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PENILAIAN KE ATAS RADIATION INDUCED BYSTANDER EFFECT 

(RIBE) MELIBATKAN SEL MCF-7 DAN HFOB 1.19 SETELAH RAWATAN 

NANOPARTIKEL BISMUTH OKSIDA DALAM RADIOTERAPI 

 

ABSTRAK 

 

Dalam rawatan radioterapi, kajian mendalam telah dijalankan terhadap 

penggunaan nanopartikel sebagai pemeka sinaran yang berpotensi untuk 

meningkatkan kesan radiasi terhadap sel kanser. Penggunaan nanopartikel secara 

berfokus terhadap sel kanser mampu untuk mengurangkan kesan sampingan radiasi 

terhadap tisu yang sihat. Walau bagaimanapun, penggunaan pemeka sinaran semasa 

rawatan mungkin menimbulkan kesan sampingan terhadap sel yang tidak disasarkan 

semasa rawatan iaitu kesan ‘bystander’. Kajian ini bertujuan untuk menilai kesan 

‘bystander’ disebabkan penggunaan nanopartikel bismuth oksida (Bi2O3 NPs) 

semasa rawatan radioterapi bagi sel kanser payudara MCF-7 dan juga sel osteoblast 

hFOB 1.19. Kajian ini menggunakan beberapa jenis sumber radiasi termasuklah sinar 

foton, sinar elektron dan brakiterapi kadar dos tinggi. Stimulasi kesan ‘bystander’ 

dilakukan melalui teknik pemindahan medium. Kebolehhidupan sel, kadar 

kemandirian sel, spesis oksigen reaktif (ROS), analisis apoptosis dan analisis 

spektroskopi Fourier Transform Infrared (FTIR) digunakan untuk menilai kesan 

bystander. Kajian ini menunjukkan bahawa sel ‘bystander’ MCF-7 dan hFOB 1.19 

dapat mengekalkan kebolehhidupan lebih daripada 80% selepas inkubasi selama 48 

jam dengan medium terkondisi sel penyinaran (ICCM) yang dirawat dengan Bi2O3 

NPs. Sel ini juga menunjukkan tindak balas positif untuk mengekalkan kemandirian 

sel mereka hingga 80% setelah menjalani rawatan dengan ICCM selama 10 hari. 
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Tahap ROS bagi sel ‘bystander’ meningkat, tetapi penggunaan Bi2O3 NPs tidak 

meningkatkan tahap ROS dengan ketara. Tiada peningkatan yang signifikan terhadap 

apoptosis bagi sel MCF-7 dan hFOB 1.19 disebabkan oleh dos radiasi atau kesan 

pengunaan Bi2O3 NPs berbanding sel kawalan. Tahap serapan pada gelombang 1080 

cm-1 (peregangan simetri PO2
- DNA) setanding dengan kumpulan yang dirawat dan 

tidak dirawat untuk kedua-dua sel. Amplitud penyerapan pada 1040 cm-1 yang 

berkaitan dengan peregangan simetri PO2
- dalam DNA dan RNA berkurangan 10% 

atau lebih. Kesimpulannya, hasil kajian ini menunjukkan bahawa penggunaan 

nanopartikel Bi2O3 NPs sebagai pemeka sinaran tidak meningkatkan tindak balas 

RIBE secara signifikan pada sel yang tidak disasarkan.  
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EVALUATION OF RADIATION INDUCED BYSTANDER EFFECT (RIBE) 

INVOLVING MCF-7 AND HFOB 1.19 CELLS FOLLOWING BISMUTH 

OXIDES NANOPARTICLES TREATMENT IN RADIOTHERAPY 

 

ABSTRACT 

 

In radiotherapy, nanoparticles have been widely investigated as potential 

radiosensitizer to increase the radiation lethal effects on cancer cells. Targeted 

nanoparticles to the cancer cells might reduce the unnecessary radiation dose to 

healthy tissues. Nevertheless, the presence of nanoparticles might also trigger the 

responses of non-targeted cells to radiation or the radiation-induced bystander effect 

(RIBE). In this research, evaluation on the RIBE due to bismuth oxide nanoparticles 

(Bi2O3 NPs) application during radiotherapy in human breast cancer MCF-7 and 

normal osteoblast hFOB 1.19 cells were conducted. The studies were performed 

using external beam radiotherapy of photon and electron beams as well as high dose-

rate (HDR) brachytherapy. RIBE stimulation was performed through a medium 

transfer technique. Reactive oxygen species (ROS), cell viability, cell survival, 

apoptosis assays and Fourier Transform Infrared (FTIR) spectroscopy were 

employed to evaluate the effect. The results demonstrated that MCF-7 and hFOB 

1.19 bystander cells were able to maintain their proliferation for more than 80% after 

