

# EVALUATION OF DIRECT OZONE DEPURATION ON SHELF-LIFE OF FRESH TROPICAL OYSTERS (*CRASSOSTREA IREDALEI*)

by

**TEOH QI YIN** 

A dissertation submitted in partial fulfillment of the requirements for the Degree of Bachelor of Technology (B. Tech) in the field of Food Technology School of Industrial Technology University Sains Malaysia

June 2021



### PUSAT PENGAJIAN TEKNOLOGI INDUSTRI UNIVERSITI SAINS MALAYSIA

# BORANG PENYERAHAN DISERTASI MUTAKHIR SATU (1) NASKAH

Nama penyelia: Dr. Musfirah Zulkarnain

Bahagian: <u>Teknologi Makanan</u>

Saya telah menyemak semua pembetulan/pindaan yang dilaksanakan oleh Encik/Puan Cik Teoh Qi Yin

mengenai disertasinya sebagaimana yang dipersetujui oleh Panel Pemeriksa di Viva Voce-

nya.

2. Saya ingin mengesahkan bahawa saya berpuashati dengan pembetulan/pindaan yang dilaksanakan oleh calon.

Sekian, terima kasih.

(Tandatangan dan cop)

DR. MUSFIRAH ZULKURNAIN Food Technology Division School of Industri Technology Universiti Sains Malaysia 11800 Penang, Malaysia musfirah.z@usm.my 16/8/2021

Tarikh

#### **DECLARATION OF AUTHOR**

This dissertation is composed of my original work and contains no material previously published or written by another person except where due reference has been made in the text. The content of my dissertation is the result of work I have carried out since the commencement of my research project and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution.

(TEOH QI YIN)

JUNE 2021

#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation and gratitude to my final year project supervisor, Dr. Musfirah Zulkarnain for her advice and guidance throughout this project. Without her dedication, this thesis would not be possible.

I would like to thank the School of Industrial Technology for allowing me to use the available facilities and equipment throughout my research study. Special thanks to all lab assistants in the School of Industrial Technology for their help and guidance on using the facilities and equipment during my research study.

Furthermore, I would like to convey my gratitude to my fellow coursemates and friends who encouraged me and supported me throughout my research study. Finally, many thanks to my family for their moral support and encouragement.

Teoh Qi Yin June 2021

#### TABLE OF CONTENTS

|                       | Page |
|-----------------------|------|
| DECLARATION OF AUTHOR | ii   |
| ACKNOWLEDGEMENT       | iii  |
| TABLE OF CONTENTS     | iv   |
| LIST OF TABLES        | v    |
| LIST OF FIGURES       | vi   |
| LIST OF ABBREVIATIONS | vii  |
| LIST OF SYMBOLS       | ix   |
| LIST OF APPENDICES    | х    |
| ABSTRAK               | xi   |
| ABSTRACT              | xii  |

# **CHAPTER 1: INTRODUCTION**

| 1.1 Research Background | 1 |
|-------------------------|---|
| 1.2 Problem Statement   | 3 |
| 1.3 Objectives          | 4 |

### **CHAPTER 2: LITERATURE REVIEW**

| 2.1 Oyster                       | 5 |
|----------------------------------|---|
| 2.1.1 Tropical Oyster            | 5 |
| 2.1.2 Oyster Culture in Malaysia | 6 |

| 2.1.3 Safety of Raw Oyster Consumption          | 8  |
|-------------------------------------------------|----|
| 2.1.3.a Pathogens in Raw Oyster                 | 8  |
| 2.1.3.b Regulations                             | 9  |
| 2.2 Post-harvest Intervention of Raw Oyster     | 10 |
| 2.2.1 Physical Methods                          | 11 |
| 2.2.2 Chemical Methods                          | 13 |
| 2.2.3 Depuration                                | 13 |
| 2.2.3.a Water Treatment Methods                 | 14 |
| 2.3 Ozone                                       | 15 |
| 2.3.1 Generation of Ozone                       | 16 |
| 2.3.2 Generation of Ozonated Water              | 17 |
| 2.3.3 Bacteria Inactivation Mechanisms of Ozone | 18 |
| 2.4 Direct Ozone Depuration                     | 19 |
| 2.4.1 Physiological Conditions of Seawater      | 19 |
| 2.5 Quality Evaluation of Raw Oyster            | 22 |

