
EYE DIAGRAM MODELING OF HIGH-SPEED

CHANNELS USING ARTIFICIAL NEURAL

NETWORKS WITH AN IMPROVED ADAPTIVE

SAMPLING ALGORITHM

GOAY CHAN HONG

UNIVERSITI SAINS MALAYSIA

2019

EYE DIAGRAM MODELING OF HIGH-SPEED CHANNELS USING

ARTIFICIAL NEURAL NETWORKS WITH AN IMPROVED ADAPTIVE

SAMPLING ALGORITHM

by

GOAY CHAN HONG

Thesis submitted in fulfilment of the

requirements for the Degree of

Master of Science

February 2019

ii

ACKNOWLEDGMENT

 First and foremost, I would like to express my sincere gratitude to my

supervisor, Dr. Patrick Goh Kuan Lye for his patience, motivation, advice. His

guidance helped me in all the time of research and writing of this thesis. I have been

extremely lucky to have a supervisor who cared so much about my work, and who

responded to my questions and queries so promptly. Other than that, I would like to

thank my co-supervisor, Dr. Nur Syazreen Ahmad for her encouragement.

 My sincere thanks to Mr. Tan Chee Sheng for his help in the field of image

processing. He provided the background knowledge about image processing and

suggestions for implementation. Furthermore, I must thank Dr.-Ing Volker Mühlhaus

for his guidance in RF software.

 Finally, I would like to thank my family and friends, especially my parents

for supporting me throughout my life.

iii

TABLE OF CONTENT

 Page

ACKNOWLEDGEMENT ii

TABLE OF CONTENT iii

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xvi

LIST OF SYMBOLS xvii

ABSTRAK xxi

ABSTRACT xxiii

CHAPTER ONE - INTRODUCTION 1

1.1 Background Overview 1

1.2 Problem Statement 2

1.3 Research Objectives 5

1.4 Research Scope 5

1.5 Thesis Outline 6

CHAPTER TWO - LITERATURE REVIEW 8

2.1 Overview 8

2.2 Artificial Neural Networks 8

2.3 Signal Integrity Modeling with Artificial Neural Networks 12

 2.3.1 Sampling Techniques 13

 2.3.2 Input Data Selection/Preprocessing 16

 2.3.3 Eye Diagram Prediction 20

2.4 Knowledge Embedded Neural Networks 21

iv

 2.4.1 Prior Knowledge Input ANN 21

 2.4.2 Difference ANN 22

 2.4.3 Prior Knowledge Input Difference ANN 23

2.5 Feature Selection Techniques 25

2.6 Summary 28

CHAPTER THREE - METHODOLOGY 30

3.1 Overview 30

3.2 Data Set Generation Process 30

3.3 Neural Network Creation 31

 3.3.1 Neural Network Weights Initialization and Training 32

 3.3.2 Selection of Number of Hidden Neurons 33

3.4 Adaptive Sampling Algorithm 38

 3.4.1 Weakness of the Original Adaptive Sampling Algorithm 41

 3.4.2 Improved Adaptive Sampling Algorithm 43

3.5 Eye Height and Eye Width Prediction 46

 3.5.1 Prediction of Eye Height and Eye Width at the Center of

the Eye

47

 3.5.2 Prediction of Eye Heights as a Function of Time within

the Eye

48

3.6 Eye Height/Width Extraction 51

 3.6.1 Eye Width Extraction 53

 3.6.2 Eye Height Extraction 55

3.7 Performance of Computation 56

3.8 Applying Feature Selection on BER Contour 58

3.9 Test Case Setup 63

v

 3.9.1 Eye Height and Eye Width Modeling of a Single-Ended

Transmission Line Structure Using Improved Adaptive

Sampling.

63

 3.9.2 Neural Networks for High Dimensional Eye Height and

Width Modeling

65

 3.9.3 Neural Modeling of the BER Contour 70

3.9 Summary 73

CHAPTER FOUR – RESULTS AND DICUSSIONS 64

4.1 Overview 75

4.2 Eye Height and Eye Width Modeling of a Single-Ended

Transmission Line Structure using Improved Adaptive Sampling

75

 4.2.1 One-Dimensional Problem 76

 4.2.2 Two-Dimensional Problem 78

 4.2.3 Four-Dimensional Problem 81

4.3 Neural Networks for High Dimensional Eye Height and Width

Modeling

83

4.4 Neural Modeling of the BER Contour 86

 4.4.1 Three-Dimensional Problem 86

 4.4.2 Five-Dimensional Problem 91

 4.4.3 Three-Dimensional Problem with 3D EM 97

 4.4.3 Five-Dimensional Problem with 3D EM 105

4,5 Summary 112

CHAPTER FIVE – CONCLUSION AND FUTURE WORKS 114

5.1 Conclusion 114

5.2 Future Works 115

vi

REFERENCES 116

LIST OF PUBLICATIONS

vii

LIST OF TABLES

 Page

Table 2.1 Comparison of various training algorithms for the microstrip

line example

10

Table 2.2 Comparison of various training algorithms for the MESFET

example

10

Table 2.3 Training speed comparison of the neural models 20

Table 2.4 Comparison of all techniques for Branin function modeling 25

Table 2.5 Summary of the reviewed sampling methods 29

Table 3.1 Number of selected features and average interpolation R
2
 for

all feature selection methods

61

Table 3.2 The sample sizes of several sampling algorithms with

respect to d

67

Table 4.1 Modeling performances of neural networks for a 1-

dimensional problem using original and improved adaptive

sampling

78

Table 4.2 Modeling performances of neural networks for a 2-

dimensional problem using original and improved adaptive

sampling

79

Table 4.3 Design Space of a 4-dimensional problem 82

Table 4.4 Modeling performances of neural networks for a 4-

dimensional problem using the original and improved

adaptive sampling

83

Table 4.5 Design space of a 7-dimensional LVDS modeling problem 84

Table 4.6 Performances of the three ANNs 85

Table 4.7 3-dimensional design space of an EH(t) modeling problem 88

Table 4.8 Training results of a 3-dimensional EH(t) modeling problem 88

Table 4.9 5-dimensional design space of an EH(t) modeling problem 92

Table 4.10 Training results of a 5-dimensional EH(t) modeling problem 93

Table 4.11 3-dimensional design space of an EH(t) modeling problem

with 3D EM

98

Table 4.12 Training results of a 3-dimensional EH(t) modeling problem 99

viii

with 3D EM

Table 4.13 5-dimensional design space of an EH(t) modeling problem

with 3D EM

105

Table 4.14 Training results of a 5-dimensional EH(t) modeling problem

with 3D EM

107

ix

LIST OF FIGURES

 Page

Figure 1.1 PCI Express 2.0 topology from the transmitter to the

receiver.

2

Figure 1.2 SI modeling using a) traditional and b) neural networks

technique.

