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ALGORITMA SEGMENTASI KECACATAN PERMUKAAN 

BERASASKAN RUJUKAN UNTUK SISTEM PEMERIKSAAN OPTIK 

AUTOMATIK 

 

ABSTRAK 

 

Algoritma segmentasi kecacatan permukaan dalam Sistem Pemeriksaan Optik 

Automatik (AOI) untuk industri pembuatan moden membolehkan kawalan kualiti 

produk dalam kuantiti yang besar dengan cepat dan mudah dijejaki. Walau bagaimana 

pun, algoritma kompleks yang tepat memerlukan kuasa pemprosesan yang tinggi, set 

data pembelajaran yang besar tanpa kesilapan pelabelan. Sebaliknya, algoritma yang 

mudah tidak sesuai bagi permukaan dengan reka bentuk yang rumit dan permukaan 

yang berubah-ubah. Kajian ini bertujuan untuk membangunkan algoritma segmentasi 

dan pengesanan kecacatan permukaan untuk sistem AOI yang memerlukan kuasa 

pemprosesan yang rendah, set data pembelajaran yang kecil dan mempunyai perintang 

ralat pelabelan. Strategi Pengesanan Anomali Berbilang Templat (MTAD) digunakan 

untuk menghuraikan tahap anomali tempatan melalui fungsi jarak yang dikira dari set 

data pembelajaran. Semua imej set data pembelajaran melalui proses pencahayaan 

normalisasi, pemadanan, dan penyusunan pada berbilang templat dalam kernel untuk 

membentuk histogram bagi setiap lokasi piksel. Kemudian, fungsi jarak histogram 

untuk setiap lokasi dihitung dengan menggunakan kombinasi pseudo-kebarangkalian 

dan fungsi-fungsi jarak histogram baru pada histogram yang dikelompokkan. 

Akhirnya, kecacatan permukaan disegmentasikan dari peta haba anomali yang 

dihasilkan berdasarkan fungsi-fungsi jarak histogram. Hasil kajian menunjukkan 

bahawa algoritma yang dibangunkan hanya memerlukan set data pembelajaran yang 
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sekecil 5 sampel sahaja dan mempunyai perintang ralat pelabelan pembelajaran 

setinggi 50%. Algoritma yang dibangunkan berjaya mencapai ketepatan keseluruhan 

90% untuk segmentasi dan ketepatan pengesanan melebihi 90% menggunakan CPU 

(unit pemprosesan pusat) dalam masa sebenar. Justeru, ia lebih baik berbanding 

dengan algoritma berdasarkan kelainan imej yang ketepatan segmentasi keseluruhan 

hanya 65%.  
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A REFERENCE BASED SURFACE DEFECT SEGMENTATION 

ALGORITHM FOR AUTOMATIC OPTICAL INSPECTION SYSTEM 

 

ABSTRACT 

 

Surface defect segmentation algorithms in Automatic Optical Inspection (AOI) 

system for modern manufacturing industries provide solutions to quality control with 

speed, volume and traceability. However, present complex algorithms which are 

accurate require high processing power using a large size of learning dataset without 

labelling error. On the other hand, simple algorithms are not suitable for surfaces with 

complicated designs and variations. This study aims to develop an algorithm for the 

AOI system to segment and detect surface defects, requiring low processing power 

and a small number of learning dataset with labelling error resistance. Multiple 

Templates Anomaly Detection (MTAD) strategy is proposed to describe the local 

anomaly degree through distance functions computed from learning dataset. The 

learning dataset images are illumination normalized, registered and stacked across 

multiple templates in a kernel to form a histogram for each pixel location. Then, the 

histogram distance function for each location is computed using a pseudo-probability 

combination of novel histogram distance functions on a clustered histogram. Finally, 

surface defects are segmented from an anomaly heat map which is generated based on 

histogram distance functions. Results show that the proposed algorithm required a 

learning dataset size as small as 5 samples and was resistant to learning labelling error 

up to 50%. The proposed algorithm achieved an overall segmentation accuracy of 90% 

and detection accuracy of more than 90% in real-time using CPU (central processing 
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unit). Thus, it outperformed image difference-based algorithm with overall 

segmentation accuracy of 65%.  
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INTRODUCTION 

1.1 Study background 

Automatic optical inspection (AOI) system is a widely adopted solution to 

industrial manufacturing quality control (Singh, 2012) and it plays an essential role as 

industries are stepping into Industrie 4.0 (Kagermann, Wahlster and Helbig, 2013; 

Hermann, Pentek and Otto, 2016). Despite AOI gaining demand, the idea of an 

automatic inspection system towards full automation in the industry can be traced back 

to convention paper in the year of 1957 (Sargrove and Johnston, 1957). Moganti et al. 

point out several criteria in the industry which favours automatic inspection over 

manual inspection (Moganti et al., 1996). Some of those points which are as following: 

• Relief of human operators. 

• Manual inspection is slow, costly, high false call rate, lack in the assurance of 

high quality. 

