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PENGESANAN IMEJ PENYAMBATAN DENGAN RANGKAIAN 

SARAF KONVOLUSI TERKEKANG 

ABSTRAK 

Satu cara pengesanan pemalsuan imej yang diperbaiki, khususnya pengesanan 

imej penyambatan dengan Rangkaian Saraf Konvolusi (CNN) Terkekang telah 

dicadangkan dalam kajian ini. Imej penyambatan adalah satu cara pemalsuan imej 

yang biasa dan sentiasa disalahgunakan untuk motif yang jahat seperti propaganda 

idea palsu. Pada masa ini ada banyak usaha berkaitan dengan pengesahan imej 

tersambat, tetapi kebanyakannya adalah sama ada algoritma yang rumit ataupun yang 

tertentu pada ciri-ciri imej. CNN terkekang pada asasnya adalah model CNN 

Pembelajaran Dalam dengan pemberat-pemberat di lapisan pertama dikekang supaya 

ia hanya menyari ciri-ciri manipulasi sambatan, bukannya ciri-ciri objek. Lapisan 

terkekang ini membolehkan model CNN untuk belajar ciri-ciri yang diperlukan secara 

langsung dari imej biasa dan terus melaksanakan pengkelasan. Dalam kajian ini, set 

data sumber terbuka, iaitu set data imej sambatan CASIA, CASIA 2, CUISDE, NIST 

dan Carvalho telah digunakan untuk latihan dan penandaarasan model CNN yang 

dicadangkan. Dengan data imej disiap sediakan, model CNN akan mempunyai siri uji 

kaji untuk menguji pelbagai parameter dan juga menyiasat faktor bukan parametrik 

seperti peratusan kawasan sambatan daripada data sendiri. Kemudian, 

hiperparameternya akan ditala untuk pengoptimuman. Dengan model CNN yang telah 

dilatih dan ditala, ujian klasifikasi secara pangkalan data silang akan dijalankan. 

Hasilnya menunjukkan bahawa CNN boleh mengklasifikasikan kumpulan gambar 

dalam 96.31% ketepatan dan 96.3% F1-Score, tetapi skor ini hanya sesuai untuk set 

data CASIA 2. CNN yang dioptimumkan terbukti berat sebelah kepada set data 
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latihannya sendiri. Oleh itu, CNN ini telah dilatih semula dengan set data seimbang 

yang disatukan. Dengan sedikit pelarasan pada CNN yang dicadangkan, ia dapat 

menghasilkan keseluruhan prestasi dengan ketepatan tertinggi 94.3% dalam set data 

Carvalho dan minimum 75.56% dalam set data CASIA. Kemudian CNN yang 

dicadangkan telah diguna semula untuk operasi penyetempatan sambatan secara blok. 

CNN ini berfungsi dengan baik dalam penyetempatan sambatan pada ketepatan yang 

tinggi dalam set data Carvalho dengan markah MCC 0.3582. CNN ini boleh 

mendiskriminasi sempadan sahih dan palsu pada pelbagai imej dalam pangkalan data 

silang. Ia menunjukkan bahawa CNN dengan algoritma konvolusi terkekang boleh 

digunakan untuk pengesanan imej penyambatan secara umum. 
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IMAGE SPLICING DETECTION WITH CONSTRAINED 

CONVOLUTIONAL NEURAL NETWORK 

ABSTRACT 

An improved approach of image forgery detection, specifically image splicing 

detection with Constrained Convolutional Neural Network (CNN) is proposed in this 

research. Image splicing is a common method in image forgery and is often being 

misused for bad motives such as false idea propaganda. Nowadays there are many 

related efforts in detecting spliced images, but most of them are either feature-specific 

or complicated algorithms. Constrained CNN is basically a Deep Learning CNN 

model with its first layer weights being constrained so that it only extracts splicing 

manipulation features instead of object features. The constrained layer enables the 

CNN model to learn the required features directly from ubiquitous image input and 

then performs classification. In this research, the open source datasets, i.e. CASIA, 

CASIA 2, CUISDE, NIST, and Carvalho image splicing datasets were used for 

training and benchmarking the proposed CNN model. With the datasets prepared and 

assembled, the proposed CNN model will have a series of experiments to test for the 

various parameters as well as to investigate other non-parametric factors such as the 

data variation itself. Then its hyperparameters will be tuned for optimization. With the 

trained and tuned CNN model, a cross-database classification evaluation is carried out. 