#### **CHAPTER 3: MATERIALS AND METHODS**

| 3.1 Chemicals and Materials                     | 24 |
|-------------------------------------------------|----|
| 3.2 Direct Ozone Depuration of Tropical Oysters | 25 |
| 3.3 Ozone Quantification                        | 26 |
| 3.4 Quality Evaluation of Tropical Oysters      | 26 |
| 3.4.1 Mineral Quantification                    | 26 |
| 3.4.2 Microbial Analysis                        | 27 |
| 3.4.2.a Total Plate Count                       | 27 |

| 3.4.2.b Total Coliforms  | 28 |
|--------------------------|----|
| 3.4.2.c Fecal Coliforms  | 28 |
| 3.4.2.d Escherichia coli | 28 |
| 3.4.2.e Vibrio spp.      | 29 |
| 3.4.3 Protein Analysis   | 30 |
| 3.4.4 pH Analysis        | 31 |
| 3.4.5 Survival Test      | 31 |
| 3.6 Statistical Analysis | 32 |

### **CHAPTER 4: RESULTS AND DISCUSSION**

| 4.1 Mineral Quantification in Fresh Tropical Oysters                                                                          | 33 |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| 4.2 Initial Microbial Loads in Fresh Tropical Oysters                                                                         | 35 |
| 4.3 Effect of Ozone Concentration and Depuration Time on Quality of<br>Tropical Oysters by Using Surface Response Methodology | 36 |
| 4.4 Effect of Ozone Concentration and Depuration Time on The Protein Content of Tropical Oysters                              | 47 |

# **CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS**

| 5.1 Conclusions     | 51 |
|---------------------|----|
| 5.2 Recommendations | 52 |
|                     |    |
| REFERENCES          | 53 |
| APPENDICES          | 60 |

### LIST OF TABLES

| Table Caption                                                                                                                                                               | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1 Mineral quantification of fresh tropical oysters harvested from two different locations.                                                                                | 35   |
| 4.2 Microbial counts of fresh tropical oysters harvested from two different locations.                                                                                      | 36   |
| 4.3 The ANOVA, F-value, p-value, lack of fit, adjusted $R^2$ and coefficient estimate for the final reduce model of six response variables for samples from each treatment. | 38   |
| 4.4 TVB-N values of samples from each treatment with different levels of ozone concentration and depuration time.                                                           | 48   |

# LIST OF FIGURES

| Figure Caption                                                                                                                                 | Page |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1 Response surface plots of TPC of treated samples with different levels of ozone concentration and depuration time.                         | 39   |
| 4.2 Response surface plots of total coliforms of treated samples with different levels of ozone concentration and depuration time.             | 40   |
| 4.3 Response surface plots of fecal coliforms of treated samples with different levels of ozone concentration and depuration time.             | 41   |
| 4.4 Response surface plots of <i>Vibrio cholerae</i> of treated samples with different levels of ozone concentration and depuration time.      | 42   |
| 4.5 Response surface plots of pH values of treated samples with different levels of ozone concentration and depuration time.                   | 45   |
| 4.6 Response surface plots of the number of survival days of treated samples with different levels of ozone concentration and depuration time. | 47   |
| 4.7 TVB-N values of treated samples with different levels of ozone concentration and depuration time.                                          | 50   |

### LIST OF ABBREVIATIONS

| Abbreviations | Captions                                   |
|---------------|--------------------------------------------|
| ANOVA         | Analysis of variance                       |
| ASW           | Artificial seawater                        |
| BHT           | Butylated hydroxytoluene                   |
| BOBP          | Bay of Bengal Programme                    |
| cfu           | Colony-forming unit                        |
| CPF           | Contact plate frozen                       |
| DNA           | Deoxyribose nucleotide                     |
| FAA           | Free amino acids                           |
| FRI           | Fisheries Research Institute               |
| HIV           | Human immunodeficiency virus               |
| IDRC          | International Development Research Centre  |
| IQF           | Individual quick freezing                  |
| ISSC          | Interstate Shellfish Sanitation Conference |
| MPN           | Most probable number                       |
| NSSP          | National Shellfish Sanitation Programme    |
| PCR           | Polymerase chain reaction                  |
| ppm           | Part per million                           |
| ppt           | Part per thousand                          |
| QMRA          | Quantitative microbial risk assessment     |
| rpm           | Revolutions per minute                     |
| RSM           | Response surface methodology               |