48 hours incubation with irradiated-cell conditioned medium (ICCM) treated with 

Bi2O3 NPs. The bystander cells also present a positive response in their ability to 

sustain the survival up to 80% after treatment with ICCM for 10 days. The ROS level 

increased in the bystander cells, but the addition of Bi2O3 NPs did not significantly 

increase the ROS level. Observation on the apoptosis level in MCF-7 and hFOB 1.19 
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cells concerning the radiation dose or addition of Bi2O3 NPs compared to control 

group also present no significant increase. The absorbance levels at wavenumber 

1080 cm-1 (symmetric PO2
– stretching of the DNA) were almost identical for treated 

and untreated group of both cells. The amplitude of the peaks located at 1040 cm-1 

corresponding to the symmetric PO2
– stretching in DNA and RNA indicate changes 

approximately around 10%. In conclusion, the finding in this study provides 

evidence that the use of Bi2O3 NPs as radiosensitizer in radiotherapy does not 

significantly increase the RIBE responses in non-targeted cells.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background  

 

The incidence of cancer has been increasing over the years and it is the 

second leading cause of death globally (Teh & Woon, 2021). According to 

GLOBOCAN 2020, there was approximately 50,000 cancer cases have been reported 

in the year 2020 in Malaysia with breast cancer, lung cancer and colon cancer as the 

top three cases (World Health Organization, 2021). Radiation therapy or 

radiotherapy (RT) is one of the common and effective treatment for cancer disease 

(Feiock et al., 2016; Mi et al., 2016). The advantage of radiotherapy over other 

treatment choices owing to better survival, local control, and profiles of quality of 

life or toxicity (Rosenblatt et al., 2018). However, irradiation of cancer cells may 

also affect the nearby normal cells, thereby increasing the risk of second cancer in 

the future.  

 

RT employs high energy ionizing radiation that directly kills the cancer cells 

and may also cause genetic changes resulting in cancer cell death (Baskar et al., 

2012).  The high energy radiation targeting the critical target of the cells which is 

deoxyribonucleic acid (DNA) of cells, leading to genetic material damage and 

blocking the cell’s ability to divide and proliferate. Ionizing radiation may also 

indirectly damage the cells through a free radical generation that may harm the DNA 

of cells (Goel et al., 2017; Y. Liu et al., 2018). In an effort to improve the efficacy of 

cancer treatment, nanomaterials have been introduced to increase radiotoxicity to the 
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cancerous region and minimize the biological effect on normal cells (K. Song et al., 

2013). Extensive investigations have been carried out by researchers regarding the 

enhancement of radiation toxicity on the targeted tumour cells through the 

application of radiosensitizer.  

 

Metallic nanoparticle radiosensitizers such as gold nanoparticles (AuNPs), 

platinum nanoparticles (PtNPs) and iron oxide nanoparticles (Fe3O4 NPs) have been 

identified as radiosensitizers that can increase the effect of radiation on cancerous 

areas by increasing dose deposition in the target amount (Jackson et al., 2010; 

Khoshgard et al., 2017; Muhammad et al., 2018). Apart from that, previous research 

had proved that bismuth oxide nanoparticles (Bi2O3 NPs) also had the potential to act 

as a radiosensitizer in RT (Abdul et al., 2019; Abidin et al., 2019; Sisin et al., 2019). 

Bismuth oxide nanoparticles (Bi2O3 NPs) (Z = 83) is an alternative for a cost-

effective and good candidate of high Z radiosensitizer. Furthermore, bismuth oxide 

and bismuth-based compounds are considered as one of the least toxic and 

biologically non-reactive heavy metals, biodegradable and biocompatible which is 

more suitable for in-vivo applications compared to other metals (Shahbazi et al., 

2020; Stewart et al., 2016). Theoretically, bismuth has a higher Z number than gold. 

Therefore, it is predicted to demonstrate a promising potential as a dose-enhancing 

agent in radiation therapy (Alqathami et al., 2013).  

 

The impact of nanoparticles on targeted cells has been studied extensively. 

However, the effect of nanoparticles on non-targeted cells during RT is poorly 

studied. The main concern is if the use of nanoparticles in RT causes a bystander 

effect or a non-targeted effect on adjacent healthy tissue. The response of the non-
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irradiated cells to the radiation exposure is known as radiation-induced bystander 

effects (RIBE) (Marín et al., 2015). The bystander effect is an indirect radiation 

effect that affects untargeted cells that are not directly affected by radiation but suffer 

from nearby irradiated cells (Heuskin et al., 2013).  