• High production rate which manual inspection cannot cope.  

• Tight tolerance to the point where manual inspection is inadequate. 

• The industry has a high-quality requirement where sampling is impractical. 

  

Following the footstep of technology advancement, the severity of the criteria 

pointed out by Moganti et al. has increased to a point where manual inspection 

becomes impractical and inefficient in a modern manufacturing setting. On top of that, 

internet of things (IoT) for production monitoring, full quality assurance coverage and 

total traceability (Segura Velandia et al., 2016) leads to increasing demands for AOI 

system in modern manufacturing industries. The combining factors of increasing 

industrial diversity which adopts AOI system and increasing manufactured product 
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complexity demands inspection algorithms to be very robust, reliable and efficient 

(Sindagi and Srivastava, 2015; Gaidhane, Hote and Singh, 2018).  

In recent years, machine learning research for surface defect detection 

algorithms and studies of deep learning application in the AOI system are gaining 

popularity. As machine learning algorithms are data-intensive (Sordo and Zeng, 2005; 

Figueroa et al., 2012), data availability determines their practicality in different use 

cases. Although IoT application in manufacturing industries increased data 

accessibility in big data environment (Lee et al., 2013), surface defects image data for 

a certain product can be highly limited due to cost and availability (Ren, Hung and Tan, 

2018). On top of that, algorithm speed, computation cost, data labelling and use model 

are common challenges in machine learning application in surface defect detection.  

Situation visited above has motivated this study to develop an efficient 

referential-based algorithm to bridge the gap between the ideal application of machine 

learning-based inspection algorithm and reality. In 1.2, the problem statement of this 

study is formally elaborated while this study’s objectives are stated in 1.3. The 

significant and scope of this study is evaluated in 1.5 and 1.4. Finally, an overview of 

this thesis is given in 1.6. 

1.2 Problem statement 

The gap between state-of-art surface defect inspection algorithms for AOI 

system and an ideal referential-based surface defect inspection algorithm expected 

from the manufacturing industry remains. The industry expects an ideal algorithm 

which can segment surface defect efficiently: low computation cost, low inspection 

duration, low memory usage and high accuracy. Moreover, it is robust to be applied to 

any surface inspection problems on any product design with any vision system. Aside 

from the algorithm’s performance, its user experience is as important. Although the 
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user experience depends on the software design, the ideal algorithm must have the 

capability to conform to the design: very little algorithm parameters, scalable to any 

learning or inspection database size, high tolerance to human error, stable, 

deterministic and intuitive.  

Segmentation capability is one of the research gaps observed from recent 

studies, including deep learning algorithms. These studies lack segmentation capability, 

despite being robust and accurate in detection. Secondly, resistant to human labelling 

error is missing from many referential-based algorithms. Their accuracy is dependent 

on learning accurately labelled data which is significantly harder to produce for 

segmentation problem. Besides, they need a large amount of data. The need for large 

and accurately labelled data results in high computation cost and very unfriendly user 

experience. Consequently, these gaps cost both AOI system providers and users in 

many forms: algorithm setup time, downtime, production time, hardware cost and 

maintenance cost. 

This study addresses the research gaps of requiring high processing power, 

learning dataset size and quality in surface defect segmentation problem by proposing 

a reference-based surface defect segmentation algorithm for AOI system. 

1.3 Study objective 

The main objective of this study is to develop an algorithm for the AOI system 

to do surface defect segmentation using little requirement on processing power, 

learning dataset size and quality. The main study objective can be broken down into 

three aims signifying different milestones of this study: 

1. Design a fast learning – inspection flow to be implemented in the 

software. 
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2. Derive an unsupervised, repeatable, scalable and learning error-

resistant method to determine high anomaly regions from multiple 

good templates for surface defect segmentation. 

3. Develop a software module and test the proposed algorithm’s 

segmentation accuracy. 

1.4 Study scope 

This study’s focus can be summarized into four important aspects: algorithm 

development, surface defect segmentation, AOI system and quantitative analysis. 

Algorithm development defines the action and outcome of this study where surface 

defect segmentation explains the function of the algorithm. Ultimately, an AOI system 

is a tool where the outcome of the research will be reflected on.  

In this study, algorithm development includes formulation on theory and 

mathematic behind and deployment on the field. Despite it is a machine vision-related 

algorithm, the combination and specification of a vision system is not the focus of the 

study. Evaluation of various aspect of the algorithm is part of the process to validate 

the effectiveness of the proposed algorithm.  

Surface defect segmentation defines the type of defect and function of the 

algorithm this study focuses on. Surface defect includes all deviations observable from 

a surface exceeding design’s variation tolerance of a product regardless of its impact 

on the product’s functionality directly or indirectly. The type of product in this study 

is limited to manufactured product from modern manufacturing sites which uses AOI 

systems as their quality assurance solution. The developed algorithm in this study 

focuses on defect segmentation rather than defect detection, under the criteria listed in 

1.3. As defect detection ability is closely related to segmentation, it will be touched by 

this study concisely but briefly. 
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AOI systems define the scope of the tool where the proposed algorithm is 

applied. AOI system is a subset of automatic visual inspection system which uses 

visible light as a source of illumination for visual inspection. Shorter wavelength light 

like X-ray and longer wavelength like infra-red visual inspection is not in the scope of 

this study.  

