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MENINGKATKAN PEMILIHAN MODEL BERDASARKAN KAEDAH 

REGRESI PENALTI DAN PENGHURAIAN MOD EMPIRIK 

ABSTRAK 

Dalam tesis ini, kaedah regularisasi penalti iaitu, penyimpangan mutlak 

dipotong terlicin (SCAD), penyusutan mutlak terkecil dan operator pemilihan tersuai 

(adLASSO), penalti cekung minimax (MCP), dan kaedah regresi jaringan Elastik 

(ELNET) telah digunakan. Kaedah tersebut digabungkan dengan bahagian pertama 

jelmaan Hilbert-Huang, iaitu algoritma penghuraian mod empirik (EMD) secara 

berasingan. Algoritma EMD digunakan untuk menguraikan set data siri masa tidak 

pegun dan tak linear menjadi satu set komponen penguraian ortogonal yang terhingga 

yang mana merangkumi sekumpulan fungsi mod intrinsik (IMF) dan komponen reja. 

Komponen-komponen ini telah digunakan dalam beberapa kajian sebagai pemboleh 

ubah peramal baru untuk meramalkan tingkah laku pemboleh ubah sambutan. Kaedah 

regularisasi penalti adalah teknik statistik yang digunakan untuk mengatur dan 

memilih pemboleh ubah peramal yang diperlukan yang mempunyai pengaruh besar 

pada pemboleh ubah sambutan, untuk menghasilkan model yang konsisten dari segi 

pemilihan pemboleh ubah dan penganggaran normal asimptot, dan untuk mengatasi 

masalah multikekolinearan apabila wujud antara pemboleh ubah peramal. Objektif 

utama kajian ini adalah untuk menerapkan kaedah SCAD-EMD, adLASSO-EMD, 

MCP-EMD dan ELNET-EMD yang dicadangkan untuk menentukan kesan komponen 

penguraian pemboleh ubah peramal siri masa univariat / multivariat yang asal pada 

pemboleh ubah sambutan dan mengatasi multikekolinearan antara komponen 

penguraian bagi meningkatkan ketepatan ramalan untuk membina model yang sesuai. 

Teknik yang dicadangkan dibandingkan dengan empat kaedah regresi tradisional yang 
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digunakan dalam kajian sebelumnya. Dua jenis aplikasi, iaitu, eksperimen berangka 

dan set data sebenar yang melibatkan masalah tak pegun dan tidak linear telah 

diterapkan. Dua contoh eksperimen berangka menggunakan pemboleh ubah peramal 

asal univariat dan multivariat oleh fungsi gelombang sinus digunakan. Manakala set 

data sebenar yang diterapkan dalam contoh ilustrasi, merangkumi kadar pertukaran 

harian dan pasaran saham harian untuk beberapa negara. Dapatan berdasarkan 

pengukuran ralat menunjukkan bahawa kaedah yang dicadangkan mengatasi kaedah 

persaingan lain dalam eksperimen berangka dan aplikasi set data sebenar. Terutama, 

kaedah ELNET-EMD yang dicadangkan mempunyai keupayaan untuk mengenal pasti 

komponen penguraian yang mempunyai keertian paling besar pada pemboleh ubah 

sambutan walaupun terdapat korelasi tinggi antara komponen penguraian dengan 

ketepatan ramalan yang tinggi. Manakala kaedah adLASSO-EMD, SCAD-EMD, dan 

MCP-EMD yang dicadangkan mempunyai keupayaan untuk menghasilkan model 

yang konsisten dengan mengurangkan ralat ramalan berbanding dengan kaedah 

tradisional. Algoritma EMD menjadikan hubungan antara pemboleh ubah lebih 

dipercayai dalam domain masa dan frekuensi secara serentak. 
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ENHANCING MODEL SELECTION BASED ON PENALIZED 

REGRESSION METHODS AND EMPIRICAL MODE DECOMPOSITION  

ABSTRACT 

In this study, the penalized regularization methods, namely, the smoothly 

clipped absolute deviation (SCAD), adaptive least absolute shrinkage and selection 

operator (adLASSO) regression, minimax concave penalty (MCP) and elastic net 

(ELNET) regression, are adopted. Those methods are combined with the first part of 

the Hilbert–Huang transformation, namely, the empirical mode decomposition (EMD) 

algorithm. The EMD algorithm is employed to decompose the nonstationary and 

nonlinear time series dataset into a finite set of orthogonal decomposition components, 

which includes a set of intrinsic mode function and residual components. These 

components have been used in several studies as new predictor variables to predict the 

behaviour of the response variable. The penalized regularization methods are statistical 

techniques used to regularize and select the necessary predictor variables that have 

substantial effects on the response variable. These methods are also utilized to produce 

a consistent model in terms of variable selection and asymptotically normal estimates 

and address the multicollinearity problem when it exists between the predictor 

variables. This study aims to apply the proposed SCAD-EMD, adLASSO-EMD, 

MCP-EMD and ELNET-EMD methods to determine the effect of the decomposition 

components of the original univariate/multivariate time series predictor variable(s) on 

the response variable. Moreover, this study tackles the multicollinearity between the 

decomposition components to enhance the prediction accuracy for creating a fitting 

model. The proposed techniques are compared with four traditional regression 

methods employed in the previous study. Two types of applications, namely, 
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numerical experiments and actual real datasets that involve nonstationary and 

nonlinear problems, are applied. The two numerical experiment examples using the 

univariate and multivariate original predictor variable(s) by the sine wave function is 

used. The actual real datasets are applied in illustrative examples, which include the 

daily exchange rates and daily stock market for several countries. Results based on the 

error measures show that the proposed methods outperform the other competitive 

methods in the numerical experiment and actual dataset applications. The proposed 