3

Figure 2.1 Generic MLP structure. 10

Figure 2.2 The structure of the ith hidden neuron of the second layer. 12

Figure 2.3 Example of a received eye diagram of a 2.5 Gbps system. 13

Figure 2.4 2D visualization of the splitting process. a) The worst

performing region. b) The region is split into 2n new

regions, four new regions in this case; also the validation

point at the center of the original region is changed to a

training point. c) Generate new training and validation points

for the worst performing region.

16

Figure 2.5 Generation of input data for RTS. 18

Figure 2.6 General structure of a PKI-ANN with output space mapping

approach.

22

Figure 2.7 General structure of a difference ANN. 23

Figure 2.8 General structure of a PKID-ANN. 24

Figure 2.9 Illustration of various information theoretic quantities 26

Figure 3.1 Flowchart demonstrating eye height and eye width

simulation with ADSsim and MATLAB image processing

toolbox.

31

Figure 3.2 An example that shows the steps of the fine searching

method.

37

Figure 3.3 An example that shows the steps of the fine searching

method (special case).

38

Figure 3.4 Locations of samples generated in a 3-dimensional

space/region using a) 2K-DoE, b) star distribution, c) rotated

star distribution, and d) 3K-DoE.

41

Figure 3.5 The sampling algorithm generates a large number of training 42

x

points around the circled area, resulting in oversampling, but

completely ignores other regions.

Figure 3.6 A situation where adaptive sampling does not sample at all

in a non-linear region of a 1-dimensional problem.

43

Figure 3.7 The values of nr for every region of the design space of a 2-

dimensional problem a) before splitting process and b) after

being split three times.

45

Figure 3.8 The computation of Er of all regions for a) original and b)

improved adaptive sampling.

45

Figure 3.9 Flowchart demonstrating the improved adaptive sampling

approach.

46

Figure 3.10 A general eye diagram. 47

Figure 3.11 General ANN topology for prediction of eye height and eye

width at the center of the eye.

48

Figure 3.12 81 Eye heights across one UI. 49

Figure 3.13 A plot of eye height versus time. 50

Figure 3.14 A reconstructed eye contour from EH(t). 50

Figure 3.15 General ANN topology for prediction of EH(t). 51

Figure 3.16 A binary image of a general eye contour. 52

Figure 3.17 Three types of horizontal lines that will be discarded: a) all

elements in the list are 0‟s, b) all elements in the list are 1‟s,

c) it has more than two transitions from 1 to 0 or 0 to 1.

53

Figure 3.18 A horizontal line for eye width calculation. 54

Figure 3.19 Comparison between lengths of 0‟s of different horizontal

lines.

55

Figure 3.20 Visualization of the eye height extraction process. 56

Figure 3.21 Sample hits of a SOM. 61

Figure 3.22 Eye heights after feature selection with methods a) None, b)

MRMR, c) CMIM, d) JMI, e) DISR, f) CIFE, g) ICAP, and

h) ConDred.

62

Figure 3.23 An eye diagram a) before and b) after morphological

closing.

65

Figure 3.24 Samples generated using the proposed distribution. 67

xi

Figure 3.25 The conventional ANN. 69

Figure 3.26 The PKI-ANN with an impedance calculator. 69

Figure 3.27 The PKID-ANN with an impedance calculator. 69

Figure 3.28 Flowchart demonstrating frequency domain simulation using

the Sonnet 3D EM simulator.

71

Figure 3.29 Flowchart demonstrating eye height and eye width

simulation involving ADS and Sonnet 3D EM simulator.

73

Figure 3.30 K-chart for SI modelling using neural network based

techniques.

74

Figure 4.1 A circuit with a single-ended transmission line. 76

Figure 4.2 Correlation of the simulation results and ANN predictions

using original adaptive sampling for a 1-dimensional

problem for a) eye height b) eye width.

77

Figure 4.3 Correlation of the simulation results and ANN predictions

using the improved adaptive sampling for a 1-dimensional

problem for a) eye height b) eye width.

77

Figure 4.4 Distribution of training and validation samples for the a)

original adaptive sampling and the b) improved adaptive

sampling. The region boundaries are drawn using blue lines.

80

Figure 4.5 Correlation of the simulation results and ANN predictions

using original adaptive sampling for a 2-dimensional

problem a) eye height b) eye width. Five different values of

line width are shown (top to bottom: 60, 70, 80, 90, and 100

mils).

80

Figure 4.6 Correlation of the simulation results and ANN predictions

using improved adaptive sampling for a 2-dimensional

problem for a) eye height b) eye width. Five different values

of line width are shown (top to bottom: 60, 70, 80, 90, and

100 mils).

81

Figure 4.7 A circuit with two transmission lines connected in series. 81

Figure 4.8 Correlation of the simulation results and ANN predictions

using original adaptive sampling for a 4-dimensional

problem for a) eye height b) eye width.

82

xii

Figure 4.9 Correlation of the simulation results and ANN predictions

using improved adaptive sampling for a 4-dimensional

problem for a) eye height b) eye width.

83

Figure 4.10 An LVDS circuit which is used for the 7-dimensional

modeling problem.

84

Figure 4.11 Correlation of the simulation results and predictions of

conventional ANN, PKI-ANN and PKID-ANN for a 7-

dimensional problem for a) eye height b) eye width.

86

Figure 4.12 An LVDS circuit for the EH(t) modeling problem. 88

Figure 4.13 3-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of a) test case 1 b) test case 2 in the first

iteration.

88

Figure 4.14 3-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of a) test case 1 b) test case 2 in the second

iteration.

89

Figure 4.15 3-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of the worst test cases in the a) first and b)

second iteration.

90

Figure 4.16 3-Dimensional EH(t) Modeling Problem: sample

distributions after the a) first and b) second iteration.

90

Figure 4.17 3-Dimensional EH(t) Modeling Problem: testing error

histograms of neural networks for the a) first and b) second

iteration.

90

Figure 4.18 3-Dimensional EH(t) Modeling Problem: average validation

performances versus number of hidden neurons for the a)

first and b) second iteration.

91

Figure 4.19 5-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of a) test case 1 b) test case 2 in the first

iteration.

93

xiii

Figure 4.20 5-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of a) test case 1 b) test case 2 in the second

iteration.

93

Figure 4.21 5-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of a) test case 1 b) test case 2 in the third

iteration.

94

Figure 4.22 5-Dimensional EH(t) Modeling Problem: the actual eye

contours and reconstructed eye contours from predictions of

neural models of the worst test cases in a) the first, b)

second, and c) third iteration.

95

Figure 4.23 5-Dimensional EH(t) Modeling Problem: testing error

histograms of neural networks for the a) first, b) second, and

c) third iteration.

96

Figure 4.24 5-Dimensional EH (t) Modeling Problem: average validation

performances versus hidden neuron number for the a) first,

b) second, and c) third iteration.

97

Figure 4.25 An LVDS circuit with S-parameters file component. 98

Figure 4.26 3-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the first iteration.

100

Figure 4.27 3-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the second iteration.

100

Figure 4.28 3-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the third iteration.