Quantitative analysis defines the scope of the data analysis presented in this 

study. Each objective or aim presented in Section 1.3 is measured, identified, and 

analyzed within a quantifiable scope. Table 1.1 presents a list of measurable aims and 

their respective quantifiable scopes defined in this study. Although the segmentation’s 

quality is analyzed visually in this study, the analysis is always relatable to the 

segmentation’s quality metric measured. 

Table 1.1: Aims and their respective quantifiable scopes defined for the study. 

Aims Quantifiable Scope 

Small learning dataset size As low as 5 samples 

High labelling error in learning Up to 50% of error percentage 

Fast speed Less than 500𝑚𝑠 

 

1.5 Study significance 

This study of proposing surface defect segmentation algorithm which has 

characteristic discussed in 1.3 is very important in the advancement of AOI technology 

towards lesser human intervention. Proposed algorithm impacts directly on the 

robustness of use case and the challenge of data availability in surface defect 

segmentation problem. Moreover, the proposed algorithm can provide current existing 

AOI systems robust, accurate and reliable referential-based surface defect 

segmentation algorithm without extra demands on hardware.  
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In terms of research, the proposed algorithm provides a flexible concept for 

other surface defect segmentation algorithms in future works. Furthermore, the 

proposed algorithm provides a solution to defect region labelling problem in the 

application of deep learning algorithms which is lacking especially in AOI systems.   

1.6 Thesis overview 

This thesis has six chapters in total. Each chapter is organized and briefly 

introduced as follows.  

CHAPTER 1 introduces the background of this study and leads to the problem 

encountered which motivates this study. The aim and scope are outlined in the Study 

objective and Study scope to clarify the direction and boundary of this study. Study 

significance at 1.5 addresses the importance and impact of the outcome of this study. 

CHAPTER 2 reviews previous literature and studies related to this study. By 

categorizing algorithms into PCB-semiconductor inspection and texture inspection, 

various surface defect detection and segmentation algorithms are reviewed. At the end 

of this chapter, an overview of the proposed algorithm is given.  

CHAPTER 3 gives an in-depth concept and formulation of the proposed 

algorithm. The chapter is organized according to the proposed algorithm’s workflow. 

Starting from learning flow to inspection flow, all related algorithms and their theories, 

equations and implementation to the flow are given in details. Novel algorithms which 

this study introduces consisted of characteristic studies in addition to theories and 

equations. This chapter gives an important foundation to study’s experiment or 

deployment methodology in the subsequent chapter. 

CHAPTER 4 describes the implementation of the proposed algorithm. Vision 

system design and computer specification are given as an experimental setup for this 

study. Then, software and its implementation of the proposed algorithm from the 
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previous chapter is outlined. Data collected for algorithm evaluation is introduced in 

this chapter. Lastly, the algorithm evaluation strategy is given.  

CHAPTER 5 is the result and discussion chapter for this study. Segmentation 

result from the proposed algorithm is studied according to criteria stated in Study 

objective: accuracy, learning sample size and labelling error. For each analysis, the 

proposed algorithm is reviewed against the objective of this study. Then, the 

repeatability of the proposed algorithm is evaluated. Moreover, the comparison 

between the proposed algorithm and another algorithm is done and discussed. A 

summary of the study’s finding is given at the end of this chapter.  

CHAPTER 6 concludes this study with a summary of findings and its 

contribution. Future works and other applications are suggested at the end of this 

chapter. 
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LITERATURE REVIEW 

This chapter reviews literature works related to surface defect segmentation 

and detection in the AOI system. Surface defect inspection in AOI system can 

generally be separated into two large categories: printed circuit board (PCB) inspection 

(Moganti et al., 1996), semiconductor inspection (Huang and Pan, 2015) and texture 

inspection. PCB inspection involves inspection on either bare PCB or assembled PCB. 

Bare PCB are PCB without electronic components while assembled PCB is PCB after 

electronic component placement in either pre-reflow or post-reflow condition. On the 

other hand, semiconductor inspection involves inspection on a wafer, liquid display, 

solar cell, and light-emitting diodes (LED) (Tsai and C. H. Yang, 2005). Last but not 

least, texture inspection involves inspection on a textured surface like textile (Yan, 

Paynabar and Shi, 2015; Li and Zhang, 2016), ceramic (Karimi and Asemani, 2014; 

Hanzaei, Afshar and Barazandeh, 2017), metal (Tsai and Tseng, 1999; Tsai and Lin, 

2002), wood (Silvén, Niskanen and Kauppinen, 2003), and stone (Liu and MacGregor, 

2006; Yoon, Lee and Liu, 2013). 