ELNET-EMD method can identify the decomposition components that have a great 

significance on the response variable despite the high correlation between the 

decomposition components with high prediction accuracy. By contrast, the proposed 

adLASSO-EMD, SCAD-EMD and MCP-EMD methods can produce a consistent 

model with less prediction error compared with those of the traditional methods. The 

EMD algorithm makes the relationship between the variables reliable in terms of time 

and frequency domains. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background and Motivation 

The regression analysis is a robust statistical method for studying the 

relationship between the predictor and the response variables to obtain a fit model with 

significant predictor variables for improving the products and services in various 

fields. However, several challenges, such as the nature of time series variables used in 

the study, affect the work of regression analysis and prediction accuracy. These 

variables often belong to nonstationary time series datasets and the correlation may 

exist between two or more predictor variables; accordingly, the variance of the 

estimated coefficients increases and the estimated parameters are inaccurate (Cho et 

al., 2010, Masselot et al., 2018). A large number of predictor variables also exist in 

the model; consequently, such a model is difficult to interpret (Qin et al., 2016). In 

regression analysis, these problems lead to bias in selecting fit models and can mislead 

the conclusions of the studies (Hoover, 2003, Masselot et al., 2018).  

Most real-life data appear as nonstationary and nonlinear time series datasets. 

The decomposition of nonstationary and nonlinear time series is an important issue 

that needs to be considered in conducting an analysis. Analytical methodologies 

employed with these time series datasets are scarce. However, several traditional 

decomposition methods (such as Fourier decomposition by Titchmarsh (1948) and 

wavelet decomposition method by Chan (1994)) and modification methods (such as 

the differentiation method) can be applied. Nevertheless, these methods lead to several 

problems, such as the loss of valuable information (Parsons et al., 2000, Huang, 2014, 

Bendjama and Boucherit, 2016). 
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Huang et al. in 1998 studied the distorted nonstationary and nonlinear time 

series signals without moving from time domain to frequency domain. Where the 

decomposition components extracted via the decomposing method keep the 

information in the time domain. This approach led to a new technical method called 

the empirical mode decomposition (EMD) proposed by Huang et al. (1998). The EMD 

method does not require a precondition for the time series dataset, unlike the traditional 

Fourier and wavelet decomposition methods (Huang, 2014). The practical principle of 

the EMD aims to separate the nonstationary and nonlinear signal into a finite set of 

orthogonal nonoverlapping timescale components, namely, intrinsic mode function 

(IMF) and residual components (Huang, 2014). Each of these components includes 

particular information frequencies found within the original time series dataset (Huang 

et al., 1998, Moore et al., 2018, Liu and Chen, 2019). Therefore, these decomposition 

components can be used as new predictor variables to predict their effects and 

behaviors about another response variable by using the suitable regression methods 

(Qin et al., 2016, Masselot et al., 2018, Adarsh and Janga Reddy, 2019). 

In regression analysis, the ordinary least square (OLS) regression estimation 

has several drawbacks, such as the presence of multicollinearity between the predictor 

variables, low prediction accuracy and difficulty in reducing the number of predictor 

variables (Jadhav et al., 2014). Few statistical methods can deal with reducing the 

number of predictors in the model when multicollinearity exists. Consequently, many 

researchers continue in developing hybrid regression models to deal with these issues 

by improving the OLS method (Montgomery et al., 2012), such as the stepwise 

regression (SR) and the penalized regularization method, namely, the ridge regression 

(RR) (Hoerl and Kennard, 1970) and the least absolute shrinkage and selection 

operator (LASSO) regression (Tibshirani, 1996).  
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However, the results obtained by the SR method lacked the reliability in 

selecting the optimal model (Smith, 2018). Meanwhile, the RR method still cannot 

deal with the reduction of the predictor numbers; hence, the unnecessary predictor 

variables will still exist in the final model (Tibshirani, 1996, Zou and Hastie, 2005). 

The LASSO method is inconsistent for variable selection and dealing with 

multicollinearity (Fan and Li, 2001, Zou and Hastie, 2005, Zou, 2006). Therefore, the 

smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), adaptive LASSO 

(adLASSO) (Zou, 2006), minimax concave penalty (MCP) (Zhang, 2010) and elastic 

net (ELNET) methods (Zou and Hastie, 2005) were proposed. These four methods 

represent a new development penalized regularization method for improving the 

model interpretability and identifying relevant variables. 

The behaviour of the variables in regression analysis, such as nonstationary, 

multicollinearity problem and the large number of the predictors in the model may 

affect the prediction accuracy in model selection. This situation indicates several 

difficulties in the regression analysis with these existing issues, such as determining 

the necessary predictors and improving the prediction accuracy of the model selection. 

These issues are significant in model selection; thus, researchers and decision-makers 

must consider them. The EMD method and the new penalized regularization methods, 

namely, adLASSO, SCAD, MCP and ELNET regression analysis, are proposed to 

address these gaps to enhance the model selection. 

