................................................. 355 

 

  



xxxiv 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

%  : Percentage 

+  : Plus 

±  : Plus minus 

®  : Registered Sign 

Ʃ  : Sum of  

≤  : Less than and equal to 

≥  : More than and equal to 

>  : More than 

<  : Less than 

~  : Approximately 

β  : Beta 

α  : Alfa 

δ  : Absolute allele frequency differences 

λ2  : Chi-squared test  

r2  : Regression value 

K  : Number of cluster 

P  : Allele frequencies 

Q  : ancestral component or membership coefficient 

Pr(Ck/d) : Posterior probabilities of data 

A  : Adenine  

aAIMs  : Ancient ancestry informative markers 

ABI  : Applied Biosystems 

AIM  : Ancestry informative marker 



xxxv 
 

ANOVA : Analysis of variance 

ASW  : Africa America 

AUC  : Area under curve 

bp  : Basepair 

C  : Cytosine 

CEU  : European 

CHB  : Han Chinese Beijing 

CHD  : Chinese Colorado 

CN-JN : Chinese Jinuo 

CN-WA : Chinese Wa 

dbSNP : Database Single Nucleotide Polymorphism 

ddNTPs : Dideoxynucleotides triphosphates 

DNA  : Deoxyribonucleic Acid 

EM  : Expectation maximization 

FST  : Allele frequency differences between populations 

FN  : False negative 

FP  : False positive  

FRET  : Fluorescence resonance energy transfer 

G  : Guanine 

GIH  : Gujarati Indian 

GWAS : Genome-wide association studies 

HGDP-CEPH : Human Genome Diversity Cell Line Panel 

HLA  : Human Leukocyte Antigen 

HMM  : Hidden markov model 

HNB  : Hidden Naïve Bayes 



xxxvi 
 

H.Pylori : Helicobacter pylori 

HVR  : Hyper variable region 

HWE  : Hardy Weinberg Equilibrium  

IBS  : Identical-by state 

IBD  : Identical-by descent 

In  : Informativeness for assignment 

ID-JV  : Indonesian Java 

ID-ML : Indonesian Malay 

ID-TR  : Indonesian Toraja 

IN-DR  : Indian Telugu 

IN-WL : Indian Marathi 

INDEL : Insertion deletion 

ipPCA  : Iterative pruning principal component analysis 

JPT  : Japanese 

KNN  : K-nearest neighbor 

LAMP  : Local ancestry in admixed population 

LD  : Linkage disequilibrium 

LSBL  : Locus specific branch length 

LWK  : Luhya 

MAF  : Minor allele frequency 

MAL-CH : Chinese Malaysia 

MAL-IN : Indian Malaysia 

MAL-MY : Melayu Malaysia 

MC1R  : Melanocortin 1 reseptor 

MCMC : Markov Chain Monte Carlo 



xxxvii 
 

MDS  : Multidimensional scale 

MEX  : Mexican 

MHC  : Major histocompatibility complex 

MHMM : Markov-hidden markov model 

MKK  : Maasai 

mtDNA : Mitochondrial DNA 

MY-BG  : Melayu Bugis 

MY-BJ : Melayu Banjar 

MY-CH : Melayu Champa 

MY-JH : Jahai 

MY-JV : Melayu Java 

MY-KD : Melayu Kedah 

MY-KN : Melayu Kelantan 

MY-KS : Kensui 

MY-MN : Melayu Minang 

MY-PT : Melayu Patani 

MY-TM : Temuan 

MyHVP : Malaysian node of the human variome project 

NB  : Naïve Bayes 

NCBI  : National Center for Biotechnology Information 

PCA  : Principal Component Analysis 

PCAIMs : PCA-correlated ancestry informative markers 

RFLP  : Restriction fragment length polymorphisms 

RMSE  : Root mean squared error 

ROC  : Receiver operating characteristic 



xxxviii 
 

SBE  : Single-base extension 

SGVP  : Singapore Genome Variation Project 

sgvp-chs : Singapore Chinese 

sgvp-ins : Singapore Indian 

sgvp-mas : Singapore Melayu 

SINEs  : Short interspersed nuclear elements 

SP  : Sub-population 

STRs  : Short Tandem Repeats 

SNPs  : Single Nucleotide Polymorphisms 

SVD  : Singular value decomposition 

T  : Thymine 

TB  : Tuberculosis 

TP  : True positive rate 

TSI  : Toscani 

WEKA : Waikato Environment for Knowledge Analysis 

YRI  : Yoruba 

 

 

 

 

 

 

 

 



xxxix 
 

LIST OF APPENDICES 

 

APPENDIX A Ethical approval   

APPENDIX B Steps to run python script in command prompt 

APPENDIX C Python script to covert SNPs data to MAP and PED file format 

APPENDIX D Running quality control (QC) filtering using PLINK 

 

APPENDIX E Steps to convert SNPs data to ipPCA format 

APPENDIX F Steps to calculate the FST using python script 

APPENDIX G Steps to run WEKA Suite the ancestry-predictive modeling 

APPENDIX H Step to convert PED and MAP data to ADMIXTURE format 

APPENDIX I  List of Malay AIM SNPs panel 

APPENDIX J  Reviewer comments 

 

 

  



xl 
 

PENANDA MAKLUMAT KETURUNAN POLIMORFISME NUKLEOTIDA 

TUNGGAL UNTUK ANGGARAN KETURUNAN DALAM POPULASI 

MELAYU 

ABSTRAK 

 

Penanda maklumat keturunan (AIM) dapat digunakan untuk menyimpulkan 

(inferens) keturunan seseorang individu bagi meminimumkan ketidaktepatan 

maklumat keturunan yang dilaporkan sendiri yang digunakan pada masa ini dalam 

penyelidikan bioperubatan. Dalam kajian ini, tiga kaedah digunakan dalam membina 

panel SNP AIM Melayu, iaitu analisis iterative pruning principal component yang 

digabungkan dengan pairwise FST (ipPCA-FST), informativeness for assignment (In) 