100

Figure 4.29 3-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

102

xiv

predictions of neural models of the worst test cases in the a)

first, b) second, and c) third iteration.

Figure 4.30 3-Dimensional EH(t) Modeling Problem with 3D EM:

sample distribution after the a) first, b) second, and c) third

iteration.

103

Figure 4.31 3-Dimensional EH(t) Modeling Problem with 3D EM:

testing error histograms of neural networks for the a) first, b)

second, and c) third iteration.

104

Figure 4.32 3-Dimensional EH(t) Modeling Problem: average validation

performances versus hidden neuron number for the a) first,

b) second, and c) third.

105

Figure 4.33 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the first iteration.

107

Figure 4.34 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the second iteration.

107

Figure 4.35 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the third iteration.

108

Figure 4.36 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the fourth iteration.

108

Figure 4.37 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

predictions of neural models of a) test case 1 b) test case 2 in

the fifth iteration.

108

Figure 4.38 5-Dimensional EH(t) Modeling Problem with 3D EM: the

actual eye contours and reconstructed eye contours from

110

xv

predictions of neural models of the worst test cases in the a)

first, b) second, c) third iteration, d) fourth, and e) fifth

iteration.

Figure 4.39 5-Dimensional EH(t) Modeling Problem with 3D EM:

testing error histograms of neural networks for the a) first, b)

second, c) third, d) fourth, and e) fifth iteration.

111

Figure 4.40 5-Dimensional EH(t) Modeling Problem: average validation

performances versus hidden neuron number for the a) first,

b) second, c) third, d) fourth, and e) fifth iteration.

112

xvi

LIST OF ABBREVIATIONS

AMG Automated Model Generation

ANN Artificial Neural Network

BER Bit Rate Error

CIFE Conditional Infomax Feature Extraction

CMIM Conditional Mutual Info Maximization

ConDred Conditional Redundancy

DISR Double Input Symmetrical Relevance

DoE Design of Experiment

EM Electromagnetic

FCBF Fast Correlation-Based Filter

ICAP Interaction Capping

JMI Joint Mutual Information

LVDS Low Voltage Differential Signaling

MESFET Metal-Semiconductor Field-Effect Transistor

MIFS Mutual Information Feature Selection

MIM Mutual Information Maximization

MLP Multilayer Perceptron

MRMR Max-Relevance Min-Redundancy

PKI-ANN Prior Knowledge Input ANN

PKID-ANN Prior Knowledge Input Difference ANN

RAM Random-Access Memory

RF Radio Frequency

RTS Reduced Training Set

SI Signal Integrity

SOM Self-Organizing Map

UI Unit Interval

xvii

LIST OF SYMBOLS

BEH(t) Binned eye heights as a function of time, t.

Bi,(2j-1) The minimum value of the jth design parameters in Ri.

Bi,2j The maximum value of the jth design parameters in Ri.

C Capacitance.

ceil(.) Rounding towards positive infinity.

d Number of dimension of the modeled problem.

D Constant term.

dH Step size for hidden neurons searching.

e Vector of network errors.

EH(t) Eye heights as a function of time, t.

Er Region error of a region, r.

f(s) A rational function.

fc(xf, φ) Coarse model responses.

ff(xf, φ) Fine model responses.

g Gradient.

h Proportional term.

H Number of hidden neurons.

H(X) The entropy of distribution X.

H(X|Y) The conditional entropy of X given Y.

He Hessian matrix.

Hh Upper search boundary for fine searching process.

hi The ith hidden neuron.

Hl Lower search boundary for fine searching process.

Hmax Upper search boundary for hidden neuron searching process.

Hmin Lower search boundary for hidden neuron searching process.

Hopt Optimal value of H.

hsub Substrate height.

Hub Upper bound of H.

I Identity matrix.

I(X;Y) Mutual information between X and Y.

I(X;Y|Z) Conditional mutual information.

xviii

J Jacobian matrix.

Jcife(Xk) CIFE criterion of a feature Xk.

Jcmim(Xk) CMIM criterion of a feature Xk.

Jcondred(Xk) ConDred criterion of a feature Xk.

Jdisr(Xk) DISR criterion of a feature Xk.

Jicap(Xk) ICAP criterion of a feature Xk.

Jjmi(Xk) JMI criterion of a feature Xk.

Jmifs(Xk) MIFS criterion of a feature Xk.

Jmim(Xk) MIM criterion of a feature Xk.

Jmrmr(Xk) MRMR criterion of a feature Xk.

k A positive value where H = 2
k
.

K Number of frequency points.

kmax The maximum value of k.

kopt Value of k when H = Hopt.

L Number of layers of an ANN.

length(.) Length of a vector.

LTline Length of the transmission line.

m Number of output neurons.

M Number of S-parameters used as inputs.

mse(.) Mean squared error.

n Number of input neurons.

N Number of ports of the circuit.

Nhoriz Total number of pixels in the horizontal axis.

Nl Number of neurons at the lth layer of a feedforward ANN.

nr Weight assigned to a region, r based on its volume.

NS Number of symbols.

NT Number of time points.

Ntrials Number of ANNs created in each iteration of hidden neuron

searching.

Ntrn Length of training data.

Ntrneq Number of training equations.

Nvert Total number of pixels in the vertical axis.

Nw Number of unknown weights of the ANN.

xix

p(x) Marginal probability density function.

p(x|y) Conditional probability density function.

pq The qth pole.

Q Order of approximation using the vector fitting method.

R List of regions.

Ri The ith region in R.

Rnew The new regions created by splitting the worst performing region.

rq The qth residue.

Rterm Termination resistance.

S Set of currently selected features.

SDoE Sample size for DoE.

SRTS Sample size for RTS.

STline Separation between two lines of a differential pair.

t Time.

TanD Loss tangent.

tmax The maximum time.

tmin The minimum time.

tN Normalized desired ANN outputs.

tN,r The normalized desired ANN outputs within a region, r.

var(.) Variance of a vector.

Vmax The maximum voltage.

Vmin The minimum voltage.

w
l

ij
 Weight assigned to the connection between the ith neuron at the lth

and the jth neuron at (l-1)th layer.

WCEi The worst case error of the ith normalized output.

wk Weight vector in the kth iteration.

WTline Width of the transmission line.

xc Center of a region.

xf Design parameters.

xi The ith external input of an ANN.

xmax,i The maximum value of the ith design parameters.

xmin,i The minimum value of the ith design parameters.

xnz Design parameters that do not affect the Zdiff.

xx

xtrn Training samples.

xval Validation samples.

xz Design parameters that affect the Zdiff.

yANN1 Outputs of ANN1.

yANN2 Outputs of ANN2.

yANN3 Outputs of ANN3.

yD Outputs of the difference ANN.

yi The ith ANN output.

yN Normalized ANN outputs.

yN,r Normalized ANN outputs within a region, r.

yPKI Outputs of the PKI-ANN.

yPKID Outputs of the PKID-ANN.

ysim Simulator outputs.

z
l

i
 Output of the ith neuron at the lth layer.