1.2 Problem Statement 

In the time-series dataset case, the regression analysis assumes restrictions on 

all the variables before estimation to achieve the reliability and prediction accuracy of 

the model selection. At present, the following four major problems exist:  
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1) In the time series dataset, the variable of the time series dataset is assumed to 

be linear. Specifically, the relationship between the observations of the time 

series is linear (Moore et al., 2018). However, the linearity assumption of the 

real-life variable appears as a nonlinear time series dataset. 

2) In the regression analysis, the variable of time series datasets is assumed to be 

stationary. Specifically, the properties of the dataset, such as mean, variance 

and autocorrelation, do not depend on the time when the series is observed 

(Moore et al., 2018, Liu and Chen, 2019, Adarsh and Janga Reddy, 2019). The 

real-life data mostly appear as nonstationary time series datasets. Several 

methods for converting and modifying these datasets are applied. However, 

these methods lead to the loss of valuable information and features of the 

original dataset. Moreover, the traditional decomposition methods are not 

highly efficient, thereby affecting the accuracy of the results (Parsons et al., 

2000, Huang, 2014, Bendjama and Boucherit, 2016).  

3) The predictor variables are assumed to be free from multicollinearity. 

Multicollinearity occurs when two or more predictor variables contain the 

same information. In mathematical terms, a high correlation exists between the 

predictor variables when the matrix of predictors 𝐗𝑡𝐗 is close to singular (i.e. 

the determinant of the matrix is close to the zero value) (Cho et al., 2010, 

Jadhav et al., 2014) . This phenomenon will have an effect on the variance, an 

estimate of the parameters and a wrong sign of coefficients. These phenomena 

mislead the fit model selection (Alin, 2010, Daoud, 2017). Several ways are 

used to solve multicollinearity, such as dropping one or more predictors, which 

have been highly correlated from the model. However, these predictors are 
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often important. This situation leads to bias in the estimation (El-Dereny and 

Rashwan, 2011, Daoud, 2017). 

4) Variable selection or reduction of the number of predictors: The existence of a 

large number of predictor variables in the model leads to an overfitting case. 

Theoretically, a minimum of ten predictors in the regression model can cause 

an overfitting case. This situation leads to the difficulty in determining the 

optimal variables, which have an effect on the response variable and 

interpreting the final model and bad prediction accuracy (Jadhav et al., 2014). 

Several traditional methods, such as the SR method, are used. However, this 

method lacks reliability because of the dropping and retaining of the predictor 

variables, thereby affecting the model selection (Smith, 2018). 

These problems motivated this study to develop new four hybrid penalized 

regression methods. The proposed methods that are developed in this study will 

overcome the problems with existing regression models, thereby further improving the 

prediction accuracy of the model selection. 

1.3 Research Objectives  

This study aims to improve the accuracy of the model selection for 

nonstationary time series datasets on the basis of the EMD method and the newly 

penalized regression approaches, namely, SCAD, adLASSO, MCP and ELNET, with 

the following objectives: 

1) To decompose the nonstationary and nonlinear predictors into a finite set of 

components while maintaining its property using EMD algorithm so that it is 

estimable. 



6 

2) To propose and develop four penalty regression methods (SCAD, adLASSO, 

MCP, ELNET) based on the EMD method to enhance the prediction accuracy 

of the model selection. 

3) To demonstrate that the proposed penalty regression methods using the 

extracted EMD data with and without multicollinearity outperform the 

traditional regression methods. 

1.4 Scope of the Study  

This study aims to select the necessary decomposition components via the 

EMD method of the nonstationary and nonlinear time series predictors on the response 

variable. Moreover, this study aims to tackle the multicollinearity problem that exists 

between the decomposition components and enhance the prediction accuracy. Four 

new regression technique methods are examined: (1) adLASSO regression between 

the response variable and all the decomposed components via the EMD of the original 

predictor(s) (adLASSO-EMD); (2) SCAD method between the response variable and 

all the decomposed components via the EMD of the original predictor(s) (SCAD-

EMD); (3) MCP method between the response variable and all the decomposed 

components via the EMD of the original predictor(s) (MCP-EMD); and (4) ELNET 

regression between the response variable and all the decomposed components via the 

EMD of the original predictor(s) (ELNET-EMD). 

Numerical experiments and actual real datasets are applied to provide a 

convenient framework for achieving the objectives of this study. The numerical 

experiments are represented by two experiments: the first experiment is by using the 

univariate original predictor; the second experiment utilizes the multivariate original 

predictors. The two experiments are simulated by using the sine wave function. The 
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actual real datasets are applied in three economic time series applications: the first 

application is on the daily exchange rates and stock market of Malaysia. The second 

and third applications are on the daily stock market and the daily exchange rates for 

several countries.  

1.5 Limitation of the Study 

In this study, the proposed methods aim to understand the relationship between 

the decomposition components and the response variable from a different point of 

view, that is, a multicollinearity problem. These methods also aim to reduce the 

number of decomposition components in the model to enhance the production 

accuracy. However, the time series data often have autocorrelation problems, such as 

the degree of similarity among the current value and its prior values. If such problem 

occurs, then they are another area of research problems. Therefore, these problems will 

be considered in future studies. 