The works of literature for PCB inspection algorithms, semiconductor 

inspection algorithms and texture inspection algorithms can be further categorized 

differently according to the methodology for clarity (Moganti et al., 1996; Xie, 2008; 

Huang and Pan, 2015). The reason for differences in algorithms categories probably 

due to differences in surface characteristic. However, for the sake of simplicity, this 

study combines PCB inspection algorithms and semiconductor inspection algorithms 

under the same branch of category. For PCB inspection algorithms and semiconductor 

inspection algorithms, there are two categories: referential and non-referential 

(Moganti et al., 1996; Huang and Pan, 2015). On the other hand, texture inspection 
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algorithms can be categorized into four categories: statistical, structural, filter-based 

and model-based (Xie, 2008; Ren, Hung and Tan, 2018).  

2.1 PCB and semiconductor inspection algorithms 

In this section, previous works of literature related to PCB and semiconductor 

surface defect detection or segmentation algorithms are reviewed. As suggested by 

Moganti et al. and foretold previously, these algorithms can be grouped into referential, 

non-referential, and hybrid (Moganti et al., 1996). However, over years of 

advancement in algorithm research, the scope and definition of these groups have 

changed accordingly.  

For referential algorithms, they involved more than a database of good samples 

(Moganti et al., 1996) or golden template (Xie and Guan, 2000; Shankar and Zhong, 

2005). Any learning-based algorithm for PCB and semiconductor inspection which 

requires the algorithm to refer a model during an inspection are referential algorithm 

in this research. This includes defect detection algorithm based on reference image 

through pattern recognition  (Bartlett et al., 1988; Park and Tou, 2002; Tsai and Yang, 

2005; Sun, Sun and Surgenor, 2009), features extraction based on neural network 

(Neubauer, 1997; Kim et al., 1998; Acciani, Brunetti and Fornarelli, 2006; Luo, 2007; 

Ong, Samad and Ratnam, 2008; Lin, 2009), and image comparison based on image 

processing (Singh, 2012; Yuan, Wu and Peng, 2015), normalized cross-correlation 

(Tsai, Lin and Chen, 2003; Crispin and Rankov, 2007), wavelet transform (Ibrahim 

and Al-attas, 2005; Lin, 2009), eigenvalue (Tsai and R. H. Yang, 2005), rule-based 

(Shankar and Zhong, 2006) and principal component analysis (Sun, Sun and Surgenor, 

2009).  

For the past ten years, a novel approach using shift-tolerant dissimilarity 

measure uses optical flow field to calculate the degree of difference between a 
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reference and a test image is cited in multiple works of literature. It was proposed by 

Tsai et al., suggesting an optical flow field as a superior approach to the conventional 

template matching method. (Tsai, Chiang and Tsai, 2012). The proposed approach has 

tolerance to misalignment and local variation. However, it does not have multiple 

template capability to justify good template from a population.  

An ICA basis images-based defect segmentation for solar modules is proposed. 

It is a referential algorithm involving a learning and detection stage. A set of defect-

free solar cell sub-images are used to find a set of independent basis image using ICA. 

Then, these learned basis images are used to reconstructed solar cell sub-images under 

inspection using a linear combination method. Reconstruction error is used to justify 

if a solar cell sub-image is defective (Tsai, Wu and Chiu, 2013). 

Tsai et al. proposed a method based on Haar-like feature extraction and a new 

clustering technique for solar cell defect detection. Defect-free images are used as a 

training sample for a binary-tree clustering method which partitions these images into 

tens of groups. For each partition levels, the cluster with the worst uniformity based 

on PCA is separated into two clusters using Fuzzy C-means. During an inspection, the 

distance from a test point to each cluster’s centroid is evaluated to deduce the evidence 

of a defect (Tsai et al., 2015). 

Two studies on defect detection on OLED panel are published by Sindagi et al. 

and Son in the same year. Sindagi et al. proposed a novel approach based on local 

inlier-outlier ratios and modified LBP using a simple set of features. Local inlier-

outlier ratios complement modified LBP well as local inlier-outlier ratios often catch 

micro defects where modified LBP missed (Sindagi and Srivastava, 2015). On the 

other hand, Son proposed defect detection method on OLED panel using Fisher 

information distance of local Gaussian distributions between reference and test image 
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(Son, 2015). Both proposed algorithms are referential but very different in nature. The 

approach by Sindagi et al. is based on machine learning classifier while approach by 

Son is based on information distance.  

Kong et al. proposed a surface defect segmentation method through a three-

step framework. First, a template image is selected from a set of template images 

automatically using bag-of-words models based on corners and feature representations. 

Then, a robust image registration method based on the approximate maximum clique 

method is used to align the test image with the template. Lastly, an illumination 

invariant image comparison based on the edge is used to segment surface defect. This 

method can achieve high detection rate provided all three steps are carried out 

excellently  (Kong, Yang and Chen, 2017). However, this study uses only one template 

which is often not enough to describe the norm of a product.  