Zdiff Differential impedance.

β Inter-feature dependency penalization factor.

γ Conditional penalization factor.

γ
l

i
 Weighted sum of the ith neuron at the lth layer.

εr Dielectric constant.

μ Combination coefficient.

σ(.) Neuron activation function.

φ Independent variables.

xxi

PERMODELAN GAMBAR RAJAH MATA BAGI SALURAN

BERKELAJUAN TINGGI MENGGUNAKAN RANGKAIAN NEURAL

BUATAN DENGAN ALGORITMA PERSAMPELAN SUAI YANG

DIPERBAIKI

ABSTRAK

Apabila kadar data meningkai kepada julat gigabit dan seterusnya, analisis

integriti isyarat (SI) menjadi semakin sukar dan lambat. Oleh itu, banyak penyelidik

telah mula mencari rangkaian neural tiruan (ANN) sebagai alternatif kepada alat

permodelan SI tradisional kerana ANN mudah digunakan dan cepat. Walau

bagaimanapun, sejumlah besar sampel perlu dijanakan untuk proses latihan ANN

untuk permodelan reka bentuk yang kompleks, dan ini mengakibatkan kos

pembinaan model rangkaian neural yang tinggi. Teknik pensampelan suai digunakan

untuk penjanaan data kerana fleksibilitinya di mana ia menjana sampel mengikut

ketidaklinearan kawasan-kawasan di ruang reka bentuk. Kerja ini mencadangkan

penambahbaikan kepada algoritma persampelan suai asal dan menggunakannya

sebagai kaedah persampelan untuk pemodelan rajah mata. Ini mengurangkan

bilangan sampel latihan sebanyak 16.1%, sampel pengesahan sebanyak 14.7% dan

masa pembinaan rangkaian neural sebanyak 23%. Disamping itu, penggunaan

rangkaian neural input pengetahuan sebelumnya (PKI-ANN) dan rangkaian neural

input pengetahuan sebelumnya perbezaan (PKID-ANN) untuk permodelan masalah

SI dimensi tinggi dicadangkan. Kesalahan kes terburuk yang dinormalkan untuk

PKI-ANN hanya 6.66% dan untuk PKID-ANN hanya 6.32% berbanding dengan

ANN konvensional yang sebanyak 11.44%. Akhir sekali, teknik rangkaian neural

bagi permodelan keseluruhan kontur kadar ralat bit (BER) dicadangkan untuk

memberikan lebih banyak maklumat kepada jurutera, seperti bentuk penuh mata

xxii

bukannya hanya ketinggian dan lebar mata. Prestasi pengujian purata R
2
 = 0.983

dicapai untuk teknik permodelan neural kontur BER.

xxiii

EYE DIAGRAM MODELING OF HIGH-SPEED CHANNELS USING

ARTIFICIAL NEURAL NETWORKS WITH AN IMPROVED ADAPTIVE

SAMPLING ALGORITHM

ABSTRACT

As data rates increase to the gigabit range and beyond, signal integrity (SI)

analysis becomes increasingly difficult and time consuming process. Thus, many

researchers have started to look out for artificial neural networks (ANNs) as an

alternative to traditional SI modeling tool because ANNs are easy to use and fast.

However, large amount of samples need to be generated for the training process of

the ANN for the modeling of a complex design, resulting in a high neural model

development cost. The adaptive sampling technique is used for the data generation

due to its flexibility where it generates samples according to the non-linearity of the

regions in the design space. This work proposes an improvement to the original

adaptive sampling algorithm and uses it as the sampling method for eye diagram

modeling. This reduces the number of training samples by 16.1%, validation samples

by 14.7% and neural model development time by 23%. Besides that, the use of the

prior knowledge input neural network (PKI-ANN) and the prior knowledge input

difference neural network (PKID-ANN) for the modeling of high dimensional SI

problem is proposed. The normalized worst-case error for the PKI-ANN is only

6.66% and for the PKID-ANN is only 6.32% as compared to that of the conventional

ANN which is 11.44%. Finally, the neural network technique for the modeling of

entire bit rate error (BER) contours is proposed which provides engineers with more

information, such as the full shape of eye instead rather than just the height and

width of the eye. An Average testing performance of R
2
=0.983 is achieved for the

BER contour neural modeling technique.

CHAPTER ONE

INTRODUCTION

1.1 Background Overview

As high-speed signal rates increase to the multi-gigahertz range, signal

integrity (SI) becomes a very significant factor in a circuit design. At low data rates,

a simple conductor can be used to transmit signals over short distances without

causing severe signal degradation issues. However, it becomes more difficult to

maintain the characteristics of the transmitted signal waveform as the signal speed

increases. This is because effects such as ringing, crosstalk, reflections, and ground

bounce start to become significant at high data rates even for short lines.

Consequently, the design engineers of high-speed circuits need to take these effects

into consideration, resulting in even more complex electronic designs. In addition,

the engineers will also need to consider for variations of design parameters due to

manufacturing process limitations. This can also affect the electrical properties of

high-speed circuits and cause further unwanted problems.

An example high-speed interconnect topology of a PCI Express 2.0 system is

shown in Fig. 1.1. Usually, SI analysis involves two simulation tools,

electromagnetic (EM) field solvers and circuit simulators [1]. An EM field solver is

used to extract the frequency response of the high-speed interconnect structure. The

circuit simulator is then used to carry out time domain simulations to obtain the

corresponding output waveforms. EM field solvers are accurate, but they are also

slow. Even though circuit simulators are generally fast, when the time domain

responses involve very long bit sequences, it can still take up a considerable amount

of time. Traditionally, engineers need to perform multiple EM and time domain

2

simulations during the circuit design stage to obtain the desired design which is

costly in terms of both computational power and time. Thus, there is an ever-

increasing demand for faster and more efficient strategies for high-speed circuit

modeling and analysis.

Figure 1.1: PCI Express 2.0 topology from the transmitter to the receiver.

Artificial neural networks (ANNs) have been widely applied in radio

frequency (RF) and microwave circuit modeling problems [2-6]. An ANN is an

information processing system, with its design inspired by the neuronal structure of

mammalian brains. A neural network can learn the relationship between the design

parameters and the electrical properties of electronic designs. Then, the well trained

neural network can be used in the design process, thereby partially or completely

replacing either the EM field solver or the circuit simulator or even both of them.

This will speed up the design process because a well-trained ANN is many times

faster than both the EM field solver and the circuit simulator. Fig. 1.2 shows the

differences between the traditional and neural networks based technique for SI

modeling where xf are the design parameters.

Tx
P

ackage
 M

o
d

e
l

V
ia M

o
d

e
l

C
o

n
n

e
cto

r

V
ia M

o
d

e
l

R
x P

ackage
 M

o
d

e
l

Tx Rx

3

(a)

(b)

Figure 1.2: SI modeling using a) traditional and b) neural networks technique.