1.6 Significance of the Study 

This study aims to apply the proposed four penalized regression technique 

methods on the basis of the EMD methods, namely, adLASSO-EMD, SCAD-EMD, 

MCP-EMD and ELNET-EMD, to enhance the model selection with high production 

accuracy. The numerical experiments and application results that involve 

nonstationary and nonlinear problems show that the proposed methods can efficiently 

identify the decomposition components that have the largest influence on the response 

variable with high prediction accuracy compared with the traditional methods. The 

proposed ELNET-EMD method has achieved optimal results. In terms of time–

frequency domain, the result showed that the proposed methods are reliable and 

accurate in identifying the main component(s) via the EMD algorithm of the original 
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predictor that has a great effect on the response variable. The EMD algorithm makes 

the relationship between the variables reliable in terms of the time and frequency 

domains. Accordingly, the study of the relationship between the variables becomes 

possible in this sense. 

1.7 Thesis Organization 

This thesis is organized as follows: Chapter 2 presents a brief review on the 

related literature of the decomposition methods and a description of the EMD 

algorithm. This chapter also provides a description of the various penalized regression 

techniques that are either used or compared with the proposed regression methods, 

standardization and multicollinearity problem. The choosing of the optimal tuning 

parameter also presents in this chapter. 

Chapter 3 presents the proposed regression methods, namely, the hybrid of 

adLASSO-EMD, SCAD-EMD, MCP-EMD and ELNET-EMD, and the current 

regression methods, such as OLS-EMD, SR-EMD, RR-EMD and LASSO-EMD. The 

multicollinearity test and the test criteria are also presented in Chapter 3.  

Chapter 4 applies and discusses the proposed methods through numerical 

experiments by sine wave function and the analytical results. Chapter 5 illustrates the 

proposed methods by applying the actual real time series dataset in three applications, 

provides analysis and discusses the findings. Chapter 6 elaborates on the conclusions 

of the main results in the thesis, contribution and findings of the study and suggestion 

for future work. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter contains nine sections. The second section offers a brief 

explanation of the signal decomposition methods by Hilbert-Huang transform. The 

third section reviews the description and overview of the empirical mode 

decomposition (EMD) method, such as the developments and applications in different 

areas. A list of the recent studies that apply EMD in established statistical regression 

methods is also presented at the end of this section. The fourth section describes the 

ordinary least-square regression method. The fifth section presents the standardization 

data. The sixth section describes the various penalized regression techniques that are 

either used or compared with the proposed regression methods in this study. These 

techniques include the ridge regression, the least absolute shrinkage and selection 

operator regression, the adaptive least absolute shrinkage and selection operator 

regression, the smoothly clipped absolute deviation, the minimax concave penalty and 

the elastic net regression. The seventh section describes the multicollinearity problem. 

The eighth section dispenses the choosing of the tuning parameter and highlights the 

D-fold cross-validation methods. The last section is the summary. 

2.2 Time Series Decomposition based on Hilbert-Huang Transform  

In various fields of studies, such as medicine, physics, economics and 

environmental science, most variables are time series datasets. These datasets are 

nonstationary and nonlinear. The decomposition of the nonstationary and nonlinear 

time series are important issues that need to be considered in conducting an analysis. 



10 

However, analytical methodologies employed to deal with these time series datasets 

are scarce.  

The traditional decomposition methods assume that the time series dataset 

should be either stationary or linear before the analysis. These methods include the 

Fourier transform (FT) method proposed by Titchmarsh (1948) and wavelet transform 

(WT) method proposed by Chan (1994). The FT method is interested in the stationary 

and linear signals. However, this method is not suitable for nonstationary and 

nonlinearity time series signals (Bendjama and Boucherit, 2016). By comparison, the 

WT method is interested in the stationary/nonstationary and linear signals. However, 

this method is not suitable for nonlinearity signal analysis (Gröchenig, 2013, 

Bendjama and Boucherit, 2016). Many studies have been interested in developing 

methods for the signal decomposition. To date, the signal decomposition still receives 

great attention from many researchers. 

Recently, researchers have been interested in distorted signals, which are 

represented as nonlinear and nonstationary signals. The traditional signal analysis 

provided minimal options on the analysis of signals. For instance, the signal should be 

either linear or stationary/nonstationary. Huang et al. in 1998 provided a new approach 

that can simultaneously deal with nonstationary and nonlinear signals without moving 

from the time domain to the frequency domain; the information will be maintained in 

the time domain; thus, this process is called the Hilbert-Huang transform (HHT) 

(Huang et al., 1998). Such a process is different from the traditional methods. 

The HHT includes two terms: EMD and Hilbert transform analysis (HTA) 

(Huang, 2014). The main principle to apply of the HHT depends on the concept of 
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EMD after this process ends. The results extracted from EMD will be applied to the 

HTA method; the EMD method represents the central idea of the HHT (Huang, 2014).  

The practical principle of the EMD aims to separate the nonstationary and 

nonlinear signals into a finite set of orthogonal nonoverlapping time-scale signals or 

components. The EMD method has separated the signals in the time domain to ensure 

that the length of the decomposition components has the same length to that of the 

original signal. In the next step, the HTA method will be applied to all the 

decomposition components extracted by the EMD method to compute the 

instantaneous frequency data (Huang et al., 1998, Huang, 2014). The next subsection 

will discuss the principle of the EMD algorithm analyses by applying the sifting 

process. This subsection will also describe the intrinsic mode function and its 

conditions, the applications of the EMD method and the regression analysis on the 

basis of EMD. 