dan PCA-correlated SNPs (PCAIMs). Dua set data genotip SNP Melayu yang 

diperolehi daripada Projek Variome Manusia Malaysia (MyHVP) telah digunakan 

untuk mengekstrak panel SNP AIM Melayu iaitu 135 genotip SNP Melayu yang 

dihasilkan melalui platform Affymetrix GeneChip Mapping Xba 50K array dan 76 

genotip SNP Melayu yang dihasilkan melalui platform Affymetrix SNP-6 array dan 

SNP OMNI2.5 Illumina array. Tambahan 89 lagi genotip SNP Melayu yang dihasilkan 

melalui platform Affymetrix SNP-6 array diperolehi dari Projek Variasi Genom 

Singapura (SGVP). Pangkalan data SNP Pan-Asian digunakan sebagai populasi 

rujukan untuk pangkalan data genotip SNP Melayu pertama manakala pangkalan data 

HapMap Fasa 3 dan pangkalan data SGVP digunakan sebagai populasi rujukan untuk 

pangkalan data genotip SNP Melayu kedua. Ketepatan setiap panel SNP AIM Melayu 

yang dihasilkan dinilai dengan menggunakan machine learning "ancestry-predictive 

model" yang dibina dengan menggunakan WEKA, platform machine learning 

komprehensif yang ditulis dalam Java. Seterusnya, corak genetik bangsa Melayu 



xli 
 

dianalisis mengunakan program ADMIXTURE berdasarkan kepada panel SNP AIM 

tersebut. Hasil analisis menunjukkan bahawa model SNP AIM 144, 299 dan 433 yang 

dipilih dari data Affymetrix 50K SNP menggunakan kaedah ipPCA-FST, 

mengklasifikasikan individu Melayu masing-masing, dengan ketepatan 76.5%, 70.6% 

dan 82.4%. Ketepatan meningkat kepada 88.2% menggunakan model SNP AIM 1772 

dan 3145. Model SNP AIM 250 dan 2000 yang dipilih menggunakan kaedah In, 

berjaya mengklasifikasikan individu Melayu dengan ketepatan masing-masing, 89.8% 

dan 96.1%. Walaubagaimanapun, ketepatan sedikit lebih rendah, masing-masing 78% 

dan 92.1% untuk bilangan SNP yang sama yang dipilih dengan kaedah PCAIM. 

Analisis ADMIXTURE menunjukkan corak genetik populasi Melayu dapat dibezakan 

dengan jelas dari populasi rujukan menggunakan panel SNP AIM 1772 dan 3145 yang 

dipilih oleh ipPCA-FST dan 2000 SNP yang dipilih oleh In dan PCAIMs. Panel SNP 

AIM 101, 157 dan 294 yang dipilih dari data Affymetrix SNP-6 menggunakan kaedah 

ipPCA-FST, menunjukkan ketepatan klasifikasi masing-masing 88.8%, 94.4% dan 

96.9%. Ketepatan meningkat kepada 100%. menggunakan panel SNP AIM 1250 dan 

2240. Model 100, 200 dan 2000 SNPs dipilih menggunakan In, menunjukkan 

ketepatan klasifikasi masing-masing 67.5%, 80% dan 100%. PCAIM menunjukkan 

ketepatan 68.8%, 81.9% dan 99.4%, masing-masing untuk bilangan panel SNP AIM 

yang sama. Corak genetik populasi Melayu dapat dibezakan dengan populasi dunia 

lain yang digunakan dalam kajian ini menggunakan panel SNP AIM 1250 dan 2240 

yang dipilih menggunakan kaedah ipPCA-FST dan 2000 AIM SNP yang dipilih 

menggunakan kaedah  In dan PCAIM. 
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ANCESTRY INFORMATIVE MARKERS SINGLE NUCLEOTIDE 

POLYMORPHISMS PANEL FOR ANCESTRY ESTIMATION IN THE 

MALAY POPULATION 

 

ABSTRACT 

 

Ancestry-informative markers (AIMs) can be used to infer an individual’s 

ancestry to minimize the inaccuracy of self-reported ethnicity in biomedical research.  

The AIM-SNP panels for the Malay population were developed using three methods 

in this study: iterative pruning principal component analysis (ipPCA) combined with 

pairwise FST (ipPCA-FST), informativeness for assignment (In), and PCA-correlated 

SNPs (or PCA-informative markers; PCAIMs). The Malay AIM-SNP panels were 

designed using two sets of Malay SNP genotype datasets stored in SNP arrays hosted 

by the Malaysian Node of the Human Variome Project (MyHVP). The first dataset 

contained 135 Malay SNPs genotypes generated from Affymetrix GeneChip Mapping 

Xba 50K array platform. The second dataset contained 76 Malay SNPs genotypes 

generated from Affymetrix SNP-6 array and OMNI2.5 Illumina SNP array platforms. 

In addition, 89 Malay SNP genotypes from the Singapore Genome Variation Project 

(SGVP) using the Affymetrix SNP-6 array platform were also included in the second 

set of the Malay SNP genotype datasets. The Pan-Asian SNP dataset was used as a 

reference population for the first Malay SNP genotype dataset, whereas the 

International HapMap Phase 3 project and SGVP datasets served as the reference 

populations for the second Malay SNP genotype datasets. The accuracy of each 

resulting Malay AIM-SNP panel was evaluated using machine learning “ancestry-

predictive model” constructed using WEKA, a comprehensive machine learning 
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platform written in Java. The ADMIXTURE program was used to explore the genetic 

pattern of Malays based on the selected AIM-SNP panels. The results showed that 

models with 144, 299, and 433 AIM-SNP panels selected from the Affymetrix 50K 

SNPs dataset using the ipPCA-FST method, correctly classified Malay individuals with 

an accuracy of 76.5, 70.6, and 82.4%, respectively. The accuracy further increased to 

88.2% when using models with 1772 and 3145 AIM-SNP panels. Models with 250 

and 2000 SNPs ranked by In, correctly classified Malay individuals with an accuracy 

of 89.8 and 96.1%, respectively. However, the accuracy was slightly lower, 78 and 

92.1%, respectively, for the same number of SNPs selected by the PCAIM method. 