1.2 Problem Statement

Simulation tools such as 3D electromagnetic field solvers can be accurate, but

slow, whereas faster models such as design equations and equivalent circuit models

lack accuracy. Therefore, there is a demand for more effective modeling strategies,

with a high level of accuracy and faster speed. Recently, ANNs have gained

popularity in the RF and microwave circuit modeling community as a new modeling

tool. The ANN can learn from the simulation data of a modeled problem, then

perform prediction based on the design parameters (inputs) to electrical properties

relationship (outputs) it learned. Once an ANN is trained, it is many times faster than

the EM field solver. In [6], the ANN is compared to EM simulators in terms of

speed. It is presented that full-wave EM simulation of a side-coupled circular

waveguide dual-mode filter using a mode-matching-based EM simulator takes about

6 minutes, and the simulation takes about 45 minutes to complete when using a

finite-element-based EM simulator. On the other hand, the ANN method only

4

requires 0.006 second for each evaluation. The popularity of ANNs in RF and

microwave circuit modeling has inspired the use of ANNs in the field of signal

integrity. Usually, the analysis of a high-speed channel requires at least two

simulations, a frequency domain, and a time domain simulation. Most of the time,

the 3D EM field solver is used for the frequency domain simulation to extract the S-

parameters of the design. S-parameters (also called scattering parameters) describe

the input-output relationship between ports or terminals in an electrical system. For

example, if there are two ports (Port 1 and Port 2) in a system, then S12 represents the

power transferred from Port 2 to Port 1. Then, a time domain simulation is performed

to obtain the output voltage waveform. Finally, the output voltage waveform is used

for the construction of an eye diagram which is commonly used by the designers for

signal integrity analysis. ANNs can be applied to the field of signal integrity to speed

up the simulation process by either replacing one or both simulations.

Traditionally, the sampling methods used in neural circuit modeling are one-

shot design approaches such as the design of experiment (DoE) and uniform grid

sampling. Usually, it is very hard for the designers to know the information about the

level of non-linearity across the design space before the sample generation process.

Additionally, the level of non-linearity is not uniform across the entire design space

most of the time. It is very easy for one-shot design approaches to cause

undersampling in non-linear regions and oversampling in highly linear regions

especially when a uniform grid sampling approach is used. If the sampling method

fails to provide the desired exploration of the design space after the sampling

process, then the designers may have to reset the grid or even repeat the sampling

process. Additionally, it is very difficult to explore the whole design space manually

as the design space is often too large and each simulation can take a very long time to

5

complete. Therefore, another sampling strategy called adaptive sampling is used

where it generates data points iteratively and intelligently at locations with high non-

linearity to have the greatest information gain [7]. Adaptive sampling usually starts

by generating a small number of samples, and then adds more samples in highly non-

linear regions in each iteration based on how the neural networks perform in each

region. This can prevent the generation of excessive samples and then lead to a better

exploration of the design space, which then enables the construction of better neural

models with fewer data points. However, the adaptive sampling strategy has a

weakness where it often focuses too hard on a few small, highly non-linear regions,

causing it to get stuck in these regions. This usually happens when these highly non-

linear regions also contain erroneous data. Sometimes, this can also prevent the

neural networks from converging. Thus, this work proposes a modification to be

done on the original adaptive sampling algorithm, allowing it to escape from these

regions.

1.3 Research Objectives

The objectives of this research are:

1. To apply artificial neural networks and knowledge embedded neural networks

for eye diagram modeling of electrical systems for signal integrity analysis.

2. To improve the adaptive sampling algorithm and use it for neural network

modeling of bit error rate contours.

1.4 Research Scope

This work focuses on the eye diagram modeling using ANNs, with the

adaptive sampling as the data generation strategy. ANNs are created to map the

design parameters to the SI metrics such as the eye height and eye width.

6

Two types of circuits are modeled, the single-ended and differential

microstrip transmission lines. The single-ended microstrip transmission lines have

data rate of 1 Gbps, and they are created and simulated using MATLAB RF toolbox.

The differential microstrip transmission lines have low-voltage differential signaling

(LVDS) standard with the data rate of 2.5 Gbps. The LVDS lines are created and

simulated using Advanced Design System (ADS) if EM capability is not needed, and

using SonnetLite if EM capability is required. Also, ADS is used for its channel

simulator, ChannelSim to construct the eye diagrams. Multilayer perceptron is the

only class of neural networks used in this work. The neural networks are constructed

using the MATLAB Neural Network Toolbox and trained using Levenberg-

Marquardt backpropagation algorithm.

There are several constraints in this research. Firstly, all the modeled eye

diagrams are horizontally symmetrical. Secondly, no noise is fed into the system at

the transmitter end. Thirdly, equalization method is not use at both the transmitter

and receiver end.

1.5 Thesis Outline

 The thesis begins with Chapter 1, which discusses the background, problem

statement, project objectives, project scope, and thesis outline.

The background of ANNs and previous works on applications of ANNs in the

field of signal integrity is reviewed in Chapter 2. Other than that, details about the

adaptive sampling algorithm are discussed. Several types of sampling strategy are

reviewed and compared. The knowledge embedded neural modeling technique is

also explained. This technique allows designers to make use of existing knowledge in

combination with the ANNs to further improve the prediction performance.

7

 Chapter 3 discusses the important processes in neural network development,

such as data generation, determination of neural network structure, training of neural

network, and evaluation of neural network. In the data generation process, the

workflow of frequency and time domain simulation are presented. Besides that, two

types of eye diagram modeling approaches are discussed: 1) to model an eye diagram

as an eye height and an eye width with one sampling point, and 2) to model an eye

diagram as the whole eye contour which is proposed in this work. The improvement

made to the original adaptive sampling is discussed. Finally, the feature selection

technique is discussed. Feature selection is used in the second eye modeling strategy

 The results in Chapter 4 are presented in several sections. Section 4.2

compares the performances of the original and improved adaptive sampling

algorithm for the modeling problem of a single-ended microstrip transmission line

structure. Section 4.3 compares the performances of conventional ANN, prior

knowledge input ANN (PKI-ANN), and prior knowledge input difference ANN

(PKID-ANN) on the modeling of a circuit with a low voltage differential signaling

(LVDS) standard. Section 4.4 shows the results for the modeling of the entire eye

contour using ANN.

 Chapter 5 concludes the whole project with some remarks and suggestions for

future work or research improvements.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

 This chapter presents the review of prior works in the field of SI modeling

using ANN. Section 2.2 discusses the background about ANN in terms of its

structure and computation of its outputs. Section 2.3 reviews the previous works in

SI neuro-modeling as well as the sampling techniques used by them. Eye diagram

modeling from design parameters and S-parameters are compared in terms of their

strengths and weaknesses. Section 2.4 discusses about knowledge embedded neural

networks which are ANNs with incorporated with existing knowledge in their

structure. Lastly, Section 2.5 discusses the background of various filter-based

feature selection methods.