2.3 Empirical Mode Decomposition (EMD)  

The EMD is a new analytical method proposed by Huang et al. in 1998, and it 

is the first part of HHT (Huang et al., 1998). The EMD approach aims to decompose 

the nonstationary and nonlinear signal into a finite set of nearly orthogonal 

decomposition components, thereby keeping the time domain of the signal constant. 

These decomposition components are called the intrinsic mode function components 

and one residual component represents the trend of the original signal (Moore et al., 

2018, Bokde et al., 2019). Each component is different in terms of its physical form 

(i.e. wavelength and frequency). Every component includes information about the 

frequencies found within the original time series dataset (Huang, 2014, Qin et al., 

2016, Liu and Chen, 2019). The EMD method is adaptive, intuitive and highly efficient 
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in dealing with nonstationary and nonlinear signals (Huang, 2014). The principle of 

the EMD analyzes the original signal via an iterative process called the sifting process 

(Huang, 2014, Awajan et al., 2019, Liu and Chen, 2019). 

In this section, the principle of the EMD algorithm, which analyzes by applying 

sifting process, description of the intrinsic mode function and its conditions, the 

applications of the EMD method and regression analysis on the basis of EMD, will be 

presented. 

2.3.1 Intrinsic mode function 

The intrinsic mode function (IMF) represents a new orthogonal design for the 

signals  resulting from the division of the main original primary signal by using the 

EMD algorithm. The IMF {𝐶𝑘(𝑡); 𝑘 = 1, 2, …, 𝐾} and residual 𝑅(𝑡) components 

have different and easy physical significant meanings (Huang et al., 1998). 

The IMF component function that satisfies two conditions (Huang, 2014, 

Awajan et al., 2019, Bokde et al., 2019) are as follows: 

i. Over the whole length of a signal, the numbers of local extrema (maximum and 

minimum) and the number of zero-crossings (ZCs) must be either equal or 

differ at most by one: 

|𝑁𝑢𝑚(𝐿𝐸) − 𝑁𝑢𝑚(𝑍𝐶)| ≤ 1, (2.1) 

where 𝑁𝑢𝑚(𝐿𝐸) represents the number of local extrema (LE) and 𝑁𝑢𝑚(𝑍𝐶) 

represents the number of ZCs. 

ii. At any point on a signal, the envelop mean value between the upper envelop 

defined by the local maximum and the lower envelop defined by local 

minimum is equal to zero: 



13 

𝑚(𝑡) =
𝑢(𝑡) + 𝑙(𝑡)

2
= 0, 

(2.2) 

where 𝑚(𝑡) is the mean envelop, 𝑢(𝑡) is the upper envelop and 𝑙(𝑡) is the 

lower envelop. 

The first condition indicates that each IMF has only one local maximum or 

local minimum between two consecutive  ZCs or vice versa. The second condition 

implies that all the IMFs are stationary, which makes the analytical process highly 

flexible in using these components (Raghuram et al., 2012, Huang, 2014, Awajan et 

al., 2019).  

2.3.2 Sifting process  

The iterative algorithm process of the EMD method for extracting all the IMF 

components and one residual component is called sifting process (Huang, 2014). The 

sifting process separates the original signal into a finite set of the orthogonal 

decomposition components of a nonoverlapping timescale (Ur Rehman et al., 2013, 

Bokde et al., 2019). Thus, the original signal is the linear combination of the finite set 

IMF components and one residual component that is extracted via EMD can be 

constructed back as in Equation (2.3). 

𝑥(𝑡) = ∑𝐶𝑘(𝑡) + 𝑅(𝑡), 

𝐾

𝑘=1

 

(2.3) 

where 𝑥(𝑡) is the original signal; 𝐾 is the number of IMF components; 𝐶𝑘(𝑡) 

represents the k-th IMF {𝑘 = 1, 2, …, 𝐾}; and 𝑅(𝑡) represents the final component, 

which is the residual or trend of the original signal. The residual component has been 

seen as the 𝐾+1 IMF, which means the 𝐶𝐾+1(𝑡) component.  
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The sifting process to decompose the original signal will be presented in six 

steps as follows (Huang et al., 1998, Huang, 2014, Awajan et al., 2019): 

Step 1: Insert the original signal 𝑥(𝑡) for the sifting assuming that the repetition 

indicator value is equal to one (𝑞 = 1, 𝑘 = 1). 

Step 2: Identify all the local extremum value (local maximum and local minimum) of 

the original signal 𝑥(𝑡). An illustrative example is shown in Figure 2.1.    

 

Figure 2.1         Local extreme (maxima and minima) of the original signal 𝑥(𝑡) 

Figure 2.1 explains an example of step 2. The black line represents the original 

signal 𝑥(𝑡), whereas the red circle point on the upper line represents the local 

maximum. By contrast, the blue circle point on the lower line represents the local 

minimum. 

Step 3: All local maximum and minimum are separately connected to create an upper 

envelop 𝑢𝑞(𝑡) and a lower envelop 𝑙𝑞(𝑡), respectively, by using the cubic 

spline curve. The original signal must be between these envelops. An 

illustrative example is shown in Figure 2.2.              
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Step 4: The mean envelop  𝑚𝑞(𝑡) value between the upper and lower envelops is 

determined to create a new line curve, which represents the mean envelop by 

using Equation (2.4). An illustrative example is shown in Figure 2.2.     