Gaidhane et al. proposed an efficient similarity measure approach to detect a 

surface defect on PCB which is reportedly well tolerated to local variations and 

misalignment (Gaidhane, Hote and Singh, 2018). It uses the rank of a symmetric 

matrix derived from companion matrices between reference and inspection image. The 

rank is found to be distinctively large for defective images. The proposed similarity 

measure is computationally efficient, responsive to defect and yet robust enough to 

ignore local variation. Although it is an improvement over other similarity measures, 

on-the-spot computation of rank is still a burden to inspection speed.  

Non-referential approaches to PCB and semiconductor-related surface defect 

detection or segmentation problems born from the idea called design-rule verification. 

Image processing methods, ROI specific thresholding and parameter tuning, encoding 

techniques are common examples of approaches with design-rule verification in mind 
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(Moganti and Ercal, 1995). However, not all non-referential approaches are based on 

design-rule verification  (Tsai and Luo, 2011).  

In the last decade, a non-referential defect detection method based on mean 

shift technique is applied on multi-crystalline solar wafer surfaces. Due heterogenous 

texture resulted from random grain structure, any homogenous texture inspection 

algorithm nor referential algorithm will not work. Hence, the mean shift technique 

which moves data points to a mode based on kernel density estimator is applied to 

detect a high variation of edge directions as defective (Tsai and Luo, 2011). However, 

this method is currently limited to multi-crystalline structures. 

In a study to detect three parallel lines in solar panel end face, multiple linear 

regression method is applied. This method is non-referential. Many image processing 

techniques are applied in real-time to extract edge points of these lines before applying 

multiple simple linear regression. Regressed lines are compared to specification to 

justify if it is defective (Lin et al., 2014). The proposed algorithm is very fast and 

simple but lack of robustness as the algorithm is designed to tackle a specific problem. 

The AOI system industry has been using non-referential approaches for PCB 

and semiconductor-related surface defect detection and segmentation problem for 

more than a decade (Moganti and Ercal, 1995). This is because non-referential 

approaches are simple, fast and predictable. However, non-referential approaches are 

limited in their use-case. Despite robust referential approaches are introduced over the 

years, there are still gaps in describe multiple templates efficiently, labelling error and 

speed. 

2.2 Texture inspection algorithms 

For the past 20 years, many textural surface defect inspection algorithms are 

reviewed in different works of literature for different surfaces (Xie, 2008; Gajanan, 
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2014; Karimi and Asemani, 2014; Mishra and Shukla, 2014). From a publication by 

Xie, textural surface defect inspection algorithm can be categorized into four different 

approaches: statistical, structural, filter-based and model-based. Statistical approach 

and filter-based approach are popular approaches toward texture inspection problem 

(Xie, 2008). A statistical approach uses the local spatial distribution of pixel grey 

values as a measurement to textural characteristic. Examples of statistical measure for 

textural analysis are histogram statistics, co-occurrence matrices, auto-correlation, 

local binary patterns (LBP), eigenvalue (Tsai et al., 2012), entropy (Tsai and Lin, 2002; 

Susan and Sharma, 2017) and rotation invariant measure of local variance (RIMLV) 

operator (Hanzaei, Afshar and Barazandeh, 2017). A filter-based approach applies 

filter banks on an image and computes the energy of the filter response. It can be done 

in the spatial domain, frequency domain or both. Global texture removal through 

discrete Fourier transform (DFT) to highlight non-textural defects on textural 

background have been a method used by several works of research  (Tsai and Hsieh, 

1999; Chan and Pang, 2000; Tsai and Huang, 2003; Kuo et al., 2018). Gabor filter is 

windowed Fourier transform using Gaussian function to introduce spatial dependency 

into Fourier analysis. It is a staple part of methods proposed in several works of 

research. Mirmahdavi et al. use optimal Gabor filter to extract features for Gaussian 

Mixture Model (GMM) modelling as a defect detection method on a randomly textured 

surface (Mirmahdavi et al., 2015). Another study uses composite differential evolution 

(CoDE) to optimize the parameters of Gabor filters to achieve optimal feature 

extraction of fabric defects (Tong, Wong and Kwong, 2016). In a study by Li et al., 

Gabor filter is used to enhance features’ contrast on fabric before defect detection using 

Pulse coupled neural network (PCNN) (Li and Zhang, 2016). 
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Recently, an unsupervised texture defect detection which does not require user 

input is proposed by Susan and Sharma. They use Gaussian mixture entropy model as 

regularity index which is computed locally from texture patches through a sliding 

window. Outliers are detected by exceeding three standard deviations. The proposed 

algorithm does not require manual input and achieves high accuracies (Susan and 

Sharma, 2017). However, future works need to be done to extend this idea to PCB and 

semiconductor inspection.  

With the recent advancement in deep learning research, a deep learning-based 

surface defect segmentation algorithm published very recently by Ren et al. based on 

convolution using trained classier. The classifier is trained with small patches from 

images using transfer learning. This study uses Decaf as their transfer learning model. 