The result shows that the CNN can classify image batch with 96.31% in accuracy and 

96.3% in F1-Score, but the scores only apply to CASIA 2 dataset. An optimized CNN 

is shown to be biased to its own train dataset. Hence it is purposely retrained with a 

merged balanced dataset. With slight adjustment on the proposed CNN, it is found to 

be able to generalize the overall performance with the highest accuracy of 94.3% in 
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Carvalho dataset and minimum 75.56% in CASIA dataset. Then the proposed CNN is 

recasted for block-wise splicing localization operation. It performed well in splicing 

localization at high accuracy in Carvalho dataset with MCC mark of 0.3582. It is able 

to discriminate the authentic and splicing border in a wide range of images in the cross-

database test. It is shown that CNN with constrained convolution algorithm can be 

used as a general image splicing detection task. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Nowadays a lot of information especially videos and pictures are stored in 

digital format. With higher accessibility to performance computation and digital 

storage by average consumers, digital information, however, can be digitally tampered 

with ease. Image splicing is one of the common image forgery techniques used with 

intention of covering or adding information in a picture by combining two or more 

image components into a single image (Zhang et al., 2010) as shown in Figure 1.1. 

Simple cut-and-paste spliced images may be identifiable with visual inspection, but 

skilful users often use post-processing techniques such as blurring to cover up the 

splicing artefacts. Thus, the tampered image can sometimes be indistinguishable from 

the authentic image by human eyes.  

 
Figure 1.1  Process of image splicing (Zhang et al., 2010) 

 

Tampered images may seem as entertaining works in consumer space, but in 

the meantime, it also caused a serious threat in trustworthy and security of digital 

assets. For example, the originality of the non-watermarked digital sources such as 

uploaded videos and images are often questionable in police cases. To make matter 

worse, since the internet is more accessible than before with smartphones, new internet 
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users especially the inexperienced elderly cannot differentiate the source and 

originality of information. Thus spliced images are very often embedded in fake news 

and mistaken as real information, leading to more uncontrollable social security. As 

such, there must be a way to countermeasure the possible threats caused by image 

forgery. Image Forgery Detection is a technique specifically to study and identify 

tampered images. Such technique is useful especially in verifying the authenticity of 

digital images in many applications such as crime investigation (Parameswaran and 

Sugitha, 2016). 

There are many techniques currently being studied to discriminate spliced 

images. In this research, Convolutional Neural Network (CNN) is of great interest 

since it closely resembles the mechanism of the human brain by using a neural network 

model. Deep Learning (DL) is one of the specialized fields in many Machine Learning 

(ML) algorithms. While there are many new DL algorithms nowadays, CNN 

represents the best perception of machine sensing towards real world and real-life 

images. CNN is one of the most notable DL approaches for image classification and 

segmentation tasks. CNN can be trained with raw data and achieve robust performance 

(Guo et al., 2016). However, its usefulness is still widely unexplored, especially in 

image forgery detection. 

 

1.2 Motivation 

It is undeniable that DL is gaining interest in both academic and industrial 

sectors. More applications nowadays are getting more dependent on computers such 

as auto-drive and data mining. The emergence of CNN allows users to process images 

without traditional hard-coded algorithms. With DL algorithm like CNN, it can “code” 

by itself and keep improving over time. With spliced image getting more complicated 



3 

 

and people are more skillful in editing digital contents, hard-coded algorithms will be 

driven to obsolete. CNN, on the other hand, can keep learning from new data and 

improves over time, minimizing effort in developing specific programs such as 

splicing forgery detection. 

 

1.3 Problem Statements 

Simple direct cut-and-paste spliced images can be detected by looking for 

abrupt changes of object’s edges or examining high-frequency components by using 

high-pass filters. Skilled forger often post-processed area of interest with various 

techniques such as median filtering, background blurring, and colour correction so that 

they looked natural by most people, making image splicing classifiaction more 

challenging, not to mention attempting spliced region localization.  

Support Vector Machine (SVM) is good at feature classification method, but 

it requires more specific data input structure or variables such as preprocessed feature 

maps rather than direct image feeding, thus the process of feature extraction is needed 

for better classification performance (Cao and Chong, 2002). However, there also exist 

many options for feature extraction such as Principle Component Analysis (PCA) and 

domain transformation, resulting in more uncertain performance output and difficult 

to be tuned for general optimization. Another challenge of ML is that training on 

certain datasets only will render it database specific, making it underperformed in 

cross-database test (He et al., 2012a). 

The recent improvement in the computational economy had motivated 

researchers to shift focus from hand-crafted feature extraction approach to data-driven 

approach. Many researchers are looking into the DL model, more specifically CNN. 