  

𝑚𝑞(𝑡) =
𝑢𝑞(𝑡) + 𝑙𝑞(𝑡)

2
. 

(2.4) 

 
Figure 2.2         Upper and lower envelops of the original signal  𝑥(𝑡) 

 

Figure 2.2 explains an example of steps 3 and 4. The green line represents the 

original signal 𝑥(𝑡), the red line represents the upper envelop  𝑢(𝑡) and the blue line 

represents the lower envelop 𝑙(𝑡), which is explained by step 3. The black line is the 

mean envelop  𝑚(𝑡) between the upper and lower envelops, which is explained by step 

4. 

Step 5: Calculate the new function  ℎ𝑞(𝑡)  component, which is the difference between 

the original signal 𝑥(𝑡) and the mean envelop 𝑚𝑞(𝑡) value, as shown in the 

following equation: 
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ℎ𝑞(𝑡) = 𝑥(𝑡) − 𝑚𝑞(𝑡). (2.5) 

 

Check if the new function ℎ𝑞(𝑡) satisfies the conditions of IMF (Section 2.3.1).  

YES: Then  ℎ𝑞(𝑡) = 𝐶𝑘(𝑡), where 𝐶𝑘(𝑡) is the k-th IMF {𝑘 = 1, 2, …, 𝐾}; 

thereafter, save the 𝐶𝑘(𝑡) and continue to step 6. 

NO: Then, we replace ℎ𝑞(𝑡) with 𝑥(𝑡) and repeat the operation from step 2 

with repetition indicator 𝑞 = 𝑞 + 1. 

Step 6: Calculate the residual component  𝑅𝑘(𝑡) as in the following formula: 

𝑅𝑘(𝑡) = 𝑅𝑘−1(𝑡) − 𝐶𝑘(𝑡);     𝑅0(𝑡) = 𝑥(𝑡). (2.6) 

Check if the residual component  𝑅𝑘(𝑡)  is a monotonic or constant function 

that cannot extract additional IMF components or satisfies the stoppage 

criterion of the standard deviation (𝑆𝐷𝑞) for two consecutive successive 

siftings of the results (Huang, 2014), as shown in the following equation: 

𝑆𝐷𝑞 =∑
(ℎ𝑞−1(𝑡) − ℎ𝑞(𝑡))

2

ℎ𝑞−1
2(𝑡)

𝑇

𝑡=0

;    0.2 ≤ 𝑆𝐷𝑞 ≤ 0.3. 

(2.7) 

YES: Save all 𝐶𝑘(𝑡); 𝑘 = 1, 2, …, 𝐾 and 𝑅𝑘(𝑡) components and then end the 

sifting. 

NO: Replace 𝑅𝑘(𝑡) with  𝑥(𝑡) and then repeat the operations from step 2 on 

residue 𝑅𝑘(𝑡) with 𝑘 = 𝑘 + 1 until 𝑅𝑘(𝑡) has a monotonic function or 

satisfies stoppage criterion  𝑆𝐷𝑞. 

The sifting to extract of the IMF and residual components are summarized by 

the graphical plots by using the tree graph of the EMD algorithm in Figure 2.3 and the 

illustrative example in Figure 2.4 as follows: 
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Figure 2.3        Tree graph of the EMD 

 

 
 

Figure 2.4        Decomposition of the original signal 𝑥(𝑡) via EMD 

2.3.3 Applications, limitations and extensions of the EMD  

The EMD has been widely used in various fields of science, such as medicine 

(Kanoga and Mitsukura, 2017), mechanical engineering (Zhang et al., 2010), 
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electronic engineering (Suvasini et al., 2015), civil and construction engineering 

(OBrien et al., 2017), short-term traffic speed (Wang et al., 2016), economics (Jaber 

et al., 2014, Hossain and Ismail, 2020), and environmental science (Basha et al., 2015, 

Naik et al., 2018). 

However, the EMD method has some limitations in its application. For 

instance, during sifting process, most steps are not mathematically established 

(Awajan et al., 2018, Liu and Chen, 2019) and have no existing theory (Flandrin et al., 

2004). The second limitation is related to mode mixing (Huang et al., 2003). Many 

studies have proposed theoretical assumptions for this method, which are shown in the 

definition of the EMD method as algorithmic steps. Kizhner et al. (2006) suggested 

several theoretical elements for the method by proposing three hypotheses on the 

sifting. Wu et al. (2001) proved that the number of IMF components that are extracted 

from a signal is approximately equal to 𝑙𝑜𝑔2(𝑁), where 𝑁 is the length of the signal. 

Amirthanathan et al. (2005) showed that the average period of each IMF can be 

calculated by this formula [
2𝑁

𝑁𝑢𝑚(𝑍𝐶)
] by using the number of ZCs and length of the 

signal. Wu et al. (2010) solved the limiation of mode mixing by increasing the amount 

of iteration process with the additional mathematical operators. Li et al. (2017) added 

the differential operation into the decomposition of the IMF components to solve mode 

mixing. The proposed methodologies in this study can overcome these limitations with 

the basic EMD method. 