Classification of small patches from inspecting image provides predications based on 

trained classifier for pixel-wise segmentation. This method can improve segmentation 

accuracy of three defect type (Ren, Hung and Tan, 2018). Studying result from this 

study, segmentation quality of the proposed algorithm is closer to localization than 

segmentation. Moreover, it needs speed improvement to be applicable for real-time 

inspection. 

An unsupervised deep learning approach on a textured surface is proposed 

recently. It uses defect-free samples for model training, and it can detect and localize 

defects. The approach is done by reconstructing image patches with convolutional 

denoising autoencoder networks at different Gaussian pyramid levels. Defect detection 

is based on reconstruction residual of the training patches at different resolution 

channels (Mei, Yang and Yin, 2018).  

Similarly, Li, Zhao and Pan have the same idea of using denoising autoencoder 

and detection based on reconstruction residual. By using Fisher criterion-based stacked 
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denoising autoencoder (FSCDA), fabric textures are classified into defective and non-

defective categories. Segmentation is achieved through applying a threshold on 

residual between the reconstructed image and defective patch (Li, Zhao and Pan, 2017).  

In another deep learning related literature, Racki, Tomazevic and Skocaj 

investigated the performance of surface defect segmentation and classification using a 

compact CNN architecture. Unlike many works which rely on pre-trained CNN 

network, proposed CNN architecture does not rely on a pre-trained network. They can 

achieve segmentation accuracy on par with state-of-art algorithms using small and 

coarsely labelled learning data set (Racki, Tomazevic and Skocaj, 2018). This study 

has suggested a better use model of deep learning-based defect segmentation algorithm 

with capability of coarse labelling. 

Recently, Qiu et al. proposed a highly efficient deep-learning-based method as 

a textural surface defect segmentation algorithm in an AOI system (Qiu, Wu and Yu, 

2019). Their method consisted of three stages: segmentation, detection, matting. In the 

segmentation stage, pixel-wise prediction of the defective region is done using a 

lightweight fully convolutional network (FCN). Then, predicted defective regions are 

corrected in stage 2 and refined in stage 3 using a guided filter. Despite achieving 99% 

of segmentation accuracy, the method is not suitable for a structural or a designed 

object. Moreover, the work of literature does not mention about resistance to a 

labelling error. 

As a conclusion, texture inspection algorithms proposed are mostly 

inapplicable for PCB or semiconductor inspection. This is because texture inspection 

algorithms focused on surface texture instead of a designed pattern on a surface. 

Nevertheless, literature about texture inspection algorithms gave an overview of 

current state-of-art approaches which inspires this study. 
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2.3 Study Gap 

The gaps which this study would like to address can be summarized into four 

different capability gaps: 

• Multiple templates capability 

• Learning labelling error resistance capability 

• Segmentation capability 

• Textural and non-textural application capability 

For the first gap, the multiple templates capability is the ability to capture 

textural and non-textural feature variances across multiple templates through learning. 

Many previously proposed reference-based methods rely only on a single template. 

Among those methods are golden template (Xie and Guan, 2000), neural network 

feature extraction (Lin, 2009), image comparison (Yuan, Wu and Peng, 2015), 

normalized cross-correlation (Crispin and Rankov, 2007), wavelet transform (Lin, 

2009), eigenvalue (Tsai and R. H. Yang, 2005), rule-based (Shankar and Zhong, 2006), 

modified local binary patterns (LBP) (Sindagi and Srivastava, 2015; Son, 2015), 

symmetric matrix rank (Gaidhane, Hote and Singh, 2018) and mixture model entropy 

(Susan and Sharma, 2017). Even though methods like optical flow field (Tsai, Chiang 

and Tsai, 2012) and small patches deep learning (Mei, Yang and Yin, 2018; Racki, 

Tomazevic and Skocaj, 2018) learn using multiple templates, they cannot capture non-

textural feature variances. 

For the second gap, the learning labelling error resistance capability is the 

ability to tolerate labelling error in learning. All proposed reference-based method 

which reviewed in this study assumed all templates are correctly labelled. Hence, they 

did not mention the effect of the learning labelling error. 
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For the third gap, the segmentation capability is the ability to segment defect 

accurately. Methods like principal component analysis (Sun, Sun and Surgenor, 2009) 

and clustering Haar-like features (Tsai et al., 2015) can only detect defects without 

segmentation. Meanwhile, other methods like ICA basis images-based (Tsai, Wu and 

Chiu, 2013), three-steps-framework (Kong, Yang and Chen, 2017; Qiu, Wu and Yu, 

2019) and autoencoder (Li, Zhao and Pan, 2017) segment defect as an intermediate 

result for defect detection. Hence, their segmentation accuracies are not mentioned. 

The small patches deep learning method is the only method in which segmentation 

accuracies is coarsely mentioned.  