2.2 Artificial Neural Networks

ANN is a simplified mathematical model of a biological neural network that

consists of interconnected neurons. The multilayer perceptron (MLP) is one of the

most widely used artificial neural networks. Its neurons are arranged in L layers,

where layer one is the input layer, layer L is the output layer, and layers two to L-1

are hidden layers. A neural network with one hidden layer is often considered a

shallow neural network while those with multiple hidden layers are considered deep

neural networks. The general structure of an L-layer perceptron with n input neurons

and m output neurons is shown in Fig. 2.1. During training, ANN learns by adjusting

its weights as to minimize the training errors, which are defined as the differences

between the desired outputs from the training samples and the modeled outputs by

the ANN. The training goal is to achieve generalization. A neural model with good

9

generalization can provide accurate answers even when it is tested with inputs that it

has never encountered before in the training process. Normally, a set of unused data

called test set is required to evaluate the generalization capability of a neural

network. The test set cannot be used for training and validation purposes, or even to

select one network from a group of candidate networks. Early stopping and

regularization are often used to improve the generalization capability of a neural

network and avoid overfitting. The readers are referred to reference [8] for more

background about ANN.

While back-propagation remains as one of the popular training algorithms, it

has been reported that the quasi-Newton, Levenberg-Marquardt and conjugate

gradient methods can outperform primitive back-propagation in terms of speed and

accuracy in the microwave modeling problems [9]. In [10], a comparative study

between several training algorithms such as adaptive backpropagation, conjugate

gradient, quasi-Newton, and Levenberg-Marquardt is performed. These algorithms

are tested based on their performance on two circuit modeling problems, i.e., 3-

conductor microstrip line and physics-based MESFET. A 3-layer MLP with 28

hidden neurons is used for the microstrip line example, whereas a 3-layer MLP with

60 hidden neurons is used for the metal-semiconductor field-effect transistor

(MESFET) example. The training results for microstrip line and MESFET examples

are presented in Table 2.1 and Table 2.2 respectively. The results show that for a

neural network with smaller size, Levenberg-Marquardt is the fastest. However,

Levenberg-Marquardt becomes slow compared to quasi-Newton for a large network.

10

Figure 2.1: Generic MLP structure [10].

Table 2.1: Comparison of various training algorithms for the microstrip line example

[10]

Training

Algorithm

No of Epochs Training

Error (%)

Avg. Test

Error (%)

CPU(s)

Adaptive

backpropagation

10,755 0.224 0.252 13,724

Conjugate

gradient

2169 0.415 0.473 5511

Quasi-Newton

1007 0.227 0.242 2034

Levenberg-

Marquardt

20 0.276 0.294 1453

Table 2.2: Comparison of various training algorithms for the MESFET example [10]

Training

Algorithm

No. of Epochs Training

Error (%)

Avg. Test

Error (%)

CPU(s)

Adaptive

backpropagation

15,319 0.98 1.04 11,245

Conjugate

gradient

1605 0.99 1.04 4391

Quasi-Newton

570 0.88 0.89 1574

Levenberg-

Marquardt

12 0.97 1.03 4322

The details about feedforward computation of MLP are presented in [11]. The

feedforward computation is used to obtain neural network outputs, yi from external

inputs, xi. The feedforward computation from the input to the output layer is as

follows:

11

1

1 1Input Layer: z , 1,2, , i ix i N n N   (2.1)

 Hidden Layer: , 1,2,..., , 2,3,...,l l

i i lz i N l L   

(2.2)

Output Layer: , 1,2,..., , L

i i L Ly z i N m N  

(2.3)

where N1 is the number of input neurons, NL is the number of output neurons, and Nl

is the number of hidden neurons at the lth layer. Fig. 2.2 shows the structure of the

ith hidden neuron at the lth layer. Each neuron is connected to all outputs of the

previous layer and each connection between ith neuron at lth and jth neuron at (l-1)th

layer is assigned a weight,
l

ijw . Other than that, the neuron has an additional weight,

0

l

iw named bias. Firstly, the weighted sum of the inputs,
l

i is computed. Then, the

output of the neuron,
l

iz is obtained by applying the activation function,  to
l

i .

Usually, the activation function is the sigmoid function

 
1

,
1

l
i

l

i
e


 





 (2.4)

or the tansig function

 
2

1,
1

l
i

l

i
e


 


 


 (2.5)

where

1

1

0

.
lN

l l l

i ij j

j

w z






 (2.6)

12

Figure 2.2: The structure of the ith hidden neuron of the second layer [11].

2.3 Signal Integrity Modeling with Artificial Neural Networks

Recent works show that ANNs have also been used in fast SI modeling

applications [12-18]. Most of the works focus on eye diagram modeling or prediction

of SI metrics such as crosstalk or jitter. The eye diagram is a graphical metric that is

commonly used to evaluate the performance of high-speed systems. Fig. 2.3 shows

an eye diagram with its height, width and timing jitter labeled. The eye diagram is

constructed by slicing the time-domain signal waveform into sections that are a small

number of symbols in length and overlaying them on top of each other. Ideally, the

eye-opening should be as wide as possible so that the design will have enough

margins for voltage and timing requirements at the receiver. An eye diagram can also

be used to estimate the bit error rate (BER) of a system, which is the rate at which

error occurs in digital data transmissions.

13

Figure 2.3: Example of a received eye diagram of a 2.5 Gbps system.

2.3.1 Sampling Techniques

Neural networks can only be used for circuit modeling after it is trained.

Thus, the first step in neural modeling is to generate input-target pairs of the problem

to be learned. Often, the generated input-target pairs are divided into three groups

called the training set, a validation set, and a testing set. The training set is used to

adjust the weights and biases during the training process of the neural model. The

validation set is used to determine the stopping criteria of the training process.

Finally, the testing set is used for an unbiased performance estimation of the neural

model. Design of experiments (DoE) is a very popular sampling method in various

neural modeling applications. One of its variants called the Taguchi design of

experiments, which use orthogonal arrays for efficient design space exploration, has

been used for the eye height and timing jitter neural modeling of high-speed

interconnects [12]. Although DoE has been used in many applications and proven to

be an effective sampling strategy, DoE sampling is a one-shot approach which means

that the sampling process and training process are carried out separately. If the

engineers do not have the full understanding of the input-target mapping function, it

Eye Width

Eye Height

Jitter

V
o

lt
ag

e,
 V

14

is very difficult to decide the sample size to be generated. Also, the degree of

linearity may not be consistent throughout the whole design space. These problems

can cause undersampling or oversampling to occur.

In order to solve this problem, adaptive sampling is proposed [7]. Instead of

generating all of the samples at once, adaptive sampling only generates a small

number of samples at first, and then adds further samples iteratively. The idea is to

add more samples in a highly non-linear region of the design space compared to the

linear regions. At the start of the algorithm, the whole design space is divided into 2
d

equal volume regions where d is the number of input variables of the problem.