ADMIXTURE analysis showed that the genetic structure of the Malay population can 

be distinctly differentiated from the reference populations using 1772 and 3145 AIM-

SNP panels selected by ipPCA-FST, and 2000 SNPs selected by In and PCAIM. Models 

with 101, 157, and 294 AIM-SNP panels selected from the Affymetrix SNP-6 dataset 

using the ipPCA-FST method demonstrated classification accuracy of 88.8, 94.4, and 

96.9%, respectively. Remarkable results were obtained using 1250 and 2240 AIM-

SNP panels, where the accuracy increased to 100%. Models with 100, 200, and 2000 

ranked by In, correctly classified Malay individuals with an accuracy of 67.5, 80, and 

100%, respectively. For the same number of AIM-SNP panels, the PCAIM showed an 

accuracy of 68.8, 81.9, and 99.4%, respectively. The genetic structure of the Malay 

population can be differentiated from the other world populations used in this study 

using the 1250 and 2240 AIM-SNP panels selected by ipPCA-FST and 2000 AIM-SNP 

panels selected by In and PCAIM.
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CHAPTER 1 

 

INTRODUCTION 

1.1 Research background 

 

More than 100,000 years ago, modern humans were thought to have migrated from 

Africa to other parts of the world (Cavalli-Sforza, 2007). They formed local 

communities influenced by their surrounding environment and tended to mate in 

proximity, contributing to genetic drift and natural selection (Cavalli-Sforza, 2007). 

Mutations have also arisen, resulting in biological differences, though they retain some 

of their ancestor’s genomic information. The migration, genetic drift, mutation and 

natural selection operated in parallel with demographic and historical events resulted 

in variants that are rare in some population but not in others which are likely arisen 

recently and contributed to the population differences (Cavalli-Sforza, 2007, Paschou 

et al., 2010). The differences of the genetic patterns were portrayed in their genetic 

ancestry and population structure carried in the genome of each individual (Cavalli-

Sforza, 2007, Paschou et al., 2010). 

 

Microsatellite markers were used to examine patterns of human genetic variation and 

population genetic structure across the entire genome (Paschou et al., 2010). Studies 

of population genetic structure based on Single Nucleotide Polymorphisms (SNPs) 

genome-wide data have successfully revealed the clines of genetic diversity around 

the world, especially with the advent of modern technologies and the realization of the 

HapMap project (Paschou et al., 2010). More recent studies of genetic ancestry to infer 

individual membership down to a population within a continent has attracted 
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considerable attention because of their value in biomedical, population genetics, 

anthropological, and forensic applications (Bryc et al., 2015, Byun et al., 2017, Das 

and Upadhyai, 2018, Vongpaisarnsin et al., 2017, Zeng et al., 2016).  

 

To reveal the genetic variation within and among populations, the genetic distance 

between them can be measured by calculating the frequencies of the variant allele. 

Wright’s F-statistics (FST) is commonly used to measure genetic differentiation. Small 

FST revealed similar allele frequencies, whereas large FST indicated that allele 

frequencies within each population differed (Holsinger and Weir, 2009). This 

variant/allele can be chosen as a candidate marker to infer ancestry for an individual 

of that population, and it is called ancestry-informative markers (AIMs).  

  

AIMs are DNA markers that show high allele frequency differences between 

populations from different geographic regions; thus, this marker could infer an 

individual’s biogeographic ancestry (Kayser and de Knijff, 2011). AIMs can be found 

on any DNA polymorphisms such as short tandem repeats (STRs), Alu elements, 

insertion-deletion polymorphisms (INDELs) or single nucleotide polymorphisms 

(SNPs) (Algee-Hewitt et al., 2016, Esposito et al., 2018, Gómez-Pérez et al., 2010, 

Inácio et al., 2016). Both haploid and diploid genetic markers can be used to study 

genetic ancestry or biogeographic ancestry. Mitochondrial DNA (mtDNA) and Y-

chromosome polymorphisms are the two haploid markers that have been frequently 

used to study biogeography ancestry (Chaitanya et al., 2014, Dulik et al., 2012, Salas 

et al., 2006). However, mtDNA (maternal lineage) and Y-chromosome (paternal 

lineage) markers do not provide comprehensive information on individual ancestry 

due to their haplotype nature. Comparatively, autosomal markers can provide more 



3 
 

information about an individual’s genetic ancestry because they represent a much 

greater proportion of genome history (both maternal and paternal ancestry) (both 

maternal and paternal ancestry) (Royal et al., 2010).  

 

Autosomal markers commonly studied for genetic ancestry were STRs (Kutanan et al., 

2014, Nunez et al., 2010, Phillips et al., 2013a), Alu elements (Gómez-Pérez et al., 

2010, Hormozdiari et al., 2011, Krishnaveni and Prabhakaran, 2015), INDELs (Moriot 

et al., 2018, Pereira et al., 2012, Tao et al., 2019, Zaumsegel et al., 2013) and SNPs 

(Fondevila et al., 2013, Hwa et al., 2017, Kidd et al., 2014, Poetsch et al., 2013). 

Nonetheless, SNPs was the marker of choice for the ancestry studies due to its stability, 

abundance in human genome, demonstrated pronounced frequency variation among 

populations and thousands of SNPs can be assayed simultaneously using high 

throughput platform such as microarray chips (Royal et al., 2010). Furthermore, 

autosomal SNPs are almost entirely used to estimate genetic ancestry in 

epidemiological applications.  

 

Single base pair substitution or SNPs play an important role to the variation among 

individuals including susceptibility to disease and reactions to drug (Kruglyak and 

Nickerson, 2001). SNPs play an important role in an individual susceptibility to most 

diseases and drugs metabolism and it is also said to be directly involved in determining 

the phenotype of an individual such as eye color, hair and skin; facial morphology and 

height (Butler, 2012). Millions of SNPs have been identified and made available at 

dbSNP homepage at NCBI and HapMap, however a small subset of SNPs (10-100s) 

should be enough to accurately infer an individual ancestry (Fondevila et al., 2013, 

Gettings et al., 2014, Sampson et al., 2011). AIM-SNPs are a small set of informative 
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SNPs. The advantages of AIM-SNPs over a random set of autosomal SNP markers 

include its ability to offer increased power for ancestry inference and to define 

admixed population (to determine the relative percentages of descendants). 

Simultaneously, a smaller set of markers can reduce genotyping costs while increasing 

throughput (Royal et al., 2010).  

 

Several approaches have been used by researchers to select SNPs for ancestry studies. 

Rosenberg et al., (2003) suggested that SNPs can be ranked individually based on their 

ability to distinguish ancestry by calculating the FST value, allele frequency and the 

informativeness for assignment (In). In is the measure of information provided by 

multiallelic markers about individual ancestry (Rosenberg et al., 2003). Paschou et al., 

(2010) chose SNPs that are strong contributors to the principal component analysis 

(PCA) or PCA-correlated SNPs (PCAIMs). PCA is a multivariate analysis that 

provides a new coordinate system (Kayser and de Knijff, 2011). Kersbergen et al., 

(2009) used a model-based clustering approach STRUCTURE program to estimate 

genetic diversity among multiple groups of individuals and then used the pairwise FST 

ranking procedure to identify AIM-SNPs.  