Many researchers provided an extension of the EMD algorithm to flexibly use 

it in various application areas. Xu et al. (2006) presented a two-dimensions (2D) EMD 

with finite elements for data analysis. Wu and Huang (2009) proposed the ensemble 

EMD by the added ensemble of white noise to the signal. Rehman and Mandic (2010) 
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presented the multivariate EMD. Torres et al. (2011) proposed the complete ensemble 

EMD by adding the particular noise at each step of decomposition. Dragomiretskiy 

and Zosso (2013) suggested the variational mode decomposition. He et al. (2017) 

proposed the 3D EMD. Zhang et al. (2017) proposed the noise-assisted multivariate 

EMD. 

Several studies compared the EMD algorithm and other technical 

decomposition methods. The study results show that the EMD algorithm exhibited a 

high accuracy in dealing with nonstationary and nonlinear signals in various fields. 

Wang et al. (2011) compared the EMD algorithm and WT method by using 

nonstationary and nonlinear time series data. Lu et al. (2013) compared the EMD 

algorithm and the chirplet signal decomposition for ultrasonic imaging. Ghosh et al. 

(2014) compared the EMD with the FT method, short term FT method and WT used 

to denoise an electrocardiogram signal. 

A comparative summary among the EMD, WT and FT  methods for 

decomposing the signals (Huang, 2014) is illustrated in Table 2.1. This table explains 

that the performance of the EMD method does not require pre-conditions for the 

dataset unlike the FT and WT methods. 

Table 2.1         Comparative of decomposition methods 

Method Linear Nonlinear Stationary Nonstationary 

FT ✓ × ✓ × 

WT ✓ × ✓ ✓ 

EMD ✓ ✓ ✓ ✓ 

2.3.4 Statistical regression methods based on EMD  

Recent studies have focused on using the EMD method combined with other 

established statistical regression or forecasting methods. This method has been 

successfully applied in several scientific fields. The decomposition components can 
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be used as new predictor variables to predict their effects and behaviors about other 

response variables by using suitable models or in different statistical situations, such 

as forecasting studies. For an illustrative example: 

Yang et al. (2011a) applied the ordinary least-squares (OLS) regression 

analysis and forward stepwise regression (SR) methods on the basis of the EMD 

method. They studied the temporal associations between headache incidence 

(response) variable and decomposition components (predictor variables) via EMD of 

the weather variables, which are the pressure, temperature, humidity, sunshine 

duration and maximal wind speed. In this study, the residual (trend) component was 

removed to avoid the multicollinearity problem. Yang et al. (2011b) used the same 

methodology to study the effect of the set of predictor variables, namely, the pool of 

air pollution, unemployment and weather, on the decomposition components via EMD 

of the response variable, such as suicide. 

Shen and Lee (2012) studied the least absolute shrinkage and selection operator 

(LASSO) regression on the basis of the ensemble EMD studied to reduce the effect of 

outliers on the ultrasound imaging for the blood flow velocity dataset. Shen et al. 

(2012) applied ridge regression (RR) on the basis of the ensemble EMD to achieve 

less decomposition error and solve the mode mixing problem. Kopsinis and 

McLaughlin (2008) used the smoothly clipped absolute deviation (SCAD) 

thresholding rule to enhance the denoising performance in the decomposition 

components via the EMD method. 

Qin et al. (2016) applied the LASSO regression on the basis of the 

decomposition components via the EMD method of the univariate original predictor 

applied to choose the decomposed components that have most effect on the response 
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variable. Their method was compared with the OLS and RR methods on the basis of 

EMD. Numerical experiments and applications on the two Chinese stock markets 

(Shanghai Composite Index and Shenzhen Component Index) were applied.  

Hu and Si (2013) and Zhao et al. (2018) employed SRs on the basis of 

multivariate EMD to predict and explore the relationship among the decomposition 

components between soil water and the environmental factors. Adarsh et al. (2018) 

applied SR on the basis of EMD and multivariate EMD to estimate the relationship 

between the decomposition components of the response variable reference 

evapotranspiration with decomposition components of the four predictor variables, 

namely, solar radiation, air temperature, relative humidity and wind velocity. Adarsh 

(2016) and Adarsh and Janga Reddy (2019) used the same methodology with different 

variables.  

Naik et al. (2018) presented the kernel RR on the basis of the decomposition 

components via EMD method to study the significance of the decomposition 

components for short-term wind speed and wind power prediction on wind farms in 

Wyoming State of western United States. The multivariate EMD model with the kernel 

RR is designed to achieve significantly accurate drought forecasts of the three different 

agricultural sites in Pakistan (Ali et al., 2019). 

Masselot et al. (2018) proposed the LASSO regression based on noise-assisted 

multivariate EMD to select the decomposition components that have significant effects 

on the response variable/variables in two cases. The first case is to decompose the 

predictor variables only via EMD, while the second case involves decomposing the 

predictors and response variable via EMD. Their proposed method is applied by using 



22 

the multiscale and nonstationary weather variables and cardiovascular mortality in 

Canada “Montreal”. 