Sometimes, the algorithm can also start with just a single region. Then, training and

validation samples are generated for each region and a neural model is created using

the newly generated samples. All regions are given performance scores based on the

validation errors, which are the errors between the neural network predictions and the

targets of the validation samples. The region with the worst performance (biggest

validation errors) is then further split into 2
d
 equal volume regions. The process

continues until the neural network‟s performance meets the minimum user-defined

accuracy. The user-defined accuracy can be any type of performance matrices such

as mean-square error and R
2
. Fig. 2.4 illustrates the splitting of the worst performing

region during the adaptive sampling process for a 2-dimensional modeling problem.

In this case, the training points are generated at the corners of the regions, whereas

the validation points are generated at the center of the regions. Once the splitting is

completed, the validation point of the worst performing region becomes a training

point at the next iteration. The pseudo-code of the adaptive sampling algorithm is

presented in Algorithm 2.1.

15

Algorithm 2.1 Adaptive Sampling
1 Initialize design space as region R;

2 while(netPerformance < desiredPerformance)
3 {
4 Generate non-existing training and validation samples within R;
5 Create and train an intermediate neural model using training samples;
6 Compute the network’s performance using validation samples;
7 if(netPerformance < desiredPerformance)
8 {
9 Identify worst performing region as R*;
10 Split R* into equal volume regions R1, R2, …, Rk, where k = 2d;
11 Delete R* from R;
12 Add regions R1, R2, …, Rk into R where R = [R, [R1, R2, …, Rk]];
13 }
14 End
15 }
16 End

The adaptive sampling also allows easier integration between data generation

and neural model creation. Several papers on automated model generation (AMG)

use the adaptive sampling as part of the AMG algorithm [19-22], and these works

focus on the modeling of S-parameters. In this work, adaptive sampling method is

used for data generation for the modeling of eye diagram from design parameters.

16

(a) (b)

(c)

Figure 2.4: 2D visualization of the splitting process. a) The worst performing region.

b) The region is split into 2n new regions, four new regions in this case; also the

validation point at the center of the original region is changed to a training point. c)

Generate new training and validation points for the worst performing region.

2.3.2 Input Data Selection/Preprocessing

Some researchers use the frequency responses of the circuits, such as the S-

parameters, in place of the design parameters as inputs of their neural models [13-

16]. It is a common practice to describe a complex design with its port responses

instead of its actual design parameters in order to protect any proprietary information

about its structure. This method is useful when the time domain simulation is much

slower than the frequency domain simulation. If that is the case, it is beneficial to

perform frequency domain simulation on large number of designs, and then only

select some relevant designs which are selected as training samples for time domain

simulation. Thus, the total number of time domain simulation can be reduced.

However, this technique has a few weaknesses compared to the conventional

approach of using design parameters. Firstly, the neural model generated is probably

17

not suitable for use in optimization routines since it is very difficult to know the

structures of the designs just from the S-parameters alone. Secondly, and perhaps

more importantly, the neural model, in this case, does not replace the EM field

solver, which is usually the most time-consuming part of the design simulation.

Third and finally, the neural model will have a large number of inputs, which may

slow down the training process. This is because S-parameters are frequency

dependent and are normally generated for at least a few hundred points across the

frequency range of interest. In addition, for an N-port network, the S-parameter

matrix has N
2
 elements. For example, the S-parameter matrix of a 2-port network has

four elements, S11, S12, S21, and S22. Therefore, the total amount of inputs will be

doubled due to the fact that S-parameters are complex numbers, with real and

imaginary parts. Despite this, continuous researches are being carried out in this area

to improve the accuracy and decrease the model development cost.

In order to reduce the number of simulations, a method called reduced

training set (RTS) has been proposed [14]. Initially, the frequency responses of all

designs are generated. Then, a certain number of frequency points, K are selected.

After that, three designs that contribute to the maximum, median, and minimum

values of the frequency responses are selected as the training samples for each of the

selected frequency. This is visualized in Fig. 2.5. The sample sizes of DoE, SDoE, and

RTS, SRTS are given by:

12 2 1d

DoES d   (2.7)

3 3RTSM S MK  (2.8)

where M is the number of S-parameters used as inputs. For example, if S11 and S21

are both selected as inputs, M is two. Unlike SDoE, SRTS does not grow exponentially

18

with d. Thus, this technique can reduce the amount of time domain simulations. RTS

technique is highly effective when the time for frequency domain simulations is

much shorter than time for time domain simulations.

Figure 2.5: Generation of input data for RTS.

Besides that, feature selection techniques can be applied to extract the

relevant frequencies from large amounts of uniformly sampled frequencies, which

can be up to hundreds or thousands of points. In [16], a feature selection method

centered around a fast correlation-based filter (FCBF) is used to identify the relevant

S-parameters metrics. This allows the engineers to train the neural model with only

relevant inputs, resulting in a more compact and accurate neural model.

Other than that, vector fitting has also been used to reduce the number of

inputs into neural networks. Vector fitting is a robust numerical method for rational

approximation in the frequency domain with poles and residues. The vector fitting

method approximates a rational function f(s) as:

Maximum

Median

Maximum

Median
Minimum

Minimum

19

1
()

Q q

q
q

r
f s D sh

s p
  


 (2.9)

where Q is the order of approximation, rq are the residues, pq are the poles, D and h

are the constant and proportional terms respectively. If f(s) does not have an

asymptotic value, term D and h can be set to zero, reducing Equation (2.9) into:

1
()

Q q

q
q

r
f s

s p



 (2.10)

The detailed description about vector fitting can be found in [23-25]. In [26], poles

and residues are used in place of S-parameters as inputs to neural networks. The S-

parameters of the designs are extracted into poles and residues as in Equation (2.10).

A higher order of approximation, Q can lead to better fitting accuracy during the

vector fitting process, but it can also increase the number of inputs to neural

networks. Thus, it is important to keep the Q as small as possible without

compromising the fitting accuracy. The poles and residues, with their corresponding

eye heights and eye widths are used for the neural model development process. The

comparison between neural networks with S-parameters and poles/residues as inputs

in terms of training time is shown in Table 2.3. The results display significant

speedup when vector fitting is used, the speedup factor ranges from about 22× (1

hidden neuron) to 1642× (10 hidden neurons). The speedup factor is obtained by

dividing the average training time of neural models with S-parameters as inputs by

the average training time of neural models with poles and residues as inputs. This is

because the vector fitting reduces the total number of inputs to the neural networks

from 1002 to just 108, thus reducing the amount of time required for the learning

process of neural networks.