 

It is a concern that the employment of nanoparticles as radiosensitizers could 

be the factor that may boost the RIBE response and produce negative effects in non-

irradiated adjacent cells (Rostami et al., 2016). The unclear results regarding RIBE 

mechanisms and the wide range of results from numerous experimental studies 

showed that the bystander effects or non-targeted effect research serve as an 

interesting area for debate in radiobiology studies (Desouky et al., 2015). RIBE 

responses are highly variable among the tested cells. They can be beneficial or 

hazardous depending on the cell lines, radiation dose, experimental end points and 

experiment time and duration (Verma & Tiku, 2017). It is considered harmful due to 

the cellular lesions that might be induced in the non-targeted cells due to bystander 

response from targeted cells (Temelie et al., 2016).  

 

However, the non-targeted cells might be rescued from the effect of directly 

exposed cells through releasing of protective signals that were possibly induced by 

bystander responses (Pereira et al., 2014). In general, if the degree of damages 

induced by RIBE in tumour cells is superior to normal cells, it may help to enhance 

the therapeutic ratio (Soleymanifard & Toossi Bahreyni, 2012). The present study 

intended to examine the cellular status of bystander cells as a result of Bi2O3 NPs 

application during clinical beam irradiation. The RIBE responses between the normal 
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and cancerous cells after the incubation with irradiated-cell conditioned medium 

(ICCM) were investigated.  

 

1.2 Problem Statement  

 

The main challenge of radiation therapy is the unnecessary exposure to the 

adjacent normal tissue when high energy ionizing radiation is used to eradicate 

cancer cells (G. Song et al., 2017). The application of tumour-specific nanoparticles 

in radiation therapy can improve the radiotherapeutic outcomes by introducing more 

toxicity to the tumours and spare the normal tissues (Mesbahi, 2010). 

Radiosensitizers have been extensively studied in radiotherapy as an agent to 

enhance the effect of radiation in cancerous cells (Mi et al., 2016; Rostami et al., 

2016). The presence of high Z atoms in the cancerous tissue intensifies the ionization 

process and enhances the dose deposition in the targeted area. The additional 

ionization generates series of Auger electron emissions which leads to further 

radiation interaction effects in the targeted area (Porcel et al., 2010).  

 

The additional interaction of radiation with nanoparticles producing 

hydrolysis of water molecules within the cell, generating free radicals that can 

interact with DNA and subsequently cause huge numbers of DNA damage and cell 

death (Paro & Shanmugam, 2017). The main concern is the employment of 

nanoparticles as radiosensitizers could be the factor that may enhance the RIBE 

response and produce negative effects in non-irradiated adjacent cells (Rostami et al., 

2016). Bystander cells or non-targeted cells could potentially experience the same 



 

5 

 

biological effect as targeted cells if the radiation effect is expanded due to the 

additional radiation interaction with radiosensitizer.  

 

To date, numerous studies on RIBE employing in-vitro or in-vivo models 

have been conducted with several end points and using a distinct experiment protocol 

(Mitchell et al., 2004). However, the process underlying the bystander responses 

elicited by nanoparticles is uncertain and unknown. The implications of bystander 

signaling with the addition of nanoparticles as radiosensitizer are only beginning to 

be explored (P. Calatayud et al., 2015; Rostami et al., 2016). The effect of Bi2O3 NPs 

on RIBE has yet to be investigated. It is important to ensure that Bi2O3 NPs is safe to 

be used as radiosensitizer, especially to the adjacent healthy tissue. The effect of 

glucose-coated gold nanoparticles (Glu-GNP) on lung cancer and breast cancer 

bystander cells have been studied previously. The results showed that the bystander 

responses were produced in human lung cancer cells and no significant response 

coming from breast cancer cells (Rostami et al., 2016).  

 

Breast cancer is one of leading cancer among women in the world 

(Terheyden et al., 2016). The irradiation of breast cancer may involve several types 

of tissue including part of the breastbone. In breast cancer patients, bone is the most 

prominent site of bone metastasis (Pulido et al., 2017). Bone metastasis is 

widespread in solid tumours with breast cancer contributing to 36% of the cases 

(Marazzi et al., 2020). Until now, the contribution of the bystander effect on the 

normal bone cells has not been widely investigated. Therefore, this study aims to 

evaluate the RIBE response in the normal bone osteoblast cells using Bi2O3 NPs 

application as radiosensitizer during clinical beam irradiation. A detailed study is 
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conducted to evaluate the induction of bystander effects between cancer and normal 

cells. The therapeutic ratio may be neutralized if the addition of nanoparticles to 

tumour cells results in bystander effects in normal cells.  

 

More importantly, this analysis will assist the current efforts to specifically 

deliver nanoparticles to tumour cells while protecting the normal tissues. Without 

understanding the mechanism of RIBE produced by nanoparticles, it is impossible to 

determine their impact on the therapeutic ratio in radiotherapy.  The results of this 

study will lay the foundation to understand bystander cell responses to radiation 

exposure with the application of Bi2O3 NPs. 