For the fourth gap, the textural and non-textural application capability is the 

ability to apply a method on both textural and non-textural surfaces. This study finds 

that all methods are only applicable in either textural or non-textural surfaces, except 

for golden template method, symmetric matrix rank and autoencoder. 

Table 2.1 summarizes the works of literature and their capability gaps 

according to the categories: multiple templates capability (MT), learning labelling 

error resistance capability (ER), segmentation capability, and textural and non-textural 

application capability (T&NT). The segmentation capability category is split into two 

categories: segmentation as an intermediate result (SIR) and segmentation accuracy 

(SA) because there are many methods have segmentation as an intermediate result 

without mentioning its accuracy. In column MT, ER, SIR and SA, a method is marked 

under each category column if it has the capability (Y) or it does not have the capability 

(N) for the category. In column T&NT, a method is marked as textural only (T), non-

textural only (NT) or both (B). 
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Table 2.1: Algorithm methods from various works of literature and their gaps 

according to capability categories: multiple templates (MT), learning labelling error 

resistance (ER), segmentation as an intermediate result (SIR), segmentation accuracy 

(SA), and textural and non-textural application (T&NT). For column MT, ER, SIR and 

SA, “Y” is capable and “N” is incapable. For column T&NT, “T” is textural only, “NT” 

is non-textural only and “B” is both. 

Method MT ER SIR SA T&NT 

Golden Template N N N N B 

Neural Network Feature Extraction N N Y N NT 

Image Comparison N N Y N T 

Normalized Cross-Correlation N N N N NT 

Wavelet Transform N N Y N NT 

Eigenvalue N N Y N NT 

Rule-based N N Y N NT 

Principal Component Analysis Y N N N NT 

Optical Flow Field Y N Y N NT 

ICA Basis Images-based Y N Y N T 

Clustering Haar-like Features Y N N N T 

Modified LBP N N Y N T 

Three-Steps-Framework Y N Y N NT 

Three-Steps-Framework (Deep Learning) Y N Y N T 

Symmetric Matrix Rank N N Y N B 

Mixture Model Entropy N N Y N T 

Small Patches Deep Learning Y N Y Y T 

Autoencoder Y N Y N B 
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THEORY 

3.1 Proposed Algorithm 

This study proposes an efficient surface defect segmentation algorithm using 

anomalies detection method based on multiple templates. The proposed algorithm uses 

a coarsely aligned image through registration to compare with an established norm 

from a group of learning samples. The proposed algorithm uses good sample images 

and does not require labelling on the learning images, achieving a semi-unsupervised 

learning capability. Figure 3.1 illustrates an overview learning-inspection framework 

of the proposed algorithm. The overview and in-depth explanations are given in the 

following sections.  

 

Figure 3.1: Overall proposed algorithm flow consisting learning and inspection 

algorithm flow. 
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The overviewing concept of the proposed algorithm is presented in Section 3.2, 

to give a clear picture of the inner working of the proposed algorithm. Then, the 

common image processing algorithm applied to images before anomalies detection 

method proposed is described in Section 3.3. The proposed algorithm’s detailed 

formulation is explained in two main algorithm flows: learning in Section 3.4 and 

inspection in Section 3.5 as illustrated in Figure 3.1. For each algorithm flow, the 

algorithms and their theories are presented further in their respective sections. While 

some algorithms used are already well established, some algorithms are uniquely 

derived for this study. 

3.2 Concept 

Multiple templates anomaly detection (MTAD) consists of a chain of 

algorithms connected by a common input-output interface: image. Hence, instead of 

being an algorithm by itself, the proposed MTAD is a method or strategy with a 

specific purpose in place: anomaly region detection. The concept of MTAD method 

proposed in this study can be understood as finding the anomaly degree of a registered 

inspection image’s region based on an established corresponding region’s norm using 

corresponding multiple local regions from a set of registered learning templates. The 

term “registered image” in this study refers images which are aligned using any image 

registration algorithm. The image registration algorithm used for this study is 

described in Section 3.3.1.  

The use model for the MTAD method can be described in two major flows: 

learning and inspection. It resembles a standard machine learning use model that 

consists of both learning and prediction (inspection). Despite the similarity in structure, 

MTAD differs conceptually from usual machine learning. While both supervised and 

unsupervised machine learning aimed to generate learning models to describe the 
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decision boundary between labelled or unlabeled classes, MTAD does not aim to 

establish a decision boundary. Instead, MTAD aims to establish a norm (learning 

model) based on historical data (learning samples) to describe the anomaly degree or 

difference from the established norm in a local region. Hence, unlike usual supervised 

learning and unsupervised learning, MTAD does not require labelling on learning 

samples nor does it has classified output. From another perspective, MTAD breaks 

defect segmentation problem into a binary classification problem for each region or 

pixel. 

MTAD’s concept bears similarity to algorithms proposed in several 

publications (Tsai and C. H. Yang, 2005; Tsai, Chiang and Tsai, 2012; Kong, Yang and 

Chen, 2017). This method proposed a way to describe the norm from multiple 

registered samples effectively and efficiently.  