In the forecasting field, Lee and Ouarda (2010) proposed the EMD with K-

nearest neighbor resampling and block bootstrapping are combined to predict climatic 

oscillations. Chen et al. (2012) proposed the backpropagation neural network 

combined with the EMD model to predict the tourism demand. Ren et al. (2014) 

applied the EMD method and the versions of EMD (i.e. ensemble EMD and  complete 

ensemble EMD) with the support vector regression (SVR) and artificial neural network 

for forecasting the nonstationary and nonlinear wind speed. Zhu et al. (2017) proposed 

the EMD method on the basis of the least-squares SVR to forecast the nonstationary 

and nonlinear carbon price. Nava et al. (2018) proposed the EMD method with SVR 

to improve the forecasting financial data by using the stock performance of 500 large 

companies posted on stock exchanges in the US (S&P 500 index). 

Chu et al. (2018) proposed the LASSO regression and deep belief networks 

(DBN) on the basis of the ensemble EMD method to study the relationship between 

multiscale climatic predictors and the decomposition components of nonstationary and 

nonlinear monthly streamflow on the Tennessee River. This task was achieved by 

applying the LASSO regression to select the predictors and used DBN to create a 

forecasting model. 

2.4 Ordinary Least-Square Regression (OLS) 

This study considers a model structure of the general linear regression model, 

which creates the relationship between the response and the predictor variables and is 

derived as follows: 
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𝑦𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 +⋯+ 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖. 

Then, 

𝑦𝑖 = 𝛽0 +∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

+ 𝜀𝑖, 
(2.8) 

where 𝑖 =1, 2, …, 𝑛; and 𝑗 = 1, 2, …, 𝑝 is the number of predictor variables, where 𝑦𝑖 

is the i-th response variable;  𝛽0 is a constant term that represents the intercept;  𝑥𝑖𝑗 is 

j-th predictor variable of the i-th observation (i.e. the i-th level of the j-th predictor 

variable); 𝛽𝑗  is the regression coefficient of the j-th predictor variable, which 

represents the average effect on 𝑦𝑖 of per one unit change in j-th predictor variable 𝑥𝑖𝑗; 

and  𝜀𝑖   is the random error term (Montgomery et al., 2012, Melkumova and Shatskikh, 

2017). Equation (2.8) can be written in matrix form as follows: 

[

𝑦1
𝑦2
⋮
𝑦𝑛

] =

[
 
 
 
1 𝑥11 𝑥12 … 𝑥1𝑝
1 𝑥21 𝑥22 … 𝑥2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑝]

 
 
 

[

𝛽0
𝛽1
⋮
𝛽𝑝

] + [

𝜀1
𝜀2
⋮
𝜀𝑛

] 

 

𝐲 = 𝐗𝛃 + 𝛆, (2.9) 

where 𝑥0 = 1𝑛,   𝐲 ∈ 𝑅𝑛
 
 is a vector of the response variable, 𝐗 ∈ 𝑅𝑛×(𝑝+1)  is a matrix 

of the predictor variables,  𝛃 ∈ 𝑅(𝑝+1) is a vector of the regression coefficients and 

 𝛆 ∈ 𝑅𝑛 is a vector of random observation errors. 

The regression analysis aims to estimate the vector of the regression coefficient 

𝛃 for estimating the effect of the predictor variables 𝐗 on the response variable 𝐲. The 

vector of regression coefficient 𝛃 in Equation (2.9) is unknown. Accordingly, the 

traditional ordinary least-square (OLS) is the commonly used estimation method for 

estimating unknown regression coefficients because of its simplicity. This method can 
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be applied without any distributional. The OLS estimator is unbiased and has a low 

variance (James et al., 2013, Efron and Hastie, 2016). The OLS method aims to 

minimize the residual sum of squares (RSS). Thus, the estimated model 𝐲̂  for the true 

model 𝐲 in Equation (2.9) is derived as follows: 

𝐲̂ = 𝐗𝛃̂. (2.10) 

 Thus, the RSS is the sum of the squared differences between the actual 

𝐲 and estimated 𝐲̂ values in the matrix form as follows: 

𝑅𝑆𝑆 = 𝛆𝑡𝛆 = (𝐲 − 𝐗𝛃̂)
𝑡
(𝐲 − 𝐗𝛃̂)  

Then, 

𝑅𝑆𝑆 = ‖𝐲 − 𝐗𝛃̂‖
2

2
=∑(𝑦𝑖 − 𝑥𝑖𝑗𝛽̂𝑗)

2
, 

𝑛

𝑖=1

 
(2.11) 

where ‖ . ‖2
2  is called 𝐿2-norm square. We differentiate RSS Equation (2.11) with 

respect to the unknown parameters 𝛃 and equate the derivatives to zero that is: 

2𝐗𝑡𝐗𝛃̂ − 2𝐗𝑡𝐲 = 0  

𝐗𝑡𝐗𝛃̂ = 𝐗𝑡𝐲.  

Then, the optimal solution is as follows: 

𝛃̂ = (𝐗𝑡𝐗)−1𝐗𝑡𝐲, (2.12) 

where 𝐗𝑡 represents the transpose of the predictor variables matrix 𝐗 and ( . )−1 

represents the inverse function. If the determinant 𝐗𝑡𝐗 is nonzero (i.e. 𝑑𝑒𝑡(𝐗𝑡𝐗) > 0), 

then all rows and columns are linearly independent, the matrix is of full rank and a 

unique solution to the normal equation is obtained. Equation (2.12) represents the OLS 

regression of 𝛃 (Montgomery et al., 2012, James et al., 2013). 