 

Iterative pruning PCA (ipPCA) is another algorithm suggested for searching AIM-

SNPs. This algorithm assigned individuals to sub-populations and calculated the total 

number of sub-populations present, and the STRUCTURE program was then used to 

select the appropriate AIM-SNPs (Intarapanich et al., 2009). Galanter et al., (2012) 

used Locus Specific Branch Length (LSBL) approach to discover AIM-SNPs. Based 

on FST values, LSBL is a measure of population structure in one population sample 

relative to two other population samples. The AIM-SNPs were selected based on the 



5 
 

highest LSBL for that population. The selected AIM-SNPs were tested for linkage 

disequilibrium (LD), physical distance, and heterogeneity. The AIMs were excluded 

if the markers were in LD or the alleles showed significant allele frequency 

heterogeneity between the samples representing each ancestral group (Galanter et al., 

2012).  

 

ADMIXTURE program is another approach to observe the genetic structure of studied 

groups/clusters while simultaneously selecting AIM-SNPs (Vongpaisarnsin et al., 

2015). Other approaches include selecting SNPs from databases that exhibit marked 

allele frequency differences between populations (high FST value) and strongest 

contributors to the PCA (Harrison et al., 2008, Phillips et al., 2013b, Sampson et al., 

2011); exploring existing SNP panels with hundreds of genetic markers using 

commercially available SNP genotyping arrays (Kidd et al., 2014) and selecting SNPs 

with genes involved in melanin syntheses such as MC1R, OCA2, ASIP, or SLC45A2 

(Gettings et al., 2014, Poetsch et al., 2013, Soejima and Koda, 2007). 

 

Individual AIM-SNPs can then be genotyped using common SNP genotyping 

platforms such as allelic-specific hybridization, primer extension, oligonucleotide 

ligation, or invasive cleavage (Sobrino et al., 2005). Further, allelic products of these 

methods can be detected with several detection systems such as florescence-

electrophoresis (Bouakaze et al., 2009, Fondevila et al., 2013, Mosquera-Miguel et al., 

2009, Poetsch et al., 2013), fluorescence resonance energy transfer (FRET) (Lareu et 

al., 2001, Nicklas and Buel, 2008), fluorescence arrays (Divne and Allen, 2005, Zeng 

et al., 2012), and mass spectrometry (Li et al., 1999, Shi et al., 2011). Primer extension 

combined with the florescence-electrophoresis allelic detection method, also known 
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as mini-sequencing technology, is one of the most suitable methods for analyzing a 

small number of AIM-SNPs. This is because most laboratories have an automatic 

capillary electrophoresis instrument, which is also used for STR genotyping. To 

facilitate the detection of the SNP allelic products, the commercialized multiplex 

single-base extension reaction SNaPshot® kit (Applied Biosystems, USA), which 

utilizes fluorescent ddNTPs, is also available on the market (Daniel et al., 2009, 

Phillips et al., 2013a, Rogalla et al., 2015, Wei et al., 2016). 

 

High throughput technology such as microarray is more powerful for analyzing 

hundreds or thousands of AIM-SNPs simultaneously. Keating et al., (2013) developed 

the Identitas v1 Forensic Chip, a diagnostic tool comprising of 201,173 genome-wide 

autosomal, X-chromosomal, Y-chromosomal, and mitochondrial SNPs for 

simultaneously inferring biogeographic ancestry, appearance, relatedness, and gender. 

The chip, which was manufactured by Illumina, uses the well-established Infinium 

technology (Keating et al., 2013). Galanter et al., (2012) genotyped 446 AIM-SNPs 

using both Affymetrix and Illumina platforms, and Krjutskov et al., (2009) used a 

microarray platform to analyze a 124-plex SNP comprising of 49 mtDNA SNPs, 29 

Y-chromosomal SNPs, and 46 autosomal SNPs (Krjutskov et al., 2009). 

 

According to previous studies, certain diseases are more prevalent in one ethnic group 

than others, such as hypertension, end-stage renal disease, tuberculosis, lung function, 

and prostate cancer (Daya et al., 2014, Menezes et al., 2015, Royal et al., 2010). 

Cappetta et al., (2015) studied the effect of genetic ancestry on leukocyte global DNA 

methylation in cancer patients and suggested that genetic ancestry should be 

considered as a modifying factor in epigenetic association studies, especially in 
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admixed populations. Thus, understanding ethnicity/ancestry and the substructure is 

vital for properly designing case-control association studies and identifying disease 

predisposing alleles that may differ across ethnic groups (Cappetta et al., 2015, 

Cavalli-Sforza, 2007, Royal et al., 2010, Tishkoff and Kidd, 2004). The current 

practice of using the self-identified ethnicity/ancestry approach in association diseases 

or medical genetics studies may result in false-positive or false-negative results, 

especially in studies of admixed populations, because this approach cannot account for 

the percentage of admixture in admixed cases (Liu et al., 2013b). Furthermore, 

understanding one’s ancestry background can help in the proper diagnosis and 

subsequent treatment of diseases.  

1.2 Problem statement 

 

Self-reported ethnicity has limitations when conducting genetic studies (Al-Alem et 

al., 2014, Al-Naamani et al., 2017, Mersha and Abebe, 2015). A study participant’s 

ethnicity is frequently misreported. This contributes to the spurious association with 

false-positive or false-negative results. Self-reported ethnicity errors may occur when 

subjects are unaware of their true ethnicity, only know their recent ancestors, or 

identify with one ethnic group despite their admixed background. Therefore, the 

accuracy of biomedical studies will be affected, and the study will fail to provide novel 

insights into variation in disease susceptibility and adverse drug reactions in the 

studied population or individual. As a result, analyzing the human genome can provide 

information about an individual’s ancestry, especially AIM-SNPs, which can be used 

to describe actual genetic variation in studied individuals or populations.  
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Many studies on AIM-SNPs have been carried out in various populations worldwide, 

including the Brazilian population (Lins et al., 2010), the United States population 

(African American, East Asian, European American, and Hispanic American/Native 

American) (Getting et al., 2014), European-descendent populations (Huckins et al., 

2014), the Han Chinese population (Qin et al., 2014), the Thai population 

(Vongpaisarnsin et al., 2015), Australia and Pacific region populations (Santos et al., 

2016) and Singapore population (Ramani et al., 2017). To date, however, no study has 

been carried out to identify Malay AIM-SNPs for the Malay population. The designing 

of Malay AIM-SNP panels can be used to ascertain Malay ancestry and reveal the 

extent of admixture in Malay individual subjects. This information may improve the 

accuracy and precision of biomedical and pharmacological studies carried out in the 

Malay population. 

