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PERMODELAN GAMBAR RAJAH MATA BAGI SALURAN 

BERKELAJUAN TINGGI MENGGUNAKAN RANGKAIAN NEURAL 

BUATAN DENGAN ALGORITMA PERSAMPELAN SUAI YANG 

DIPERBAIKI 

ABSTRAK 

Apabila kadar data meningkai kepada julat gigabit dan seterusnya, analisis 

integriti isyarat (SI) menjadi semakin sukar dan lambat. Oleh itu, banyak penyelidik 

telah mula mencari rangkaian neural tiruan (ANN) sebagai alternatif kepada alat 

permodelan SI tradisional kerana ANN mudah digunakan dan cepat. Walau 

bagaimanapun, sejumlah besar sampel perlu dijanakan untuk proses latihan ANN 

untuk permodelan reka bentuk yang kompleks, dan ini mengakibatkan kos 

pembinaan model rangkaian neural yang tinggi. Teknik pensampelan suai digunakan 

untuk penjanaan data kerana fleksibilitinya di mana ia menjana sampel mengikut 

ketidaklinearan kawasan-kawasan di ruang reka bentuk. Kerja ini mencadangkan 

penambahbaikan kepada algoritma persampelan suai asal dan menggunakannya 

sebagai kaedah persampelan untuk pemodelan rajah mata. Ini mengurangkan 

bilangan sampel latihan sebanyak 16.1%, sampel pengesahan sebanyak 14.7% dan 

masa pembinaan rangkaian neural sebanyak 23%. Disamping itu, penggunaan 

rangkaian neural input pengetahuan sebelumnya (PKI-ANN) dan rangkaian neural 

input pengetahuan sebelumnya perbezaan (PKID-ANN) untuk permodelan masalah 

SI dimensi tinggi dicadangkan. Kesalahan kes terburuk yang dinormalkan untuk 

PKI-ANN hanya 6.66% dan untuk PKID-ANN hanya 6.32% berbanding dengan 

ANN konvensional yang sebanyak 11.44%. Akhir sekali, teknik rangkaian neural 

bagi permodelan keseluruhan kontur kadar ralat bit (BER) dicadangkan untuk 

memberikan lebih banyak maklumat kepada jurutera, seperti bentuk penuh mata 
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bukannya hanya ketinggian dan lebar mata. Prestasi pengujian purata R
2
 = 0.983 

dicapai untuk teknik permodelan neural kontur BER. 
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EYE DIAGRAM MODELING OF HIGH-SPEED CHANNELS USING 

ARTIFICIAL NEURAL NETWORKS WITH AN IMPROVED ADAPTIVE 

SAMPLING ALGORITHM 

ABSTRACT 

As data rates increase to the gigabit range and beyond, signal integrity (SI) 

analysis becomes increasingly difficult and time consuming process. Thus, many 

researchers have started to look out for artificial neural networks (ANNs) as an 

alternative to traditional SI modeling tool because ANNs are easy to use and fast. 

However, large amount of samples need to be generated for the training process of 

the ANN for the modeling of a complex design, resulting in a high neural model 

development cost. The adaptive sampling technique is used for the data generation 

due to its flexibility where it generates samples according to the non-linearity of the 

regions in the design space. This work proposes an improvement to the original 

adaptive sampling algorithm and uses it as the sampling method for eye diagram 

modeling. This reduces the number of training samples by 16.1%, validation samples 

by 14.7% and neural model development time by 23%. Besides that, the use of the 

prior knowledge input neural network (PKI-ANN) and the prior knowledge input 

difference neural network (PKID-ANN) for the modeling of high dimensional SI 

problem is proposed. The normalized worst-case error for the PKI-ANN is only 

6.66% and for the PKID-ANN is only 6.32% as compared to that of the conventional 

ANN which is 11.44%. Finally, the neural network technique for the modeling of 

entire bit rate error (BER) contours is proposed which provides engineers with more 

information, such as the full shape of eye instead rather than just the height and 

width of the eye. An Average testing performance of R
2
=0.983 is achieved for the 

BER contour neural modeling technique. 



CHAPTER ONE 

INTRODUCTION 

1.1 Background Overview  

As high-speed signal rates increase to the multi-gigahertz range, signal 

integrity (SI) becomes a very significant factor in a circuit design. At low data rates, 

a simple conductor can be used to transmit signals over short distances without 

causing severe signal degradation issues. However, it becomes more difficult to 

maintain the characteristics of the transmitted signal waveform as the signal speed 

increases. This is because effects such as ringing, crosstalk, reflections, and ground 

bounce start to become significant at high data rates even for short lines. 