| TPC    | Total plate count                      |
|--------|----------------------------------------|
| TVB-N  | Total volatile basic nitrogen          |
| US     | United State                           |
| US FDA | United States Food Drug Administration |
| USM    | University Science Malaysia            |
| UV     | Ultraviolet                            |

### LIST OF SYMBOLS

| Symbol         | Captions                     |
|----------------|------------------------------|
| °C             | Degree Celsius               |
| >              | More than                    |
| <              | Less than                    |
| ±              | Plus and minus               |
| R <sup>2</sup> | Coefficient of determination |
| Å              | Angstrom, 10 <sup>-1</sup> m |

#### LIST OF APPENDICES

#### **Appendix Caption**

A Perturbation graph of TPC, total coliforms, fecal coliforms, *Vibrio cholerae*, pH value and number of survival days of treated samples with different levels of ozone concentration and depuration time.

#### EVALUSI DEPURASI OZON LANGSUNG KE ATAS JANGKA HAYAT TIRAM TROPIKA YANG SEGAR

#### ABSTRAK

Depurasi ozon langsung merupakan process rawatan yang berpontensi untuk merawat tiram tropika yang segar untuk memastikan keselamatan dan memelihara kualiti tiram tropika, terutamanya untuk tiram tropika yang akan dimakan secara mentah. Kualiti tiram tropika yang dirawat dengan depurasi ozon langsung dipengaruhi oleh kepekatan ozon dan masa depurasi yang berbeza tahap secara ketara. Kajian semasa telah berjaya membuktikan kepekatan ozon yang lebih tinggi dan masa depurasi yang lebih panjang dapat mengurangkan bilangan mikrobs dan memperlahankan degradasi protein dengan ketara, sementara memelihara kesegaran dan mengelakkan kerosakkan tiram tropika. Spesies bakteria yang terdapat dalam tiram tropika dikurangkan pada kadar yang berlainan disebabkan bilangan microbs yang berlainan, variasi komposisi kimia tiram tropika, kepekaan spesies bacteria terhadap ozon dan perbezaan sel bakteria. Koliform fecal dan Vibrio cholerae menunjukkan sensitiviti yang rendah terhadap rawatan ozon berbanding dengan spesies bakteria yang lain dalam kajian ini. Walaupun begitu, kepekatan ozon yang lebih tinggi dan masa depurasi yang lebih panjang mempunyai kesan buruk terhadap kelangsungan hidup tiram tropika, iaitu jangka hayat tiram tropika yang dirawat adalah lebih pendek berbanding dengan tiram tropika yang segar.

#### EVALUATION OF DIRECT OZONE DEPURATION ON SHELF-LIFE OF FRESH TROPICAL OYSTERS

#### ABSTRACT

Direct ozone depuration is a potential post-harvest processing method used to treat fresh tropical oysters to ensure the safety and preserve the quality of tropical oysters especially those that are usually being eaten raw. The quality of the tropical oysters undergoes treatment was significantly affected by different levels of ozone concentration and depuration time. The present study successfully proved that higher ozone concentration and longer depuration time significantly reduced the microbial loads and slow down protein degradation while maintaining the freshness and preventing the spoilage of tropical oysters. The bacteria species present in tropical oysters reduced at a different rate due to the different initial microbial loads, variation of chemical composition in tropical oysters, sensitivity or persistency of bacteria species towards ozone and inherent differences in bacteria cells. Fecal coliforms and *Vibrio cholerae* showed less sensitivity towards ozone treatment than other bacteria species in this study. Despite this, higher ozone concentration and longer depuration had a detrimental effects on the survival of tropical oysters whereby the shelf-life of treated tropical oysters was shortened as compared to the fresh tropical oysters.