3.3 Image processing and registration 

This section describes common image processing algorithms applied in this 

study before learning or inspection of proposed MTAD method. Other than base 

template image which specifies the first cropped general pattern of a component, all 

learning and inspection images are registered and processed in the same manner. The 

algorithm flow where these algorithms are applied is depicted in Figure 3.2.  

 

Figure 3.2: Image processing and registration algorithm flow. 
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3.3.1 Pyramid ZNCC image registration 

Normalized cross-correlation (NCC) is a well-known and widely used template 

matching algorithm (Xie and Guan, 2000; Debella-Gilo and Kääb, 2011; Tsai, Chiang 

and Tsai, 2012). It is often referred to as the two-dimensional Pearson product-moment 

correlation coefficient. The equation for NCC is given in Equation (3.1). 

 

NCC(𝑆, 𝑇) = √
∑ 𝑇(𝑥, 𝑦) ∙ 𝑆(𝑥, 𝑦)𝑥,𝑦

∑ 𝑇(𝑥, 𝑦)2𝑥,𝑦 ∙ ∑ 𝑆(𝑥, 𝑦)2𝑥,𝑦
 (3.1) 

 

However, the brightness of templates and images are often different in image 

processing applications. Hence, the brightness of template and image are normalized 

through subtracting both template and image with their respective mean. This yields 

the zero-mean normalized cross-correlation (ZNCC) used in this study. ZNCC 

equation is given by Equation (3.2). 

 

ZNCC(𝑆, 𝑇) = √
∑ (𝑇(𝑥, 𝑦) − 𝜇𝑇) ∙ (𝑆(𝑥, 𝑦) − 𝜇𝑆)𝑥,𝑦

∑ (𝑇(𝑥, 𝑦) − 𝜇𝑇)2𝑥,𝑦 ∙ ∑ (𝑆(𝑥, 𝑦) − 𝜇𝑆)2𝑥,𝑦
 (3.2)  

 

ZNCC by itself is not rotation-invariant. Moreover, brute forces matching 

without rotation-invariant and scale-invariant takes up a huge amount of computation. 

Many studies suggested methods to not only improve ZNCC processing speed 

(Briechle and Hanebeck, 2001; Chen et al., 2013) but to enhance ZNCC by adding 

rotation-invariant and scale-invariant (Sassanapitak and Kaewtrakulpong, 2009). This 

study uses rotation-invariant ZNCC with fast Fourier transform (FFT) through the 



23 

 

implementation of an image pyramid. Both image pyramid and FFT are presented 

following in brief. 

An image pyramid is a multi-scale representation of an image through 

subsampling and smoothing. Figure 3.3 is an example of an image pyramid. This 

technique is used to estimate an image’s rotation and translation through ZNCC at a 

lower resolution level before moving up to a higher resolution level. When moving up 

from lower resolution level to higher resolution level, three-dimensional search space 

(𝑥, 𝑦, 𝜃)  for rotational and translation registration is reduced according to lower 

resolution’s finding. This image registration optimization technique is used in different 

studies to speed up image registration problem (Thévenaz, Ruttimann and Unser, 1998; 

Gonzalez and Woods, 2008; Kim et al., 2009).  

 

Figure 3.3: Representation of image pyramid with four levels.  
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ZNCC with FFT is a well-established method which utilizes multiplication in 

an image’s frequency domain corresponding to the convolution in the image’s spatial 

domain (Gonzalez and Woods, 2008). This relationship is explained in convolution 

theorem in Equation (3.3) and Equation (3.4) where ℱ is Fourier transform operator, 

asterisk sign is convolution operator, dot sign is multiplication operator, 𝑇 and 𝑆 are 

template and image respectively. This technique does not require convolution through 

window sliding of a kernel throughout an image. Hence, it is faster than conventional 

ZNCC.  

 

ℱ{𝑇 ∗ 𝑆} = ℱ{𝑇} ∙ ℱ{𝑆} (3.3) 

ℎ𝑒𝑛𝑐𝑒,  

𝑇 ∗ 𝑆 = ℱ−1{ℱ{𝑇} ∙ ℱ{𝑆}} (3.4) 

 

Application of pyramid ZNCC in this study is to provide image registration for 

MTAD method proposed for surface defect segmentation. As it is not part of the 

proposed algorithm, it can be replaced by any state-of-art image registration algorithm. 

However, for this study, pyramid ZNCC will be used as it is well-established, available 

in existing libraries, and simple. While it is not as accurate and robust as many image 

registration algorithms, it is enough for the MTAD method proposed to segment 

defective region without false rejects due to misalignment. 

3.3.2 Illumination normalization 

Illumination normalized images are images which brightness are corrected to 

improve its visual quality. The objective of using an image normalization algorithm is 

to effectively create a norm of image regions without biased by differences in 

illumination. This study assumes there is no significant illumination gradient under an 
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