Consequently, the design engineers of high-speed circuits need to take these effects 

into consideration, resulting in even more complex electronic designs. In addition, 

the engineers will also need to consider for variations of design parameters due to 

manufacturing process limitations. This can also affect the electrical properties of 

high-speed circuits and cause further unwanted problems. 

An example high-speed interconnect topology of a PCI Express 2.0 system is 

shown in Fig. 1.1. Usually, SI analysis involves two simulation tools, 

electromagnetic (EM) field solvers and circuit simulators [1]. An EM field solver is 

used to extract the frequency response of the high-speed interconnect structure. The 

circuit simulator is then used to carry out time domain simulations to obtain the 

corresponding output waveforms. EM field solvers are accurate, but they are also 

slow. Even though circuit simulators are generally fast, when the time domain 

responses involve very long bit sequences, it can still take up a considerable amount 

of time. Traditionally, engineers need to perform multiple EM and time domain 
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simulations during the circuit design stage to obtain the desired design which is 

costly in terms of both computational power and time. Thus, there is an ever-

increasing demand for faster and more efficient strategies for high-speed circuit 

modeling and analysis. 

 

Figure 1.1: PCI Express 2.0 topology from the transmitter to the receiver. 

Artificial neural networks (ANNs) have been widely applied in radio 

frequency (RF) and microwave circuit modeling problems [2-6]. An ANN is an 

information processing system, with its design inspired by the neuronal structure of 

mammalian brains. A neural network can learn the relationship between the design 

parameters and the electrical properties of electronic designs. Then, the well trained 

neural network can be used in the design process, thereby partially or completely 

replacing either the EM field solver or the circuit simulator or even both of them. 

This will speed up the design process because a well-trained ANN is many times 

faster than both the EM field solver and the circuit simulator. Fig. 1.2 shows the 

differences between the traditional and neural networks based technique for SI 

modeling where xf  are the design parameters. 
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(a) 

 

 

(b) 

Figure 1.2: SI modeling using a) traditional and b) neural networks technique. 

 

1.2 Problem Statement 

Simulation tools such as 3D electromagnetic field solvers can be accurate, but 

slow, whereas faster models such as design equations and equivalent circuit models 

lack accuracy. Therefore, there is a demand for more effective modeling strategies, 

with a high level of accuracy and faster speed. Recently, ANNs have gained 

popularity in the RF and microwave circuit modeling community as a new modeling 

tool. The ANN can learn from the simulation data of a modeled problem, then 

perform prediction based on the design parameters (inputs) to electrical properties 

relationship (outputs) it learned. Once an ANN is trained, it is many times faster than 

the EM field solver. In [6], the ANN is compared to EM simulators in terms of 

speed. It is presented that full-wave EM simulation of a side-coupled circular 

waveguide dual-mode filter using a mode-matching-based EM simulator takes about 

6 minutes, and the simulation takes about 45 minutes to complete when using a 

finite-element-based EM simulator. On the other hand, the ANN method only 
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requires 0.006 second for each evaluation. The popularity of ANNs in RF and 

microwave circuit modeling has inspired the use of ANNs in the field of signal 

integrity. Usually, the analysis of a high-speed channel requires at least two 

simulations, a frequency domain, and a time domain simulation. Most of the time, 

the 3D EM field solver is used for the frequency domain simulation to extract the S-

parameters of the design. S-parameters (also called scattering parameters) describe 

the input-output relationship between ports or terminals in an electrical system. For 

example, if there are two ports (Port 1 and Port 2) in a system, then S12 represents the 

power transferred from Port 2 to Port 1. Then, a time domain simulation is performed 

to obtain the output voltage waveform. Finally, the output voltage waveform is used 

for the construction of an eye diagram which is commonly used by the designers for 

signal integrity analysis. ANNs can be applied to the field of signal integrity to speed 

up the simulation process by either replacing one or both simulations. 

Traditionally, the sampling methods used in neural circuit modeling are one-

shot design approaches such as the design of experiment (DoE) and uniform grid 

sampling. Usually, it is very hard for the designers to know the information about the 

level of non-linearity across the design space before the sample generation process. 