Some researches did find that with the right conditions and customization, CNN can 
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outperform the previous non-DL approaches. However, the DL model may get very 

complicated, considering that their hyperparameters are already hard to deal with. It 

is still unknown how much layer is considered adequate or optimum for such a specific 

task.  

Although constrained convolution is proven to be superior in manipulation 

feature detection such as Gaussian Blurring and Median filtering (Bayar and Stamm, 

2018), this novel pipeline is still not yet fully proven to be viable for generalizing 

image splicing detection. So far, there is no single research on whether or not a simple 

end-to-end CNN with slight modification with constrained convolution algorithm can 

do well in image splicing detection, i.e. splicing classification and splicing localization. 

Albeit there are DL algorithms developed specifically for splicing classification and 

splicing localization, none of them are being used for both classification and 

localization with the same DL models. 

 

1.4 Objectives 

With the problems of the research identified, the research objectives can be 

summarized as follows: 

 

1.5 Scope of Research 

This research focuses solely on image splicing detection only. There are many 

types of image manipulation techniques, but only splicing techniques will be tackled 

1). To develop a Constrained CNN for image splicing detection. 

2). To classify spliced image and to localize spliced regions with the 

Constrained CNN developed from Objective 1. 

3). To evaluate and generalize the performance of image splicing 

detection of the Constrained CNN. 
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to demonstrate the proof of concept. Images of other manipulation like added Gaussian 

noise or double compressed will not be in the scope. DL approach will be used as the 

area of focus in this research. More specifically, Constrained CNN will be investigated 

to perform image splicing detection. A higher level of classification like determining 

the authenticity of a whole full resolution image is not considered. The Python 

programming language, specifically Keras Application Programming Interface (API) 

will be utilized throughout the research.  

 

1.6 Outline 

The thesis is organized into six main chapters. This first chapter is about a brief 

overview of the image splicing forgery while pointing out the current dilemma of 

spliced image detection and seeking a way to improve it.  

In the next Chapter 2, previous works from many related types of research will 

be reviewed and categorized according to the nature of the researches. The methods 

of performance measurement with critical comparisons of various works will then be 

presented. At the end of this chapter, the theory of CNN will be discussed in details 

prior to the experiment so that to understand how to better deal with the variables. 

Chapter 3 is all about describing the methodology of the research. The 

methodology of the CNN model optimization and data preparation will be described 

in fine-grain details. The modified CNN algorithm will be proposed and the way it is 

being designed will be explained. The process of evaluation will be delineated for a 

better understanding of the method of performance measurement. 

The execution of research and its output will be presented in both Chapter 4 

and Chapter 5. Chapter 4 is of preliminary experiments whereby various parameters 

will be tested and verified in a series of experiments to verify the functionality of the 
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CNN model as well as optimizing the CNN in the process. Chapter 5 is the core 

experiment whereby the optimized CNN will be tested along with other databases in 

both classification and localization task. There will have minor optimization in the 

process of generalizing the overall performance. The performance will be compared 

across other databases and to other related works. 

Lastly, Chapter 6 will conclude the outcomes and contributions of the research. 

Based on the finding of this research, a few suggestions are given so that to facilitate 

future works.  



7 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In this chapter, current image splicing detection techniques will be discussed. 

Most of the works require the following techniques to identify the spliced image and 

localize a spliced region. Before diving into methods of splicing detection, it is 

necessary to review the history of image splicing and the current state of research in 

Section 2.2. The common properties of spliced images will be discussed in Section 

2.3, as well as methods of feature extraction in Section 2.4. The methods of 

performance measurement metrics will be discussed in Section 2.5. Lastly in Section 

2.6, the theory of CNN will be described in depth to understand the major parameters 

of CNN algorithm before proceeding to the next chapter. 

 

2.2 Image Forgery and Image Splicing 

The earliest forged image is believed to be dated back in 1840, where 

Hippolyte produced a fake image of himself committing suicide as frustration for not 

getting proper recognition as shown in Figure 2.1. That is when a new photographic 

process is discovered for manipulating images. The same process had also been 

introduced independently by Daguerre and Talbot in 1839 (Lester, 2015). Fast forward 

to February 2004, a photo showed that US Senator John Kerry and actress Jane Fonda 

sharing a stage at an anti-war rally during the Presidential primaries as Senator Kerry 

was campaigning for the Democratic nomination, is found to be spliced in Figure 2.2 

(Qureshi and Deriche, 2015). Also in 2010, a Malaysian politician Jeffrey Wong Su 

En claimed to have been knighted by Queen Elizabeth II as recognition for his 

contribution to the international aid organization Médecins Sans Frontières. A picture 
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of him being awarded by the Queen of England accompanied his statement, diffused 

in local media. However, the British High Commission in Kuala Lumpur made clear 

that his name was not included in the official knighthood recipients lists, and that the 

picture was not consistent with the usual protocol for knighthood ceremonies. The 

image was finally shown to be spliced between an original ceremony photo and Mr. 