1.3 Research justifications 

 

Genetic epidemiology shows that many Mendelian diseases are concentrated in a few, 

usually small social or ethnic groups, especially for the rarer diseases (Cavalli-Sforza, 

2007). Ethnicity/ancestry of individuals has also been proven to affect their response 

to some specific therapeutic agents or drugs (Al-Naamani et al., 2017). The study of 

biogeographical ancestry using AIM-SNPs is an important tool in the human medical 

research for gaining a better understanding of the ancestry-associated variations in 

human diseases without denying the contribution of other external factors such as the 

socio-economic, dietary and environmental background. Moreover, as the world 

becomes multi-ethnic, mixed marriage is becoming more common in some 

populations, making it difficult to assign a single ethnicity to an individual. 
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Consequently, understanding one’s ancestry is a vital step in ensuring the proper 

designing of biomedical studies.  

 

The development of AIM-SNP panels will help to address this problem, and the 

genetic admixture of an admixed individual will be fully discovered. This genomic 

knowledge will also be extremely useful in rapidly extending our knowledge of 

Mendelian diseases and individual responses to drugs that may be available for a 

specific disease. The accuracy of disease association studies can be enhanced, and 

false-positive and false-negative associations can be avoided. Individual genetic 

ancestry estimation can also bring us closer to more personalized/individualized 

genetic-based medicine. 

 

In Malaysia, the Malays are the main ethnic group residing mostly in Peninsular 

Malaysia and some in Sabah and Sarawak. Malays are said to be an admixed 

population and demonstrated heterogeneous genetic structure (Hatin et al., 2011, Hatin 

et al., 2014, Deng et al., 2014, Deng et al., 2015, Hoh et al., 2015). The availability of 

Malay SNPs database hosted by the Malaysian Node of the Human Variome Project 

(MyHVP) and the Singapore Genome Variation Project (SGVP) enable the selection 

of AIM SNPs for the Malay population.  

 

The Malay AIM-SNP panels can be used by the medical community to examine their 

subjects (who self-identified themselves as Malay) before recruiting them in their 

disease association studies, particularly for research involving ancestry/race as a vital 

contributor to the severity of the diseases. Pharmacology researchers may use these 

Malay AIM-SNPs to confirm their Malay ancestry subjects to gain an accurate 
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response to their drug research testing. These Malay AIM-SNPs are also useful in 

forensic investigations. The unknown samples found at the crime scene could be 

subjected to ancestry screening tests using these AIM-SNP panels, facilitating police 

investigations.  

  

The MyHVP Malay SNP databases will be used in this study to select suitable SNPs 

that will be used to develop the Malay AIM-SNP panels using three approaches: 

pairwise FST (combined with ipPCA), In and PCA-correlated SNPs (or PCAIMs). It is 

hypothesized that hundreds of SNPs from these databases will be selected as AIM 

candidates for Malay ancestry. The accuracy of each resulting Malay AIM panel will 

be evaluated using a machine learning “ancestry-predictive model” constructed using 

WEKA, a comprehensive machine learning platform written in Java, and the genetic 

pattern based on the selected AIM-SNPs will be evaluated using the ADMIXTURE 

program. Consequently, the selected Malay AIM-SNPs can differentiate them from 

their closely related genetic ancestry counterpart and other world populations, and they 

can be used to describe admixture in the Malay population.  

1.4 Objectives 

 

1.4.1 General Objective 

 

To select a subset of ancestry informative marker (AIM) SNPs from the Genome-wide 

Affymetrix GeneChip Mapping Xba 50 K array and Genome-wide Affymetrix SNP-6 

array of the Malay SNPs datasets to design a panel of AIM SNPs that can estimate the 

ancestry of Malay population.  
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1.4.2 Specific Objectives 

 

1. To identify a subset of autosomal AIM-SNPs from Malay SNP datasets, a 

genome-wide Affymetrix GeneChip Mapping Xba 50 K array with Pan-

Asian SNP datasets, as reference samples. 

2. To identify a subset of autosomal AIM-SNPs from Malay SNPs datasets, 

Genome-wide Affymetrix SNP-6 array platform with SGVP, and 

International HapMap Phase 3 project (HapMap) datasets as reference 

samples. 

3. To compare the performance of the three AIM-SNP identification 

techniques: ipPCA combined with pairwise FST (ipPCA-FST), In and PCA-

correlated SNPs (or PCAIMs). 

4. To evaluate the genetic structure of the Malay population using the ipPCA 

and the ADMIXTURE program, as well as to validate the accuracy of the 

selected Malay AIM-SNP panels using ADMIXTURE and WEKA suite as 

the ancestry-predictive model. 

5. To identify common SNPs between AIM-SNPs obtained from the 

Affymetrix GeneChip Mapping Xba 50 K Array and the Affymetrix     

SNP-6 array. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Ancestry 

 

Ethnicity, race and ancestry are three terms that used interchangeably to describe a 

group of persons that show different appearance, comes from different background 

and geographic origins and practising different cultural and social.  However, there are 

differences between the terms race, ethnic and ancestry. Race is a term that was used 

during the slaving era as a way to differentiate people based on their appearance such 

as skin colour, feature, social, geographic origin and cultural practice (National Human 

Genome Research Institute, 2005, Tishkoff and Kidd, 2004). Race is often equated 

with continental ancestry which assumes the existence of the five races which 

correspond well to geographic regions that are Africa, Europe, East Asia, Oceania and 

the Americas (Tishkoff and Kidd, 2004, Royal et al., 2010). Race was replaced by 

ethnicity in 20th centuries because of this term is more appropriate to differentiate 

peoples come from different biogeographic origin (National Human Genome Research 

Institute, 2005).  

 

Ethnicity emphasized more on characteristic to group people such as cultural, 

languages, religion, custom, dress, diet, as well as their historical or territorial identity 

hence not just their genetic ancestry. However by using the ethnicity to group people 

it may suffers several shortcomings especially ethnic group contains subgroups for 

example, “Hispanic” ethnic group has subgroups Cuban Americans, Mexican 

Americans and Puerto Ricans and the Malay ethnic group has various subgroups such 
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as Melayu Bugis, Melayu Banjar, Melayu Minang and Melayu Kelantan. Combining 

these groups into a single category does not result in a better understanding of these 

groups (National Human Genome Research Institute, 2005, Tishkoff and Kidd, 2004). 