 

1.3 Research Scope  

 

In this in-vitro study, the RIBE stimulation was primarily focused on the 

medium transfer technique wherein the culture medium from the irradiated cells is 

the main mediator for triggering the bystander effect in the non-targeted cells. The 

culture medium treated with and without Bi2O3 NPs was collected and added into the 

non-irradiated cells to perceive whether the RIBE responses are increased or 

decreased with nanoparticles application. This study aimed to evaluate the RIBE 

response in between normal and cancer cells in several aspects including their ability 

to proliferate and survive and also the possible consequences such as ROS and 

apoptosis generation. The quantitative analysis was performed using Fourier 

Transform Infrared (FTIR) spectroscopy to observe the alteration or changes in the 

DNA of the treated cells as a result of Bi2O3 NPs application. 
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1.4 Objective of the Study 

 

General Objective: 

To investigate the effects of bismuth oxide nanoparticles (Bi2O3 NPs) on radiation-

induced bystander effects (RIBE) in radiotherapy. 

 

Specific objectives: 

1. To evaluate the cytotoxicity and cellular internalization of bismuth oxide 

nanoparticles (Bi2O3 NPs) in the cells. 

2. To measure and compare the bystander cell viability, survival rate and 

generation of reactive oxygen species (ROS) in the normal and cancer cells at 

different radiation doses. 

3. To investigate RIBE response on cellular DNA structure quantitatively using 

Fourier Transform Infrared (FTIR) spectroscopy and the possibility of 

apoptosis induction in the bystander cells. 

4. To assess the influence of different irradiation parameter radiation (type and 

energy) on RIBE. 

 

1.5 Thesis Outline 

 

This thesis has been divided into several chapters.  

 

Chapter 1 (Introduction) - This chapter mainly discussed the research background, 

problem statements and also scope for this study. The research objectives were 

highlighted in this chapter. 
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Chapter 2 (Literature Review) – This chapter described the general idea about 

radiotherapy, radiobiology, and nanomedicine field. The challenges in these fields 

were also highlighted. The bystander effect induced by radiation during the 

application of nanoparticles was elucidated in this chapter. 

 

Chapter 3 (Materials and Methods) – This chapter explained the detailed 

methodology involved in this study. This study conducted several analyses which are 

cytotoxicity assay, cellular uptake analysis, cell viability, cell survival analysis and 

reactive oxygen species (ROS) analysis. Apoptosis assay and Fourier Transform 

Infrared (FTIR) spectroscopy also have been conducted for details RIBE analysis. 

 

Chapter 4 (Results and Discussion) – This chapter illustrated the findings and 

discussion for this study. It was divided into several sections, which are cytotoxicity 

and cellular uptake analysis, short term and long term effect of RIBE, generation of 

ROS, DNA damage in the bystander cells as well as apoptosis pathway in response 

to RIBE. The effect of different irradiation parameters on RIBE were also elucidated. 

 

Chapter 5 (Conclusion) – This chapter summarized the findings for this study 

according to the research objectives. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Radiotherapy and Challenges 

 

The ultimate goals of radiotherapy are to maximize the lethal radiation dose 

to the cancer cells while minimize the exposure to normal cells. In contrast to cancer 

cells, the healing process for normal cells takes a shorter time and allows them to 

regain their normal functional state. However, cancer cells are not effective at 

restoring the damage caused by radiation therapy, results in differential cancer cells 

death (Baskar et al., 2012). There have been dramatic changes in the delivery of 

radiation therapy since 20 years ago. A major consideration to improve RT has been 

focused on dealing with the differences between the tumour and tissue characteristics 

which has been achieved by radiation‑dose fractionation in the past (Schaue & 

Mcbride, 2015). The technology improvements are beneficial for clinical 

applications in RT, but increasing the radiation dose does not remarkably improve 

tumour control probability (TCP) for many radioresistant tumours (Y. Liu et al., 

2018). In order to gain effective tumour control in radiation therapy, it is always 

restricted by the essential compromise in radiation toxicity to the normal tissue.  

 

Nonetheless, the impact of RT on the radiobiological aspect is still an issue. 

The major drawback of RT is the lack of selection of cancer and healthy tissues due 

to similar mass energy absorption properties (Rosa et al., 2017). Another challenge in 

RT is that the location of tumours where its often located close to normal tissues and 

organs at risk (OARs). This situation limits the process to deliver radiation doses to 
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the target volumes (Y. Liu et al., 2018). The introduction of high-atomic number (Z) 

material into the targeted cells is an approach to enhance the differential response 

between tumour and normal tissue response (Haume et al., 2016; Rosa et al., 2017). 