Additionally, the level of non-linearity is not uniform across the entire design space 

most of the time. It is very easy for one-shot design approaches to cause 

undersampling in non-linear regions and oversampling in highly linear regions 

especially when a uniform grid sampling approach is used. If the sampling method 

fails to provide the desired exploration of the design space after the sampling 

process, then the designers may have to reset the grid or even repeat the sampling 

process. Additionally, it is very difficult to explore the whole design space manually 

as the design space is often too large and each simulation can take a very long time to 
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complete. Therefore, another sampling strategy called adaptive sampling is used 

where it generates data points iteratively and intelligently at locations with high non-

linearity to have the greatest information gain [7]. Adaptive sampling usually starts 

by generating a small number of samples, and then adds more samples in highly non-

linear regions in each iteration based on how the neural networks perform in each 

region. This can prevent the generation of excessive samples and then lead to a better 

exploration of the design space, which then enables the construction of better neural 

models with fewer data points. However, the adaptive sampling strategy has a 

weakness where it often focuses too hard on a few small, highly non-linear regions, 

causing it to get stuck in these regions. This usually happens when these highly non-

linear regions also contain erroneous data. Sometimes, this can also prevent the 

neural networks from converging. Thus, this work proposes a modification to be 

done on the original adaptive sampling algorithm, allowing it to escape from these 

regions.     

1.3 Research Objectives  

The objectives of this research are: 

1. To apply artificial neural networks and knowledge embedded neural networks 

for eye diagram modeling of electrical systems for signal integrity analysis. 

2. To improve the adaptive sampling algorithm and use it for neural network 

modeling of bit error rate contours.  

1.4 Research Scope 

This work focuses on the eye diagram modeling using ANNs, with the 

adaptive sampling as the data generation strategy. ANNs are created to map the 

design parameters to the SI metrics such as the eye height and eye width.   
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Two types of circuits are modeled, the single-ended and differential 

microstrip transmission lines. The single-ended microstrip transmission lines have 

data rate of 1 Gbps, and they are created and simulated using MATLAB RF toolbox. 

The differential microstrip transmission lines have low-voltage differential signaling 

(LVDS) standard with the data rate of 2.5 Gbps. The LVDS lines are created and 

simulated using Advanced Design System (ADS) if EM capability is not needed, and 

using SonnetLite if EM capability is required. Also, ADS is used for its channel 

simulator, ChannelSim to construct the eye diagrams. Multilayer perceptron is the 

only class of neural networks used in this work. The neural networks are constructed 

using the MATLAB Neural Network Toolbox and trained using Levenberg-

Marquardt backpropagation algorithm.  

There are several constraints in this research. Firstly, all the modeled eye 

diagrams are horizontally symmetrical. Secondly, no noise is fed into the system at 

the transmitter end. Thirdly, equalization method is not use at both the transmitter 

and receiver end.     

1.5 Thesis Outline 

 The thesis begins with Chapter 1, which discusses the background, problem 

statement, project objectives, project scope, and thesis outline. 

The background of ANNs and previous works on applications of ANNs in the 

field of signal integrity is reviewed in Chapter 2. Other than that, details about the 

adaptive sampling algorithm are discussed. Several types of sampling strategy are 

reviewed and compared. The knowledge embedded neural modeling technique is 

also explained. This technique allows designers to make use of existing knowledge in 

combination with the ANNs to further improve the prediction performance. 
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 Chapter 3 discusses the important processes in neural network development, 

such as data generation, determination of neural network structure, training of neural 

network, and evaluation of neural network. In the data generation process, the 

workflow of frequency and time domain simulation are presented. Besides that, two 

types of eye diagram modeling approaches are discussed: 1) to model an eye diagram 

as an eye height and an eye width with one sampling point, and 2) to model an eye 

diagram as the whole eye contour which is proposed in this work. The improvement 

made to the original adaptive sampling is discussed. Finally, the feature selection 

technique is discussed. Feature selection is used in the second eye modeling strategy   

 The results in Chapter 4 are presented in several sections. Section 4.2 

compares the performances of the original and improved adaptive sampling 

algorithm for the modeling problem of a single-ended microstrip transmission line 

structure. Section 4.3 compares the performances of conventional ANN, prior 

knowledge input ANN (PKI-ANN), and prior knowledge input difference ANN 

(PKID-ANN) on the modeling of a circuit with a low voltage differential signaling 

(LVDS) standard. Section 4.4 shows the results for the modeling of the entire eye 

contour using ANN.      