Ethnicity and racial which both used to cluster population by broad geographic origin 

is not adequate to represent genetic variation in human (Tishkoff and Kidd, 2004). 

Categorizing people in term of ancestry is more appropriate since it may recognize a 

single predominant source or multiple sources (National Human Genome Research 

Institute, 2005). 

 

Self-identified race or ethnicity to identify individual in biomedical studies is not 

sufficient (Mersha and Abebe, 2015). Knowledge of ancestry can be important 

clinically and in biomedical studies due to the differential distribution of normal 

genetic variation and of genetic variation affecting diseases which were resulted from 

the genetic drift, natural selection, mutation and migration processes (Tishkoff and 

Kidd, 2004).  Knowing the genetic ancestry of the subject in biomedical research 

studies will be important to avoid spurious results in biomedical studies related to 

population stratification or may be used to map susceptibility variants that might be 

differentially distributed with respect to ancestry (Royal et al., 2010).  

 

According to US Census Bureau, ancestry is “a person’s ethnic origin, the person’s 

parents or descent or the ‘roots’ where the person comes from” (Royal et al., 2010). 

Ancestry may be referred to a group of persons who are geographically different 

(biogeographic ancestry) for example Asian, sub-Saharan African, African American, 

European; geopolitically different for example Vietnamese, Zambian, or Norwegian 
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or culturally different for example Brahmin, Lemba or Apache (National Human 

Genome Research Institute, 2005). 

 

We are somewhat related to each other by varying degree because of our common 

origin as a species (Royal et al., 2010). Mutation and recombination process 

contributed to differences in an individual’s genome and various segments of an 

individual’s genome may have ancestral histories that trace to different populations 

(Royal et al., 2010). Ancestry of an individual can be inferred from the genetic data 

based on the differences of the allele frequencies of the loci geographically. So 

ancestry can be used as alternative of the race and ethnicity in genetic research to 

describe a group of people and to study the population histories and relationships. The 

inferring of ancestry from the genetic data can be used in genealogical, anthropological 

and epidemiological research (Royal et al., 2010). Self-identified race or ethnicity 

which is commonly used in pharmacological and biomedical studies can be 

accompanied by the information of the genetic ancestral and considering together the 

education, environmental, diet, socioeconomic and culture factors which may 

contributed to the health disparities (Mersha and Abebe, 2015, Royal et al., 2010).   

  

2.2 Genetic markers used in ancestry studies 

 

The study of individual ancestry is useful in biomedical studies especially in the era of 

personalized medicine. Studies carried out by Mersha and Abebe (2015), showed 

limitation of self-reported race or ethnicity in biomedical research. Phenotype-based 

race information often disagrees with the genetic ancestry inferred using ancestry 

informative markers based on genetic or genomic data (Mersha and Abebe, 2015). 
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Estimation of the ancestry using genetic markers is not impossible by using the allele 

frequency differences between populations (Tishkoff and Kidd, 2004). Markers that 

demonstrate large differences in allele frequencies are good candidates to be used as a 

tool to estimate genetic ancestry (Barnes, 2010, Tishkoff and Kidd, 2004). Genetic 

markers such as Single Nucleotide Polymorphisms (SNPs), Y chromosomal 

haplotypes, mitochondrial DNA (mtDNA) haplotypes, X chromosomal, Short Tandem 

Repeats (STRs), Insertion deletion polymorphisms (INDEL), as well as Alu elements 

and Human Leukocyte Antigen polymorphisms (HLA) have been used to study the 

ancestry of the world populations (Mersha and Abebe, 2015).  

 

Most of the ancestry studies have been carried out using haploid markers (mtDNA and 

Y chromosomal) (Cai et al., 2011, Corach et al., 2010, Dulik et al., 2012, Nunez et al., 

2010) or multiple unlinked autosomal markers which are diploid where priory selected 

to be ancestry informative (Bryc et al., 2015, Gettings et al., 2014, Nakaoka et al., 

2013). The selection of genetic markers in ancestry studies mostly rely on the purposes 

of the study where in genealogical and anthropological study haploid markers may be 

preferred whereas for the epidemiological research, it rely mostly on allele frequencies 

of the autosomal SNPs. Genetic epidemiologists employ the methods of ancestry 

inference using autosomal SNPs to identify genetic associations with diseases either 

to control for statistical biases related to population stratification among cases and 

controls or as a strategy to map susceptibility variants that might be differentially 

distributed with respect to ancestry (Royal et al., 2010).  
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Recently most of the studies of ancestry concentrated on the SNP marker on autosomal 

DNA. This is due to the haploid marker lack recombinant and autosomal give more 

information regarding the paternal and maternal ancestry which produce more accurate 

data. Moreover the studies of SNP data on autosomal DNA are more benefited to the 

epidemiological research especially the studies of relationships of the diseases 

susceptibility and protected SNPs. 

 

On the other hand, combination of both haploid and diploid markers analysis might 

reveal more information about the genetic history of studied populations. Studies 

carried out by (Simonson et al., 2011) combined mitochondrial, Y-chromosomes and 

SNPs on autosomal chromosome to show that the Iban population from the Malaysian 

state of Sarawak exhibited genetic similarity with Indonesian and mainland Southeast 

Asian populations. Nunez et al., (2010) analysed the mitochondrial control region, Y-

chromosome STRs and autosomal STRs to ascertain the origin of the Nicaraguan 

ancestors whereas Corach et al., (2010) used selected SNP marker on autosomal 

chromosome, mitochondrial DNA and Y-chromosome to study the genetic admixture 

of Argentineans.  

 

2.2.1 Single Nucleotide Polymorphisms (SNPs) 

 

Single Nucleotide Polymorphisms (SNPs) is a bi-allelic genetic marker. It refers to a 

single base sequence variation at a particular point in the genome and can be found 

abundantly throughout the human genome with a frequency of about one in 1,000 bp 

(Brookes, 1999). SNP markers are mostly bi-allelic markers which usually have two 

alleles per marker; A/G, C/T, A/T, T/G, C/G or A/C (Butler, 2012). SNPs can be found 
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in coding regions of gene, non-coding regions or in the intergenic regions (Syvänen, 

2001).  