High Z materials specifically metals such as gold nanoparticles (AuNPs), generally 

display chemical inertness which helps to decrease potential hazards in cellular 

systems in living tissue (Y. Liu et al., 2018). Metal-based nanoparticles with high Z 

have also been found as an effective radiotoxicity agent to improve the contrast 

between tumour and soft tissues. Metal-based nanoparticles with high Z offer 

radiosensitization properties to improve the tumour control, surges healthy cell 

survival and minimize the side effects when using RT alone (Rosa et al., 2017).  

 

2.2 Radiation Biology 

2.2.1 Radiobiology and Radiation Injury Mechanism 

 

Radiobiology is a field of study that involves a combination of basic 

principles of physics and biology which concern with the action or effect of ionizing 

radiation on single cells or parts of cells in the living tissue (Podgorsak, 2006). 

Living organisms are continuously exposed to ionizing radiations from natural 

radiation or artificial radiation which causes injury to cells through the ionization of 

atoms or molecules (IAEA, 2010). High-energy radiation damages genetic material 

or DNA of cells and interrupts cell's ability to divide and proliferate further (Baskar 

et al., 2014). 

 

 Irradiation of any biological or living tissue triggered a response that varies in 

the time scale. As shown in Figure 2.1, radiation reactions can be classified into three 
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types: physical, chemical, and biological. The physical phase is the interaction 

between the radiation beam or particles with the atom of the tissue. It takes about 10-

18 seconds for high-speed radiation energy to traverse the DNA molecules. It 

interacts with the orbital electron or nuclei, ejecting some of them or raising them to 

a higher energy level. This situation results in ionization or excitation of the atom in 

biological tissue (van der Kogel, 2009).  

 

 

Figure 2.1 The time-scale of radiation effects on biological systems (adapted 

from van der Kogel, 2009). 

 

The chemical phase is defined as the period in which the chemical reaction 

occurs between the damaged atoms and molecules with other cellular components. 

The breakage of chemical bonds and formation of free radicals arise due to the 

ionization and excitation process. Free radical reaction may occur within 

approximately 1 millisecond of irradiation. In the chemical phase, several processes 

happened including the scavenging reactions for inactivating the free radical and also 
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the fixation reaction to stabilize the chemical changes in molecules (van der Kogel, 

2009).  

 

All subsequent biological responses of the ionizing radiation interaction are 

related to the biological phase. As a consequence of direct ionizing radiation 

interaction with cell structures or indirect effect through water radiolysis process, 

biological effects attributed to irreparable or misrepaired DNA damage in cells may 

arise. The possible biological effects related to radiation interaction with living tissue 

are cell death, chromosomal aberrations, DNA damage, cell cycle arrest, apoptosis, 

mutagenesis, and carcinogenesis (Desouky et al., 2015; Zhao et al., 2019). The 

observable effects of ionizing radiation may occur up to several years after exposure 

(van der Kogel, 2009).  

 

Radiation injury to the cell can be caused by two possible ways; (1) the direct 

action of radiation on the DNA molecules or (2) the indirect action of radiation on 

the DNA molecules through the water molecules. The major effect of ionizing 

radiation on tissues is the depopulation of cell populations and followed by tissue 

functional deficiency due to direct cell killing mostly by damaging the DNA (Baskar 

et al., 2014). The direct and indirect radiation injury mechanism on DNA molecules 

was illustrated in Figure 2.2. 
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Figure 2.2 The possible radiation injury mechanism, direct and indirect actions 

of radiation (adapted from Desouky et al., 2015). 

 

In the direct action of radiation, the cellular molecules and DNA of the cells 

is directly hit by radiation result in disrupting the molecular structure. As depicted in 

Figure 2.3, radiation may directly create single-strand break (SSBs) and double-

strand breaks (DSBs) to the DNA molecules.  The structural change of the DNA 

causes cell damage or cell death. The damaged cells that survived may induce 

carcinogenesis, abnormalities and mutagenesis (Desouky et al., 2015). Cellular 

response to ionizing radiation depends on linear energy transfer (LET) of radiation, 

type and energy of radiation, radiation dose and cell type as well as cell sensitivity 

(Prise et al., 2005). The high-LET radiations such as α-particles and neutrons and 

high radiation doses mainly interact through direct action (Desouky et al., 2015).  
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Figure 2.3 Two ways of radiation action (adapted from Baskar et al., 2014). 

 

In the indirect action, the water molecules which is the major component of 

the cell is the main target for radiation interaction. This indirect interaction is called 

water radiolysis (IAEA, 2010). Free radicals are the subsequent result from the 

ionization or excitation of water components in the cells (Baskar et al., 2014). This 

process produces the free radicals’ products such as hydroxyl (HO•) and alkoxy 

(RO2•). The free radicals can diffuse in a long distance to reach and harm critical 

targets (Desouky et al., 2015; Hall, 2010).  