 Chapter 5 concludes the whole project with some remarks and suggestions for 

future work or research improvements. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

 This chapter presents the review of prior works in the field of SI modeling 

using ANN. Section 2.2 discusses the background about ANN in terms of its 

structure and computation of its outputs. Section 2.3 reviews the previous works in 

SI neuro-modeling as well as the sampling techniques used by them. Eye diagram 

modeling from design parameters and S-parameters are compared in terms of their 

strengths and weaknesses. Section 2.4 discusses about knowledge embedded neural 

networks which are ANNs with incorporated with existing knowledge in their 

structure.  Lastly, Section 2.5 discusses the background of various filter-based 

feature selection methods.  

2.2 Artificial Neural Networks  

ANN is a simplified mathematical model of a biological neural network that 

consists of interconnected neurons. The multilayer perceptron (MLP) is one of the 

most widely used artificial neural networks. Its neurons are arranged in L layers, 

where layer one is the input layer, layer L is the output layer, and layers two to L-1 

are hidden layers. A neural network with one hidden layer is often considered a 

shallow neural network while those with multiple hidden layers are considered deep 

neural networks. The general structure of an L-layer perceptron with n input neurons 

and m output neurons is shown in Fig. 2.1. During training, ANN learns by adjusting 

its weights as to minimize the training errors, which are defined as the differences 

between the desired outputs from the training samples and the modeled outputs by 

the ANN. The training goal is to achieve generalization. A neural model with good 
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generalization can provide accurate answers even when it is tested with inputs that it 

has never encountered before in the training process. Normally, a set of unused data 

called test set is required to evaluate the generalization capability of a neural 

network. The test set cannot be used for training and validation purposes, or even to 

select one network from a group of candidate networks. Early stopping and 

regularization are often used to improve the generalization capability of a neural 

network and avoid overfitting. The readers are referred to reference [8] for more 

background about ANN. 

While back-propagation remains as one of the popular training algorithms, it 

has been reported that the quasi-Newton, Levenberg-Marquardt and conjugate 

gradient methods can outperform primitive back-propagation in terms of speed and 

accuracy in the microwave modeling problems [9].  In [10], a comparative study 

between several training algorithms such as adaptive backpropagation, conjugate 

gradient, quasi-Newton, and Levenberg-Marquardt is performed. These algorithms 

are tested based on their performance on two circuit modeling problems, i.e., 3-

conductor microstrip line and physics-based MESFET. A 3-layer MLP with 28 

hidden neurons is used for the microstrip line example, whereas a 3-layer MLP with 

60 hidden neurons is used for the metal-semiconductor field-effect transistor 

(MESFET) example. The training results for microstrip line and MESFET examples 

are presented in Table 2.1 and Table 2.2 respectively. The results show that for a 

neural network with smaller size, Levenberg-Marquardt is the fastest. However, 

Levenberg-Marquardt becomes slow compared to quasi-Newton for a large network. 
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Figure 2.1: Generic MLP structure [10]. 

 

Table 2.1: Comparison of various training algorithms for the microstrip line example 

[10] 

Training 

Algorithm 

No of Epochs Training 

Error (%) 

Avg. Test 

Error (%) 

CPU(s) 

Adaptive 

backpropagation 

10,755 0.224 0.252 13,724 

Conjugate 

gradient 

2169 0.415 0.473 5511 

Quasi-Newton 

 

1007 0.227 0.242 2034 

Levenberg-

Marquardt 

20 0.276 0.294 1453 

 

Table 2.2: Comparison of various training algorithms for the MESFET example [10] 

Training 

Algorithm 

No. of Epochs Training 

Error (%) 

Avg. Test 

Error (%) 

CPU(s) 

Adaptive 

backpropagation 

15,319 0.98 1.04 11,245 

Conjugate 

gradient 

1605 0.99 1.04 4391 

Quasi-Newton 

 

570 0.88 0.89 1574 

Levenberg-

Marquardt 

12 0.97 1.03 4322 

 

The details about feedforward computation of MLP are presented in [11]. The 

feedforward computation is used to obtain neural network outputs, yi from external 

inputs, xi. The feedforward computation from the input to the output layer is as 

follows: 
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1

1 1Input Layer: z ,   1,2, ,   i ix i N n N    (2.1) 

 Hidden Layer: ,  1,2,..., ,  2,3,...,l l

i i lz i N l L   
 

(2.2) 

Output Layer: ,  1,2,..., ,  L

i i L Ly z i N m N  
 

(2.3) 

where N1 is the number of input neurons, NL is the number of output neurons, and Nl 

is the number of hidden neurons at the lth layer. Fig. 2.2 shows the structure of the 

ith hidden neuron at the lth layer. Each neuron is connected to all outputs of the 

previous layer and each connection between ith neuron at lth and jth neuron at (l-1)th 

layer is assigned a weight, 
l

ijw . Other than that, the neuron has an additional weight,

0

l

iw  named bias. Firstly, the weighted sum of the inputs, 
l

i is computed. Then, the 

output of the neuron, 
l

iz  is obtained by applying the activation function,   to 
l

i . 