20

Table 2.3: Training speed comparison of the neural models [27]

No. of

Hidden

Neurons

Average Training Time of

Neural Models with S-

parameters as Inputs (s)

Average Training Time of

Neural Models with Poles and

Residues as Inputs (s)

1 5.16 0.23

2 31.15 0.24

3 77.31 0.29

4 199.86 0.35

5 398.91 0.50

6 455.62 0.63

7 661.28 0.84

8 1069.50 1.04

9 6261.60 1.18

10 6418.70 3.91

2.3.3 Eye Diagram Prediction

Eye diagram prediction is one of the most commonly seen applications of

neural networks in the field of signal integrity. Specifically, most of the works focus

on modeling the eye-height and eye-width [13-18]. This is because the minimum

height and width of signals at the receiver are important metrics for the performance

evaluation of a high-speed channel. Sometimes, a neural network is also used to

model the timing jitter of the eye [12]. The eye diagram modeling problem is

described as follows. Suppose there is a function that maps design parameters (input)

to eye metrics (output), and that a neural network is to be used to learn that function.

Conventionally, two simulations are carried out to obtain the eye diagram. First,

frequency responses such as S-parameters are extracted from the design. Then the S-

parameters are used as a representation of the design in a transient simulation to

obtain the output waveform and the eye diagram is constructed. Therefore using a

trained neural network as a replacement for this mapping, both simulations can be

omitted, speeding up the design process significantly. This is especially useful in

cases where the eye diagram needs to be generated repeatedly as the design

parameters are tweaked, for example during an optimization process. In this work,

21

the neural networks are responsible for mapping the design parameters to eye

diagram metrics, which allow us to replace both simulators with the neural models.

2.4 Knowledge Embedded Neural Networks

 Sometimes, the performance of the ANN is not satisfactory when the

modeled problem has a highly nonlinear input-output relationship. In this case, the

existing knowledge can be incorporated into the structure of ANN. Several types of

knowledge embedded neural model are discussed such as prior knowledge input

ANN (PKI-ANN) and difference neural network.

2.4.1 Prior Knowledge Input ANN

 A PKI-ANN is just like a conventional ANN except that the PKI-ANN has

one or more additional input, and the inputs are the outputs of a mathematical model.

The mathematical model can be an empirical model or another ANN. For example,

the output space mapping neural model is a type of PKI-ANN where it models the

fine model responses from the coarse model responses and the design parameters.

The fine model represents an accurate but slow model such as the 3D EM field solver

whereas the coarse model represents a faster but less accurate model such as the

empirical model. Let the design parameters be xf, the independent variables be φ, the

coarse model responses be fc(xf, φ), the fine model responses be ff(xf, φ), and the PKI-

ANN outputs be yPKI. The independent variables can be frequency if the outputs are

in the frequency domain, and can be time if the outputs are in the time domain. The

main purpose of the output space mapping model is to map the coarse model

responses to fine model responses, which gives the speed of the coarse model and

accuracy of the fine model. The additional information from the coarse model can

reduce the complexity of a modeled problem compared to the modeling from design

22

parameters alone. This is because the problem has been changed to just correcting

the mistake made by the coarse model, which is usually easier. Sometimes, another

ANN can also be used as the coarse model. For example, a first ANN that is trained

to model the S-parameters of a transistor can be used in the construction of a second

ANN, which is used to model the S-parameters of another transistor that belongs to

the same class [27]. However, the performance of PKI-ANN largely depends on the

quality of the coarse model. A good coarse model can improve the accuracy of the

PKI-ANN significantly while a bad coarse model may give only minimal

improvement. The general structure of a PKI-ANN with the output space mapping

approach is shown in Fig. 2.6.

Figure 2.6: General structure of a PKI-ANN with output space mapping approach,

adapted/modified from [27].

2.4.2 Difference ANN

A difference ANN is a type of primitive PKI-ANN. Instead of modeling the

fine model responses, the difference ANN models the differences between fine and

coarse model responses. Then, the outputs of the difference ANN, yD is summed up

with the corresponding coarse model responses to obtain the final outputs. The

general structure of a difference ANN is shown in Fig. 2.7. Usually, the designers

y
PKI

 ≈ f
f
(x

f
, φ)

x
f
 Fine

Model

PKI-ANN φ

f
f
(x

f
, φ)

+

-

f
f
(x

f
, φ) - y

ANN

Coarse

Model

f
c
(x

f
, φ)

23

assume that it is easier to model the differences than to model the actual fine model

responses. However, this is not always the case. Sometimes, the differences can have

a more complicated relationship with the inputs than that of the fine model

responses. In this case, the improvement may be small or even none.

Figure 2.7: General structure of a difference ANN, adapted/modified from [27].

2.4.3 Prior Knowledge Input Difference ANN

 A PKI-ANN and a difference ANN can be used in combination to construct a

prior knowledge input difference ANN (PKID-ANN). The general structure of a

PKID-ANN is shown in Fig. 2.8. The PKI-ANN makes use of the existing

knowledge two times during the forward computation, first for the PKI-ANN and

second for the difference ANN. In [28], a 3-step modeling strategy using knowledge-

based technique is proposed. The first step is to create a conventional ANN. The

second step is to create a PKI-ANN by using the conventional ANN created in the

first step as the coarse model. In the third step, a difference ANN is created to model

the differences between the fine model and the PKI-ANN created during the second

step. The PKID-ANN outputs and the difference ANN outputs are summed to obtain

y
D

≈ f
f
(x

f
, φ) - f

c
(x

f
, φ)

x
f
 Fine

Model

Difference

ANN φ

f
f
(x

f
, φ)

+

-

f
f
(x

f
, φ) - f

c
(x

f
, φ)

Coarse

Model

f
c
(x

f
, φ)

+

+

Final

Output

+

-

f
f
(x

f
, φ) - f

c
(x

f
, φ)- y

ANN

24

the final outputs, yPKID. It is shown that the 3-step modeling strategy can give lower

errors as compared to the conventional neural modeling. Moreover, it takes less time

to train as well, provided that the total number of iterations and hidden neurons are

the same for both methods. The comparison between 3-steps and conventional ANN

techniques for Branin function modeling are tabulated in Table 2.4. Mathematical

formulation of Branin function is given as follows:

 
2

2

1 1
1 2 2 12

5 5 1
, 6 10 1 cos 10.

4 8

x x
f x x x x

  

   
         

  
 (2.11)

Both the 3-steps and conventional ANNs are trained using 10000 points. The 3-steps

ANN is constructed by combining ANN models developed during step one, two, and

three. As can be observed, the 3-steps ANN is able to give lower maximum and

mean errors compared to the conventional ANN. Other than that, the 3-steps ANN

also requires less time during the training process.

Figure 2.8: General structure of a PKID-ANN, adapted/modified from [28].

y
D

≈ f
f
(x

f
, φ) - y

PKI

x
f

φ

f
f
(x, φ)

+

-

f
f
(x

f
, φ) - y

PKI

f
c
(x

f
, φ)

+

+

Final

Output

+

-

 PKI-ANN

 Coarse

Model

 Fine

Model

 Difference

ANN

y
PKI

f
f
(x

f
, φ) - y

PKI
 - y

D

	Eye diagram modeling of high-speed channels using artificial neural networks with an improved adaptive sampling algorithm_Goay Chan Hong_2019_E3_MYMY