 

A free radical refers to an atom or molecule with unpaired electrons or odd 

number of electron in the valence shell or outer shell (Hall & Giaccia, 2006). A free 

radical is unstable, short-lived and extremely reactive. They can interact with 

electrons from other compounds to attain stability due to their high reactivity. The 

attacked molecule becomes a free radical when loses its electron, followed by a 

chain reaction cascade which may damage the living cells (Phaniendra et al., 2015). 

The result of indirect action of radiation on DNA molecules is the losing cell 

function or death of the cell. The primary free radicals have an extremely short 
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lifetime, roughly 1-10 seconds (Hall & Giaccia, 2006). Around 60% of cellular 

damage in low LET ionizing radiations such as X-rays and gamma-rays are caused 

by indirect action mechanism because of composition water nearly 70% in the cells 

(Baskar et al., 2014; Desouky et al., 2015).  

 

 The transfer or absorption of ionizing radiation energy to the biological 

material results in chemical bonds breakage and causes ionization of atoms and 

molecules such as water and other essential macromolecules including DNA, 

membrane lipids and proteins (Somosy, 2000). The biological effects of radiation 

primarily result from damage to the most critical target within the cell which is DNA. 

DNA is a large molecule with a double-helix structure, consist of two strands held by 

hydrogen bonds between the bases. The DNA strand backbone is made of sugar and 

phosphate groups (Wood, 2016).  

 

A wide range of lesions in DNA may occur when cells are irradiated with X-

rays such as SSBs, DSBs, protein-DNA, crosslinks base damage, and protein-protein 

crosslinks (Hall, 2010; Sofińska et al., 2020). The SSBs of DNA involve many 

breaks of a single strand in the phosphodiester linkage. In SSBs, cells are able to 

repair, but mutation can occur when the repair is incorrect or mismatch. The DSBs of 

DNA occur when there is a breakage in the two strands opposite to one another or 

separated by few base pairs. The tendency of DSBs to occur is about 0.04 times that 

of SSBs and they are induced linearly with dose (Hall & Giaccia, 2006; IAEA, 2010). 

It is expected that 1 Gy of radiation exposure will result in 20 to 40 DSBs per cell. 

The unrepaired DSBs may lead to cellular lethality (Golden et al., 2012). 
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Several consequences may occur upon irradiation of cells including division 

or mitotic delay, apoptosis, reproductive failure, genomic instability, mutation, cell 

transformation, bystander effect and adaptive responses. The irradiated cell might 

encounter a delay in their normal cell division. Apoptosis may happen if the cell dies 

before it can divide or fragmented into smaller bodies and be absorbed by 

neighbouring cells. Reproductive failure occurs when the cells die during the first or 

subsequent mitosis. The irradiated cell may also have genomic instability which may 

result in reproductive failure. The cells can survive from irradiation, but sometimes 

they may contain a mutation that can affect the offspring. The survived cell possibly 

experiences mutation result in a transformation of their phenotype and cause 

carcinogenesis. In addition, the bystander effects induced by radiation may appear 

when an irradiated cell transmits signals to neighboring or adjacent cells. The 

adaptive responses can occur when the irradiated cells become more resistant to 

following irradiation (Podgorsak, 2005). 

 

Cell death or “killed” by radiation refers to the loss of a specific function, loss 

of reproductive integrity or reproductive death due to unsuccessful cell divisions 

after irradiation (Podgorsak, 2006). Cell death mechanisms are through apoptosis, 

necrosis, autophagy, mitotic catastrophe and cell senescence and radiation-induced 

differentiation DNA (Hall & Giaccia, 2006; van der Kogel, 2009). The illustration of 

different radiation-induced cell death mechanisms is presented in Figure 2.4. The cell 

death mechanism depends on numerous factors including the radiation dose and 

quality, cell type, oxygen tension, p53 mutation status, DNA repair capacity, redox 

state, and cell cycle phase during radiation exposure (Golden et al., 2012).  
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Figure 2.4  The illustration of different radiation-induced cell death mechanisms 

(adapted from Minafra & Bravatà, 2015). 