Wong’s face as shown in Figure 2.3 (Redi et al., 2011).  

 

Figure 2.1  First fake photograph of Hippolyte Bayard committing suicide 

(Lester, 2015) 

 

 
Figure 2.2  (a)Tampered image of Ex-U.S. presidential election candidate John 

Kerry and actress Jane Fonda. (b) Original image of John Kerry prepares to speak 

about war in Vietnam. (c) Original image of actress Jane Fonda speaks to a group of 

Vietnam  veterans (Qureshi and Deriche, 2015) 
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Figure 2.3  (a)The tampered image depicting Jeffrey Wong Su En while receiving 

the award from Queen Elizabeth II, published in Malaysian dailies. (b) The original 

picture of Ross Brawn receiving the Order of the British Empire from the Queen 

(Redi et al., 2011) 

 

Those are only a few examples of how the image splicing technique had been 

exploited with ulterior motives. The use of digital images as visual evidence is 

becoming more questionable in recent days. Professional image splicing techniques 

are becoming more accessible to users under a few computer mouse clicks. In order to 

confront the potential threat to trustworthy of digital assets, image forgery detection is 

necessary to determine the authenticity of digital media especially images. 

Splicing is a subset of many forgery techniques such as copy-move and 

retouching. It is difficult to tell whether or not the image has been tampered with 

splicing or other tampering techniques without a ground reference image in real-world 

cases. Fortunately, there are a few approaches to assess the features that might be 

deterministic to the nature of spliced images as illustrated in Figure 2.4. 

 
Figure 2.4  Image splicing is usually pixel-based. However, there are other types 

of features available to access the forged image (Qureshi and Deriche, 2015) 
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2.2.1 The Similarity with Image Steganalysis 

Image steganography is a process where digital information is hidden in 

images. Frequently, images are tampered in low levels, such as binary least significant 

bit (LSB) shifting or model based tampering to hide information in images. 

Conversely, image steganalysis is an attempt to reveal the nature of the stego images 

by searching for anomalies in images such as by using Spatial Rich Model (SRM) 

(Fridrich and Kodovsky, 2012) and histogram features extraction (Luo et al., 2011).  

The important clue is that if a stego image can be viewed as tampered images 

since splicing is one of kind of image tampering, the algorithm for steganalysis might 

work as well in image splicing detection with some algorithmic modifications and 

adaptation(Qiu et al., 2014) as illustrated in Figure 2.5. 

 
Figure 2.5  Illustration of the relationship between image tampering and image 

steganalysis (Qiu et al., 2014)  

 

 

Usually, the specific features of images are decoded or extracted before 

making further data processing and classification. The algorithm can be manually 

coded by targetting specific feature such as image noise, but there are many other 

possible usable features can be exploited such as edge detection and JPEG block 

artefact. As such, coding each algorithm for each feature extractor is time-consuming 

and the outcomes are not guaranteed. Hence a more effective self-learning feature or 

data-driven extraction technique is of huge interest. Deep Learning algorithm is one 

of the candidates and it can be modified to suit the specific needs such as image 

splicing detection. 
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2.2.2 The Rise of Deep Learning 

ML is not new, it is an active research in computer science even before the 

existence of personal computers. Neural Network (NN) is the subset of ML other than 

Genetic Algorithm (GA), Support Vector Machine (SVM), etc. The NN is unique 

among other ideas as it resembles the mechanism of the biological neuron which is 

believed to contribute to the intelligence of the human brain. A simple NN only has a 

single layer design, but it can be designed to have many hidden layers that are capable 

of learning deeper or higher dimensional features and achieve better performances, 

thus it is named Deep Learning (DL). DL is a subset of ML which is just one part of 

the general AI field as illustrated in Figure 2.6. However, DL did not become a hot 

topic due to three major barriers.  

 
Figure 2.6  Relationship of Deep Learning to ML (Nardone, 2017) 

 

 

2.2.2(a) Barrier 1: Right Algorithm 

Firstly, in order to process multidimensional data such as videos and images, 

there needs the right algorithm to process those data. Simply connecting hundreds and 

thousands of neurons to every input pixel is not going to be practical considering the 

limited availability and accessibility of powerful computation. That makes the wall of 
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the second barrier of computation which will be covered in the next section.  