 

SNPs found in coding region can be further divided into two types; the synonymous 

and non-synonymous SNPs. The synonymous SNPs do not affect the protein sequence 

whereas the non-synonymous SNPs alter the function or structure of the encoded 

proteins resulted in the recessively or dominantly inherited monogenic disorder 

(Syvänen, 2001). SNPs is the simplest form of DNA variation among individuals but 

yet known to be a very important genetic marker which responsible to the phenotypic 

differences between individuals. This bi-allelic marker plays an important role to the 

differences of individual’s drug responses as well as the progression and development 

of many genetic diseases and said to be directly involved in determining the phenotype 

of an individual such as eye colour, hair and skin; facial morphology and height 

(Butler, 2012). SNP has been extensively studied not only for the biomedical research, 

but also in the field of anthropological and forensic research.   

 

SNPs have been the marker of choice in biomedical research due to its vital 

contributions to the function of the regulation and expression of a protein. The studies 

of SNPs not only can help us to predict the response of individual to various type of 

drugs or environmental toxin, and risk of developing particular diseases but also to 

track the inheritance of diseases genes within families (Kim and Misra, 2007).  Case-

control association studies are the most common application of SNPs in biomedical 

studies. Large SNPs genotyping data of both the patient and healthy control groups 

which contributes to the changes in cellular biological processes inducing diseased 

states usually studied in case-control association studies utilizing SNPs (Kim and 
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Misra, 2007). The establishment of the relationship between a genotype and a 

phenotype is based on the comparison of the differences of genotypes for all 

phenotypic characteristic demonstrated by the groups being studied (Kim and Misra, 

2007). The information can be used to characterise the susceptibility genes associated 

with a disease, hence the encoded protein can be determined for prevention or 

treatment of the disease (Kim and Misra, 2007).  

 

Pharmacogenomics studies are another discipline that utilizes SNPs as a tool to study 

the effects of genetic polymorphisms on drug response (Kim and Misra, 2007). This 

study is becoming popular due to the strong demand of the personalized medication. 

In pharmacogenomics study where SNPs are utilized as the markers, the aim is to 

elucidate effects of genetic polymorphisms on drug responses. Patients who have been 

administered a specific drug are the targeted groups and a large scale SNPs genotyping 

data is needed to ensure the accuracy and the effectiveness of the study (Kim and 

Misra, 2007).   

 

In Malaysia, the study of SNPs related to Helicobacter pylori (H.pylori) and 

Thalassemia are amongst two common diseases that intensively studied in biomedical 

research. This is due to the significant differences of H.pylori infection prevalence 

rates among major ethnic groups in Malaysia (ie Malays, Chinese and Indians). The 

highest infected was observed among Indians adults whereas Malays exhibited low 

prevalence of H.pylori (Goh, 2018, Kumar et al., 2015, Lee et al., 2013, Sasidharan et 

al., 2011). On the other hand, Malays demonstrated high prevalence of Thalassemia 

(HbE β-thalassemia) compared to the Chinese and Indians populations (George, 2013).  
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H.pylori is a major gastric bacterial pathogen which has been said to be distributed 

through the routes of human migration resulted in the division of six ancestral 

populations; three from Africa, two from Asia and one from Europe (Tay et al., 2009). 

Study carried out by He et al. (2015) identified several SNPs related to gene that 

involved in the process of gastric carcinogenesis. Three genes; PGC, PTPN11, and 

IL1B said to be associated with the susceptibility to gastric carcinogenesis (He et al., 

2015). They found the interactions of the SNPs of PGC (rs6912200 and rs4711690), 

PTPN11 (rs12229892) and IL1B (rs1143623) modified the risks of gastric cancer.   

 

Thalassaemias are autosomal recessive disorders which are caused by the defective 

synthesis of the globin chain or faulty synthesis of haemoglobin (Yatim et al., 2014). 

Two common types of thalassemia are α and β-thalassemia, which resulted from the 

defective synthesis of alpha and beta chains respectively (Yatim et al., 2014). Common 

type of thalassemia observed in Malays is HbE β-thalassemia (George, 2013). Nuinoon 

et al., (2010) reported three SNPs that have high association with β-thalassemia; SNPs 

of gene HBBP1 (rs2071348), gene HBS1L-MYB (rs9376092) and gene BCL11A 

(rs766432). Recent studies carried out by Cyrus et al., (2017) revealed another six 

SNPs located on chromosome 6 related to gene HBS1L-MYB (rs9376090, rs9399137, 

rs4895441, rs9389269, rs9402686, rs9494142, rs9376090) which has high association 

with the severity of the β-thalassemia. 
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2.2.1(a)  SNPs as ancestry informative marker 

 

SNPs is a useful biological marker in the anthropological genetics research to study 

the variations among different groups of humans, reconstruct evolutionary history, 

human physical traits and it can reveal the history of modern human migration and 

their adaptation to different environments. SNPs have played an important role in 

genetic anthropological studies because this polymorphism are believed to be stable 

and not deleterious to organisms and can be population specific. Most SNPs are located 

in non-coding regions of the genome hence not known to influence phenotype of an 

individual and can be used in evolutionary studies.  Numerous studies of SNPs marker 

on mitochondrial DNA (mtDNA) and Y-chromosomal as well as autosomal have been 

reported (Bryc et al., 2015, Dulik et al., 2012, Elhaik et al., 2013, Kivisild, 2015). 

Mitochondrial and Y-chromosomal uni-parentally markers have been predominantly 

used to study human migration in past decades; however the trend has recently shifted 

to autosomal SNPs. This is due to the breakthrough of the whole genome autosomal 

SNPs research and the development of miniaturized and automated procedure for 

analysing thousands of SNPs simultaneously (Kundu and Ghosh, 2015).  

 

Autosomal SNPs marker has been widely used in the study of human migration and 

tracing the ancestors of human populations. This marker utilizes DNA from the 22 

pairs of autosomal chromosomes contributed by both parents; hence more information 

regarding the history of the ancestors can be obtained compared to the haploid marker 

such as mitochondrial DNA and Y-chromosomal DNA.  Numerous studies have been 

carried out on autosomal SNPs to infer ancestry across diploid genome (Hou et al., 

2014, Huckins et al., 2014, Hwa et al., 2017, Galanter et al., 2012, Kersbergen et al., 

2009, Rogalla et al., 2015, Phillips et al., 2013b, Sampson et al., 2011, Santos et al., 
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2016, Santos et al., 2011, Vongpaisarnsin et al., 2015, Vongpaisarnsin et al., 2017, 

Wei et al., 2016).  