 

Most of the damage induced in the cells by radiation may be repaired by 

multiple enzymatic mechanisms of DNA. Repair refers to the process by which the 

function of macromolecules is restored. DNA strand breaks may be rejoined but it 

does not necessarily mean that gene function is restored. Rejoining can leave a 

genetic defect or mutation in the cells (van der Kogel, 2009). Recovery of the 

cellular or tissue refers to the increase in cell survival or reduction in the extent of 

radiation damage to tissue if there is sufficient time is allowed for this recovery to 

take place. The repair mechanisms for each DNA lesion in cells are different and 

depend on the type of lesion. The mechanisms used to repair base damage are 

different from the mechanism used to repair strand breaks. Different repair pathways 

are used to repair DNA damage and its related to the stage of the cell cycle (Hall & 

Giaccia, 2006). For instance, DSBs induced by radiation in an S phase cell would 

benefit from the cell preventing DNA replication until the break is repaired.   
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 There are several enzymatic mechanisms involved in DNA repair in cells that 

act on different types of lesions. For DSBs, there are two primary repair pathways, 

non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ 

repair works on blunt-ended DNA fragments resulting from broken phosphodiester 

linkages. Repair by NHEJ operates throughout the cell cycle but it dominates in 

G1/S-phases. The process is likely to error because it does not rely on sequence 

homology. DSB repair by HR employs sequence homology with an undamaged copy 

of the broken region and hence can only operate in late S or G2 phases of the cell 

cycle. Other DNA repair mechanisms such as base excision repair (BER), mismatch 

repair (MR) and nucleotide excision repair (NER) respond to damage such as base 

oxidation, alkylation, and strand intercalation (IAEA, 2010). 

 

2.2.2 Non-Targeted Effect of Radiation 

 

Traditionally, it was believed that effects of ionizing radiation are due to 

direct ionization of cell structures particularly DNA, or from indirect damage 

through reactive oxygen species produced by water radiolysis (Desouky et al., 2015). 

The biological effects of ionizing radiation are assumed to be limited to cells and 

tissues within the target or treatment area. However, this traditional belief has been 

challenged by the existence of radiation-induced bystander effects (RIBE) or non-

targeted effects (Marín et al., 2015). In other words, the ionizing radiation effect may 

also affect the non-irradiated neighbouring cells or tissues. As illustrated in Figure 

2.5, the consequences of radiation interaction on irradiated cells towards unirradiated 

cells or also known as the bystander effect have been studied hundred years ago. The 
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bystander effect involves the radiation response induced in the unirradiated cells 

located near the irradiated cells.  

 

 

Figure 2.5 A timeline on bystander effects study over the last hundred years. 

(adapted from Carmel Mothersill, Rusin, Fernandez-Palomo, & 

Seymour, 2017). 

 

In addition to bystander effects, two other classifications of signaling-

mediated radiation effects are abscopal and cohort effects (R. Wang et al., 2018). The 

classifications of radiation-induced signaling are shown in Figure 2.6. The radiation 

triggered a response in the cells located further away from the radiation field is 

known as the abscopal effect (Desouky et al., 2015; Pouget et al., 2018). The 

abscopal effect is the phenomenon whereby irradiated tissues may possibly transmit 

the signals to the unirradiated tissues located outside the irradiated volume (Carmel 

Mothersill et al., 2017; R. Wang et al., 2018). The abscopal effect is related to the 

clinical changes observed due to the radiation effect, while the bystander effect refers 

to radiobiological events in unirradiated cells coming from the radiation effect 
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(Desouky et al., 2015). In general, abscopal effects can be observed in patients with 

metastatic cancers receiving radiotherapy. In other words, the irradiation to a specific 

part of the body produced chromosomal damage and cellular alterations in distant 

tissues (R. Wang et al., 2018).  

 

 

Figure 2.6 Schematic representation of radiation-induced signaling effects in 

non-targeted and targeted cells. Irradiated cells are shown in red; 

unirradiated cells in blue (adapted from Butterworth et al., 2013). 

 

Another non-targeted effect identified in radiation therapy is the cohort effect. 

The cohort effect demonstrates a phenomenon where irradiated cells release signals 

that decrease the neighbouring cells survival within an irradiated field or volume. 

This situation describes the overall radiobiological responses is not owing to the 

consequence of direct energy deposition in the target cell, but might be associated 

with the cellular communication within an irradiated volume (Blyth & Sykes, 2011; 

Butterworth et al., 2013; R. Wang et al., 2018).  
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2.3 Radiation-Induced Bystander Effect 

 

Generally, the biological effects of ionizing radiation are mostly attributed to 

specific targeting to the nucleus that results in DNA damage (Marín et al., 2015). 

However, experiments in the previous decade have demonstrated the existence of a 

‘bystander effect’. Based on the report by Nagasawa and Little in 1992 following 

low dose irradiation from α-particles, a larger proportion of cells exhibited biological 

damage compared to the proportion of cells hit by an α-particle. Initially, only 1% of 

the cells undergone nuclear traversal, but 30% increase in sister chromatid changes 

has been observed (Hall & Giaccia, 2006). S. G Sawant and co-workers observed the 

same effect in which exposure of 10% of the cells to alpha particles, resulting in a 

greater frequency of oncogenic transformation in the cell population (Sawant et al., 

2001).   