NN serves as the basis of all modern variation of Deep Learning algorithms. 

The evolution of NN and the first implementation of CNN started in 2012, where a 

group of researchers from the University of Toronto introduced CNN algorithm for 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and the performance 

superseded all other algorithms, from classification error rate of over 20% down to 

16% (Krizhevsky et al., 2012). This is when the ANN, specifically CNN comes into 

play. The convolution algorithm is able to reduce the dimensions required for the 

computer to process and also extract higher dimensional features to improve accuracy. 

The tradeoff is the additional algorithm that convolutes image pixels demands more 

computation power and computes parallelism than before. 

 

2.2.2(b) Barrier 2: Computational Viability 

Central Processing Unit (CPU) is versatile in many types of digital operations, 

but not optimized for highly paralleled computation workload required by NN model 

optimization. The repetitive multiplication and addition of parameters simply cannot 

be parallelized well for CPU. Developing an ANN model with many neurons will only 

induce more computational cost and time. After the finding of CNN algorithm, people 

soon found that Graphics Processing Unit (GPU) can be exploited for general 

computation. GPU is a computer hardware initially designed to accelerate video game 

framerates, but newer games demand more realistic physical and visual effects. Thus, 

GPU has built-in small but highly paralleled Compute Unit (CU) (or Compute Unified 

Device Architecture (CUDA) core in Nvidia’s GPU) for computation workload. It is 

especially good in parallel processing which fits the need of convolution algorithm 

and neurons optimization, driving down the computational cost and time significantly. 
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It promotes more people to be actively involved in DL researches and also makes DL 

becomes practical in industries and in daily uses as it speeds up model inferencing. In 

addition to the development of more efficient inferencing algorithm like YOLO 

(Redmon et al., 2015), real-time processing is made possible, opening up new 

industries such as autonomous vehicles. 

 

2.2.2(c) Barrier 3: Availability of Big Data 

Thirdly is the availability of data. Because CNN is data-driven machine 

intelligence in nature, it requires a lot of data for model optimization. It simply was 

not the right time for it to be practical decade ago since the Internet resources were not 

as ubiquitous as today. Nowadays many online services come to play such as social 

media, online shopping, exchange market, and cloud storage. Moreover, the Internet 

of Things (IoT) is strived to be the next Internet revolution (Kundhavai and Sridevi, 

2016). Internet resources will only grow over time as more people use the internet and 

consume more digital data. Hence Big Data is readily available to be collected and 

will only become more accessible in the future. As a result, the year 2012 is also known 

as “Big Bang of Deep Learning” (Nardone, 2017). 

In case of spliced image data, it is very fortunate that those data are also only 

readily available in recent years such as CASIA, CUISDE, and NIST Spliced Image 

datasets, thanks to the many other research efforts around the world. 

 

2.3 Common Properties of Spliced Images: 

Common properties of spliced images can be categorized into five major 

groups. Those properties serve as important footprint and distinctive features of 

spliced images relative to authentic images. 
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2.3.1 Camera-based Features 

Digital images are not perfectly colour balanced, they have their own 

distinctive background noise that has been generated during the data acquisition stage 

from camera sensors. The distribution of image noise is unique across different 

cameras and sensors. If an image is cut and pasted into another image of different 

sources, their inherent noise distribution will be different from global noise, which 

makes it an important footprint for image splicing detection. Local noise variance 

estimation like one in Figure 2.7 is one of the techniques used to detect noise delta and 

localize the spliced region (Zhan and Yuesheng, 2015). 

 
Figure 2.7  Local noise variance estimation (right) of corrupted images (left) 

(Zhan and Yuesheng, 2015) 

 

Camera lenses are not perfect, so do the images taken by digital cameras. Very 

often, with a poor quality lens, chromatic aberration occurs at pixels that are further 

from the centre of images. Chromatic aberration is a phenomenon where blue light 

and red light are out of synchronization due to the nature of lens refraction. By 

identifying and magnifying the global vector of the aberration, the originality of an 

image can be determined (Johnson and Farid, 2006). 
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2.3.2 Compression-based Features 

There are many digital formats to store images. Those formats can be 

categorized into two types, lossless and lossy compression format. Lossless format 

like Portable Network Graphics (PNG) and Bitmap (BMP) stores image as it is without 

digitally manipulating it, thus retaining the image quality. However, it comes at the 

cost of bigger file size which is not an option when it comes to online data transfer 

where data bandwidth is of great bottlenecking. If data bandwidth and digital storage 

space are the limiting factors, lossy formats like Joint Photographics Expert Group 