Usually, the activation function is the sigmoid function 

 
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,
1

l
i

l
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or the tansig function 
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1

1
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.
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l l l

i ij j

j

w z






  (2.6) 
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Figure 2.2: The structure of the ith hidden neuron of the second layer [11]. 

 

2.3 Signal Integrity Modeling with Artificial Neural Networks 

Recent works show that ANNs have also been used in fast SI modeling 

applications [12-18]. Most of the works focus on eye diagram modeling or prediction 

of SI metrics such as crosstalk or jitter. The eye diagram is a graphical metric that is 

commonly used to evaluate the performance of high-speed systems. Fig. 2.3 shows 

an eye diagram with its height, width and timing jitter labeled. The eye diagram is 

constructed by slicing the time-domain signal waveform into sections that are a small 

number of symbols in length and overlaying them on top of each other. Ideally, the 

eye-opening should be as wide as possible so that the design will have enough 

margins for voltage and timing requirements at the receiver. An eye diagram can also 

be used to estimate the bit error rate (BER) of a system, which is the rate at which 

error occurs in digital data transmissions. 
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Figure 2.3: Example of a received eye diagram of a 2.5 Gbps system. 

 

2.3.1 Sampling Techniques 

Neural networks can only be used for circuit modeling after it is trained. 

Thus, the first step in neural modeling is to generate input-target pairs of the problem 

to be learned. Often, the generated input-target pairs are divided into three groups 

called the training set, a validation set, and a testing set. The training set is used to 

adjust the weights and biases during the training process of the neural model. The 

validation set is used to determine the stopping criteria of the training process. 

Finally, the testing set is used for an unbiased performance estimation of the neural 

model. Design of experiments (DoE) is a very popular sampling method in various 

neural modeling applications. One of its variants called the Taguchi design of 

experiments, which use orthogonal arrays for efficient design space exploration, has 

been used for the eye height and timing jitter neural modeling of high-speed 

interconnects [12]. Although DoE has been used in many applications and proven to 

be an effective sampling strategy, DoE sampling is a one-shot approach which means 

that the sampling process and training process are carried out separately. If the 

engineers do not have the full understanding of the input-target mapping function, it 
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is very difficult to decide the sample size to be generated. Also, the degree of 

linearity may not be consistent throughout the whole design space. These problems 

can cause undersampling or oversampling to occur.  

In order to solve this problem, adaptive sampling is proposed [7]. Instead of 

generating all of the samples at once, adaptive sampling only generates a small 

number of samples at first, and then adds further samples iteratively. The idea is to 

add more samples in a highly non-linear region of the design space compared to the 

linear regions. At the start of the algorithm, the whole design space is divided into 2
d
 

equal volume regions where d is the number of input variables of the problem. 

Sometimes, the algorithm can also start with just a single region. Then, training and 

validation samples are generated for each region and a neural model is created using 

the newly generated samples. All regions are given performance scores based on the 

validation errors, which are the errors between the neural network predictions and the 

targets of the validation samples. The region with the worst performance (biggest 

validation errors) is then further split into 2
d
 equal volume regions. The process 

continues until the neural network‟s performance meets the minimum user-defined 

accuracy. The user-defined accuracy can be any type of performance matrices such 

as mean-square error and R
2
. Fig. 2.4 illustrates the splitting of the worst performing 

region during the adaptive sampling process for a 2-dimensional modeling problem. 