 

A situation where cells that have not been directly exposed to ionizing 

radiation behave in the same way as the irradiated or exposed cells is known as 

radiation-induced bystander effect (RIBE) (Carmel Mothersill & Seymour, 2004). In 

the other words, the non-irradiated cells may respond to the radiation exposure on the 

targeted cells. Exposure to ionizing radiation may affect the cells directly targeted 

and also indirectly affect the non-irradiated adjacent neighbours. Based on the 

timescale, the direct effect and indirect effect of ionizing radiation may show up 

approximately 1 x 10-6 seconds after irradiation (Österreicher et al., 2003). But 

bystander effect turned up at a slower rate because they started to activate after the 

chemical factors release in the first few hours post-irradiation and the endpoint in the 
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period from 3 hours to 60 hours post-irradiation (Carmel Mothersill & Seymour, 

1997).  

The signal received from irradiated cells resulted in several biological 

phenomena in neighboring and distant unirradiated cells involve harmful effects such 

as chromosomal aberrations, cell killing, mutation, oncogenic transformation, gene 

expression alteration and inflammatory mediator production as well as beneficial 

effects such as shrinkage of metastases phenomena (Hall & Giaccia, 2006; Marín et 

al., 2015; Carmel Mothersill & Seymour, 2004). In addition, the cells that experience 

bystander effects imitate the other effects experienced by irradiated cells such as 

DNA damage, micronucleation, apoptosis, proteins and enzymes regulatory 

alteration and clonogenic inefficiency (Marín et al., 2015). The RIBE has the 

potential for killing tumour cells and cause damage to the normal tissue (Toossi et 

al., 2014). The existence of bystander phenomena indicates that the nucleus of the 

cells is not the only target for radiation, but also the surrounding of the cell itself. 

 

Over the years, the attention in radiobiological studies has been extended to 

the non-targeted effects of adjacent tissue surrounded the targeted area or field of 

radiation. Since the first observation of RIBE in 1992, numerous studies have been 

carried out to investigate this phenomenon. The bystander effect involved the 

biological response in cells that are not directly hit by ionizing radiation but the 

response to the signals producing in the targeted cells (Mitchell et al., 2004). The 

bystander cells might be adjacent or distant away from the exposed cells (Rostami et 

al., 2016). In other words, any cells that surround the irradiated cells can be a 

bystander cells. The classification of bystander cells can be adjacent cells, a cell 
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within few diameters from targeted cells, cells in a different organ or even in a 

different animal to the irradiated cells (Blyth & Sykes, 2011).  

 

The bystander effect has been studied through medium transfer from 

irradiated cells and co-culturing the cells to induce cell-to-cell interaction. An earlier 

study on bystander effects was typically carried out using microbeam to estimate the 

non-targeted effect on the surrounding cells. Apart from co-culturing, there is also a 

report on biologic effects due to bystander effects using another method of 

experiment, in which the culture medium from irradiated cells was transferred to the 

unirradiated cells. When irradiation media is transferred into unirradiated cells, the 

irradiated cells release chemicals into the medium and have the ability to affect the 

unirradiated cells. (Hall & Giaccia, 2006; van der Kogel, 2009). Irradiation might 

lead to an increase in levels of long-lived reactive oxygen species (ROS) that could 

trigger a response in both irradiated and unirradiated cells. A brief outline of RIBE is 

shown in Figure 2.7.  

 

Figure 2.7 A model of radiation-induced bystander effect (RIBE) responses in 

the cells (adapted from Klammer, Mladenov, Li, & Iliakis, 2015). 
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2.4 Cell Signaling, Communication and Bystander Effect Pathways 

 

Cellular components in living tissue can respond and react to the changes in 

the adjacent environment due to cell's ability to receive, absorb and process the 

signals that originate from outside of their boundaries. Individual cells can receive 

many signals instantaneously. The cells also transmit the messages and signals to the 

other near or distant cells (Alberts et al., 2002). There are mechanisms that enable 

one cell to influence the behavior of other cells. Signal molecules bind to cell-surface 

receptors can generate more signals inside the target cell as illustrated in Figure 2.8.  

 

 

Figure 2.8 The binding of extracellular signal molecules to either cell-surface 

receptors or intracellular receptors (adapted from Alberts et al., 2002). 

 

The studies have proven that the targeted cells release molecular signals or 

factors which may produce genetic alteration, reduce cell proliferation, introduce cell 

death and DNA damage, arrest the cycle of the cells and also release some protein 

expression in non-irradiated cells following irradiation (Desai et al., 2013; 

Soleymanifard et al., 2013, 2016; Temelie et al., 2016; Tu et al., 2019).  The nature 