(JPEG) comes in handy to reduce the file size while retaining most of the visual details 

of images. JPEG format discards high-frequency elements so that to reduce the file 

size with virtually no perceptual loss of image quality. As a result, the JPEG format is 

the most widely used image compression format. However, it leaves traceable JPEG 

compression artefacts because JPEG uses the Discrete Cosine Transform (DCT) 

quantization and blocking to encode or decode an image. Hence an image of a spliced 

region can be traced by studying the global blockiness of JPEG image, especially 

double compressed JPEG where blockiness is more evident (Barni et al., 2017). 

However such method is only limited to images of JPEG format. Although there are 

better compression format like JPEG 2000 format which uses wavelet transform 

instead of DCT, it too can be analysed from statistical difference to detect double 

compressed JPEG 2000 images (Zhang et al., 2008). 

 

2.3.3 Physics-based Features 

Spliced image region also tends to have a different level of illumination than 

the global value. Hence by estimating the global illumination of an image, splice 

region can be revealed (Fan et al., 2015). Speaking of illumination, the direction of 



16 

 

global illumination can be an important footprint for spliced image detection as well 

since authentic images can have only illumination source of one directionality in most 

cases (Carvalho et al., 2013). 

Motion blur and out-of-focus blur are also common in images. Motion blur 

occurs when an image is taken on moving objects or the camera itself moves. Motion 

blur is mostly dependent on the camera shuttler’s speed and the object’s speed. Out-

of-focus blur is due to optics where objects will be blurred when they are not in the 

depth-of-field (DOF) of the lenses. However, spliced components do not follow the 

global blurred types (Bahrami et al., 2013) as one in Figure 2.8. A spliced region may 

have different types of blur stacking one another such as Gaussian blur in the out-of-

focus blurred region. Therefore, spliced images can be discriminated by studying the 

consistency of blur types within an image (Binnar and Mane, 2016). 

 
Figure 2.8  Image splicing detection: (a) Input image (b) Blur kernel map (c) blur 

map (d) binary map (e) Segmentation map (f) segmented output (Bahrami et al., 

2013) 

 

 

2.3.4 Domain-based Features 

Digital image is of at least two-dimensional data in grayscale, or three-

dimensions in case of usual RGB images. Those data can be translated into other 

domain representation such as chrominance space and statistical domain. 

In chrominance space, RGB (Red, Green, Blue) image can be converted to 

YCbCr (Luminance; Chroma: Blue; Chroma: Red) data format, which is still being 

used in television transmission nowadays. The colour space conversion is as simple as 

the following equation (Zhao et al., 2011): 
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One study found that simple image pre-processing methods such as converting the 

RGB colour space to YCbCr colour space can improve detection rate due to the 

difference in chrominance of different source of images (Zhao et al., 2011). 

Images can also be transformed into the frequency domain with Fast Fourier 

Transform (FFT). It converts the binary value into horizontal and vertical frequency 

component representation. FFT image is useful especially in editing any repetitive 

pattern or texture in images. Tampered images will have distinctive features in FFT, 

especially in high-frequency components. Hence FFT can be used as a preprocessing 

before feature extraction (Bunk et al., 2017). 

 

2.3.5 Geometry-based Features 

Usually, camera lenses have a specific angular Field of View (FOV). Hence, 

even though an object is perfectly flat, it will seem curved from the centre toward the 

edge of images. This effect is called radial distortion and is getting more obvious in 

images taken with a wide-angle lens or fish-eye lens as illustrated in Figure 2.9. 

Spliced components usually do not take this space-warping effect into account, 

making radial distortion a good ground reference for splicing detection (Chennamma 

and Rangarajan, 2011). 

 
Figure 2.9  Phenomena of radial distortion, (a) no distortion, (b) Barrel distortion, 

(c) Pincushion distortion (Chennamma and Rangarajan, 2011) 

 
(
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(2.1) 
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2.4 Methods of Feature Extraction 

The methods of feature extraction can be categorized into two approaches, 

targeted feature extraction and data-driven feature extraction despite the method of 

classification is more or less under the same subset of ML. The method that treats 

specific features as a target of input data is considered as targetted feature extraction. 

Targeted feature extraction uses specific algorithms to extract specific known features 

such as noise and edges. Statistical features such as histogram statistics (Stamm and 

Liu, 2010) are also considered as targetted features as the user needs to design the 

algorithm specifically to encode such feature.  