 

SNPs distributed throughout the human genome that occur at very different 

frequencies in different world populations are good candidates as ancestry informative 

markers (Budowle and Daal, 2008). The use of SNPs as ancestry-informative marker 

has been numerously published recently (Hwa et al., 2017, Das and Upadhyai, 2018, 

Esposito et al., 2018, Setser et al., 2020, Vongpaisarnsin et al., 2017). Yang et al., 

(2005) have identified 199 ancestry informative markers which were distributed 

throughout the human genome. The SNPs were selected based on allele frequency 

differences in the ABI database comprising USA Caucasian, African American, 

Chinese and Japanese (Yang et al., 2005). Using the ancestry informative markers, 

they successfully demonstrated that both continental and sub-continental populations 

can be readily distinguished. Furthermore, the contribution of the putative parental 

population can be examined in admixed population using the SNPs ancestry 

informative markers (Yang et al., 2005).  

 

Kidd et al., (2014) have developed a panel of 55 highly informative SNPs. The panel 

has been used to analyse 73 world populations and said to be very robust and efficient 

to provide excellent information on ancestry especially for forensic application (Kidd 

et al., 2014). In developing the SNPs ancestry panel, they used several sources of SNPs 

databases including the ABI databases, the HGDP-CEPH SNPs databases and their 

own laboratory databases. They successfully identified the largest pairwise allele 

frequencies differences between the studied populations to develop the panel of SNPs 

for ancestry inference. The set of 55 ancestry SNPs is opened for improvement because 
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not all populations were represented and tested and the SNPs selected were less 

efficient in estimating the admixed populations (Kidd et al., 2014). Subsequently, in 

2017 they have added another 14 reference populations allele frequency to enhance 

the use of the 55 ancestry informative SNPs (Pakstis et al., 2017). The allele 

frequencies of all 55 SNPs for a total of 139 population samples are available publicly 

and have been incorporated in commercial kits by ThermoFisher Scientific and 

Illumina (Pakstis et al., 2017).  

 

Recent studies carried out by Esposito et al. (2018) revealed the usefulness of a panel 

of ancient ancestry informative markers (aAIMs) in identifying fine-scale ancient 

population structure in Eurasians. They utilized more than 150 thousand autosomal 

SNPs from 302 ancient genome classified to 21 populations recovered from Europe, 

the Middle East and North Eurasia (Esposito et al., 2018). They demonstrated that 

principal component analysis (PCA)-based approach outperforms other methods such 

as the Infocalc and the Wright’s FST in capturing ancient population structure and 

identifying admixed individuals. Their finding can also be used to improve the 

accuracy of genetic studies utilizing ancient DNA. On the other hand, Das and 

Upadhyai, (2018) have approved the robustness and efficiency of autosomal ancestry 

informative SNPs in analysing the fine genetic structure of the highly admixed 

population of South Asian genetic origins. Comparison of the three methods; Infocalc, 

FST and the Smart PCA based on their whole genome data of Indian subcontinent, 

shows that the Infocalc method gave the best results compared to the Smart PCA and 

FST.  
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2.2.1(b)  SNPs genotyping 

 

SNPs genotyping protocol can be divided into two main parts; the biochemical reaction 

and the detection procedures (Chen and Sullivan, 2003). The biochemical reaction is 

basically the determination of the allele-specific products of the SNPs (Kim and Misra, 

2007). Reviewed carried out by Sobrino et al., (2005) have listed a number of SNP 

genotyping chemistries such as allelic-specific hybridization, primer extension, 

oligonucleotide ligation and invasive cleavage. Primer extension involves the 

incorporation of nucleotides to the DNA template using specific enzyme to 

discriminate the SNPs alleles. A primer will be designed to anneal to the 3’ end of the 

DNA template (SNPs) and nucleotides will be added to the template by the polymerase 

enzyme (Kim and Misra, 2007, Sobrino et al., 2005).  

 

The allelic-specific hybridization involves the use of differences in thermal stability of 

the double-stranded DNA to discriminate the SNPs allele (Kim and Misra, 2007). 

Target-probe pairs must perfectly complementary to each other thus the effectiveness 

of the hybridization likely depending on the length and sequence of the probe, location 

of the SNPs and hybridization condition. This approach is suitable for the high 

throughput microarray platforms such as incorporated in the GeneChip® array 

technology (Affymetrix, CA) (Kim and Misra, 2007).  

 

Oligonucleotide ligation is a technique where ligase enzymes are used to discriminate 

the SNPs allele. In these approach three oligonucleotides probes are involved, where 

the first two oligonucleotides are hybridized to the single stranded DNA template, 

adjacent to each other. Subsequently, the third probe binds to the template adjacent to 

the SNP immediately next to the allele-specific probe. The ligation product is detected 
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by various methods (Kim and Misra, 2007). Invasive cleavage involves the cleaving 

of the targeted DNA sequence by restriction enzyme and the product can be detected 

using gel electrophoresis. Invander® assay has adopted this technique by using two 

allele-specific probes attached with two types of dye at either end, the reporter (R) and 

the quencher (Q) and a common invader probe. The products can be detected using 

florescence analysis.  

 

Allelic product of those methods can be detected with several detection systems such 

as florescence-electrophoresis, fluorescence resonance energy transfer (FRET), 

fluorescence polarization, fluorescence arrays, mass spectrometry and luminescence 

(Fondevila et al., 2013, Nicklas and Buel, 2008, Poetsch et al., 2013, Shi et al., 2011, 

Zeng et al., 2012). The florescence-electrophoresis detection method is perhaps the 

most accessible method due to the availability of the technique in most of the forensic 

laboratory around the world. The high throughput technology such as microarray (for 

example Affymetrix and Illumina platforms) is more powerful for analysing hundreds 

or thousands of SNPs simultaneously which had been used in many ancestry studies 

(Galanter et al., 2012, Keating et al., 2013, Krjutskov et al., 2009).  

 

2.3 Ancestry informative markers (AIMs) 

 

Historically, human dispersed from East Africa to other part of the world more than 

100,000 years ago resulted in the genetic diversity of modern human due to adaptation 

to new environment, geographical and climate change (Cavalli-Sforza, 2007). The 

migration contributed to the genetic variation because of the founder populations 

usually carried a portion of their most immediate ancestral population and at the same 