Data-driven feature extraction, on the other hand, exploits big data to extract 

features without user’s interference or guidance. The algorithm will learn to extract 

useful features in order to achieve a minimum cost function. The input image is usually 

in raw RGB format or in grayscale. Those algorithms may result in extracting features 

that are not understandable by user albeit the output can be of high accuracy. 

 

2.4.1 Targeted Feature Extraction 

Targetted features extraction techniques are widely used in the early image 

splicing detection approach. One of the early work exploits YCbCr colour space to 

extract distinct features with domain transformations such as Discrete Wavelet 

Transform (DWT) (Zhu and Zhen, 2012; Hakimi et al., 2015) and DCT (Alahmadi et 

al., 2013; Zhang et al., 2016) were prevalent to extract the pattern of edges of objects 

in test images. Alternatively, image processing techniques such as Sobel edge 

detection (He et al., 2011; Liu et al., 2013) and Local Binary Pattern (LBP) (Alahmadi 

et al., 2013; Hakimi et al., 2015; Agarwal and Chand, 2016) were also being used like 

one in Figure 2.10. Other image properties such as YCbCr colour space conversion 
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(Hakimi et al., 2015; Manu and Mehtre, 2015) as shown in Figure 2.11 and image 

histogram (Cozzolino et al., 2015; Manu and Mehtre, 2015; Vaishnavi, 2016) are also 

found to be helpful and are being exploited to reveal hidden information of test images 

due to the nature of different chrominance and histogram entropy of spliced images. 

 
Figure 2.10  LBP applied image (Hakimi et al., 2015). 

 

 
Figure 2.11  YCbCr colour space conversion from RGB colour space (Alahmadi et 

al., 2013) 

 

Other than features extraction, studying the quality of an image can also reveal 

the nature of spliced images. Non-reference image quality metrics such as blocking 

feature and zero-crossing were computed, then the outputs were combined to form 

image mapping to highlight the possible area of image tampering (Battisti et al., 2012; 

Manu and Mehtre, 2015). Image splicing can also be detected by finding an 

abnormality in physical properties as mentioned in Section 2.3.3. Very often the blur 

degree of spliced region differs from the blur degree of its neighbouring, thus the blur 

degree and depth information of an image can be estimated and being used as 
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references for image splicing (Bahrami et al., 2013). Blur type inconsistency such as 

out-of-focus blur and motion blur are also being used to test subject images (Binnar 

and Mane, 2016). Properties of lighting are also a good source of evidence within a 

spliced image. Spliced images are most likely have inconsistent global illuminance, 

hence local illumination is estimated to reveal the spliced region (Fan et al., 2015).  

Intrinsic fingerprints of camera lens such as lens radial distortion (Chennamma 

and Rangarajan, 2011) and chromatic aberration (Johnson and Farid, 2006) are also 

some good source of references for image splicing detection. The true nature of photo 

images will be more evident by amplifying the red and blue pixels aberration vector 

amplitude like one in Figure 2.12. Nevertheless, most of classification processes still 

require traditional ML algorithms, mostly SVM (He et al., 2012; Alahmadi et al., 

2013; Vaishnavi, 2016), k-nearest neighbour (k-NN) (Vaishnavi, 2016) and Spectral 

Regression Discriminant Analysis (SRDA) (Agarwal and Chand, 2016) classifiers to 

decide the nature of test images.  

 

 

Figure 2.12  Chromatic aberration due to lens refraction (Chennamma and 

Rangarajan, 2011) 

 

 

2.4.2 Data-driven Feature Extraction 

Recent researches appeared to be focusing on Deep Learning feature 

extraction, more specifically CNN (Chen et al., 2015) which can automatically learn 
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and obtain features directly from two-dimensional data and beyond, such as images 

and videos. CNN is one of the Deep Learning algorithms that use multiple hidden 

layers of neural networks to achieve better performance in specific tasks but require 

more computational workhorse as well as larger datasets in the training stage. CNN, 

as shown in Figure 2.13, served as the basis of other popular variations such as 

AlexNet and Visual Geometry Group Net (VGGNet). CNN is superior in image 

classification task but it tends to extract features associated with image content only, 

hence CNN is ill-suited for directly extracting image manipulation features in many 

image forgeries such as image splicing (Bayar and Stamm, 2016). Many researchers 

had been trying to re-engineer the DL algorithms in the hope that it can be beneficial 

for image forgery detection.  

 
Figure 2.13  Pipeline of general CNN network (Guo et al., 2016) 

 

Image segmentation is gaining more attention recently. Unlike traditional 

CNN, it can retain the spatial information of the image features after convolution, i.e. 

the location and orientation of the object of interest in image space. In Salloum et al. 

(2018) works, they use VGGNet-like structure. Instead of ending with fully connected 

(FC) layer, they upsampled the feature maps and convolved them. The process was 

repeated until it matched the CNN input size so that to directly localize the spliced 

area as shown in Figure 2.14, in which they called the model Multitask Fully 

Convolutional Network (MFCN). Hence the localization can achieve pixel-wise 
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localization instead of traditional block-wise detection. From Rao and Ni (2016), they 

made use of Spatial Rich Model (SRM) developed from steganalysis (Fridrich and 

Kodovsky, 2012) to strategically initialize their first layer weights so that to avoid 

object feature extraction at the initial stage of the training epoch. 

 
Figure 2.14  Multitask Fully Convolutional Network (MFCN) (Salloum et al., 

2018) 

 

 

There are few researches where DL is used partially for feature extraction but 

the classification task is entrusted to more traditional SVM like what Zhang et al. 

(2016) did. They used a stacked autoencoder with Multi Layer Perceptron (MLP) in 

Figure 2.15 which is one of the DL algorithms to extract feature data. Then they used 

the extracted features to train SVM model, albeit the CNN nowadays can extract and 

classify directly in one process.  

 
Figure 2.15  Stacked autoencoder algorithm (Zhang et al., 2016) 
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Other than CNN algorithm, autoencoder splicing localization approach has 

been used by Cozzolino and Verdoliva (2017) to achieve pixel-wise localization but 

uses SRM for feature extraction instead. They use the binary mask as the label for 

autoencoder and trained it with the features extracted from their SRM algorithm as 

shown in Figure 2.16. Carvalho et al. (2013) on the other hand used colour 

illumination estimator to extract features then uses ML to learn and make decisions on 

human faces splicing detection. 

 
Figure 2.16  Fully autoencoder approach (Cozzolino and Verdoliva, 2017) 

 

 

2.5 Methods of Performance Evaluation 

There are two ways to evaluate the performance of the DL algorithm in spliced 

image detection, which are classification and spliced region localization. 

Classification is the operation that evaluates an image as a whole such that whether an 

image is authentic or spliced. Usually, the test image is resized or in cropped batch. 

Whilst localization is applied to localize the spliced region within a full-size image 

which is considerably more challenging than simple classification. Depending on 

algorithms or models, classification task can also be recasted into the localization task. 
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2.5.1 Available Datasets 

Both tasks require data samples or datasets which are used by other researchers 

as the specimens of benchmarking. Table 2.1 shows the popular spliced image datasets 

available and of being cited frequently. These datasets are used in this research. 

Table 2.1  Datasets available for image splicing detection works 

 

 

2.5.2 Splicing Classification 

In image classification, an image will be determined as authentic or spliced. 

More specifically, since the goal of the CNN model is to detect image splicing, the 

authentic image will be framed as negative set (no splicing detected), and the spliced 

image will be the positive set (splicing detected). If the model can have the output 

classification as labelled, that will be a true response, either True Positive (TP) or True 

Negative (TN). If the output differs from the label, it will be a false response, either 

False Positive (FP) or False Negative (FN). Table 2.2 illustrates the discrimination 

between the measurement metric. 

Datasets Description No. of image 

CASIA The first version of CASIA 2, all of 128 

pixel square images, pure authentic and 

spliced images. In grayscale only (Dong et 

al., 2013). 

Authentic = 800 

Spliced = 921 

CASIA 2 Consists of copy-moved, removal, and 

spliced images. In RGB and of various 

sizes (Dong et al., 2013). 

Authentic = 7483 

Spliced + others = 

5122 

CUISDE 

(a.k.a. 

DVMM) 

Columbia Uncompressed Image Splicing 

Detection Evaluation, consists of high 

resolution authentic and spliced images 

with edge mask provided. In RGB (Hsu 

and Chang, 2006). 

Authentic = 183 

Spliced = 180 

NIST 2016 Nimble Challenge 2016, consists of various 

manipulation classes, including splicing 

image class (NIST Media Forensics 

Challenge, 2016). 

Authentic = 874 

Spliced = 288 

Carvalho Novel dataset by Prof. Dr. Tiago J. 

Carvalho (Carvalho et al., 2013). 

Authentic = 100 

Spliced = 100 


	Image splicing detection with constrained convolutional neural network_Lee Yang Yang _2019_E3_MYMY
	thesis cover
	Thesis main (AutoRecovered)