In this case, the training points are generated at the corners of the regions, whereas 

the validation points are generated at the center of the regions. Once the splitting is 

completed, the validation point of the worst performing region becomes a training 

point at the next iteration. The pseudo-code of the adaptive sampling algorithm is 

presented in Algorithm 2.1. 
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Algorithm 2.1 Adaptive Sampling 
1 Initialize design space as region R; 

2 while(netPerformance < desiredPerformance)  
3 { 
4    Generate non-existing training and validation samples within R;        
5  Create and train an intermediate neural model using training samples; 
6  Compute the network’s performance using validation samples; 
7  if(netPerformance < desiredPerformance) 
8  { 
9   Identify worst performing region as R*; 
10   Split R* into equal volume regions R1, R2, …, Rk, where k = 2d; 
11   Delete R* from R;  
12   Add regions R1, R2, …, Rk into R where R = [R, [R1, R2, …, Rk]];   
13  } 
14  End 
15 } 
16 End 

The adaptive sampling also allows easier integration between data generation 

and neural model creation. Several papers on automated model generation (AMG) 

use the adaptive sampling as part of the AMG algorithm [19-22], and these works 

focus on the modeling of S-parameters. In this work, adaptive sampling method is 

used for data generation for the modeling of eye diagram from design parameters.  
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(a) (b) 

 
(c) 

Figure 2.4: 2D visualization of the splitting process. a) The worst performing region. 

b) The region is split into 2n new regions, four new regions in this case; also the 

validation point at the center of the original region is changed to a training point. c) 

Generate new training and validation points for the worst performing region. 

 

2.3.2 Input Data Selection/Preprocessing 

Some researchers use the frequency responses of the circuits, such as the S-

parameters, in place of the design parameters as inputs of their neural models [13-

16]. It is a common practice to describe a complex design with its port responses 

instead of its actual design parameters in order to protect any proprietary information 

about its structure. This method is useful when the time domain simulation is much 

slower than the frequency domain simulation. If that is the case, it is beneficial to 

perform frequency domain simulation on large number of designs, and then only 

select some relevant designs which are selected as training samples for time domain 

simulation. Thus, the total number of time domain simulation can be reduced. 

However, this technique has a few weaknesses compared to the conventional 

approach of using design parameters. Firstly, the neural model generated is probably 
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not suitable for use in optimization routines since it is very difficult to know the 

structures of the designs just from the S-parameters alone. Secondly, and perhaps 

more importantly, the neural model, in this case, does not replace the EM field 

solver, which is usually the most time-consuming part of the design simulation. 

Third and finally, the neural model will have a large number of inputs, which may 

slow down the training process. This is because S-parameters are frequency 

dependent and are normally generated for at least a few hundred points across the 

frequency range of interest. In addition, for an N-port network, the S-parameter 

matrix has N
2
 elements. For example, the S-parameter matrix of a 2-port network has 

four elements, S11, S12, S21, and S22. Therefore, the total amount of inputs will be 

doubled due to the fact that S-parameters are complex numbers, with real and 

imaginary parts. Despite this, continuous researches are being carried out in this area 

to improve the accuracy and decrease the model development cost.  

In order to reduce the number of simulations, a method called reduced 

training set (RTS) has been proposed [14]. Initially, the frequency responses of all 

designs are generated. Then, a certain number of frequency points, K are selected. 

After that, three designs that contribute to the maximum, median, and minimum 

values of the frequency responses are selected as the training samples for each of the 

selected frequency. This is visualized in Fig. 2.5. The sample sizes of DoE, SDoE, and 

RTS, SRTS are given by: 

12 2 1d

DoES d    (2.7) 

3 3RTSM S MK   (2.8) 

where M is the number of S-parameters used as inputs. For example, if S11 and S21 

are both selected as inputs, M is two. Unlike SDoE, SRTS does not grow exponentially 
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with d. Thus, this technique can reduce the amount of time domain simulations. RTS 

technique is highly effective when the time for frequency domain simulations is 

much shorter than time for time domain simulations. 

 

Figure 2.5: Generation of input data for RTS. 

 

Besides that, feature selection techniques can be applied to extract the 

relevant frequencies from large amounts of uniformly sampled frequencies, which 

can be up to hundreds or thousands of points. In [16], a feature selection method 

centered around a fast correlation-based filter (FCBF) is used to identify the relevant 

S-parameters metrics. This allows the engineers to train the neural model with only 

relevant inputs, resulting in a more compact and accurate neural model. 

Other than that, vector fitting has also been used to reduce the number of 

inputs into neural networks. Vector fitting is a robust numerical method for rational 

approximation in the frequency domain with poles and residues. The vector fitting 

method approximates a rational function f(s) as: 
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where Q is the order of approximation, rq are the residues, pq are the poles, D and h 

are the constant and proportional terms respectively. If f(s) does not have an 

asymptotic value, term D and h can be set to zero, reducing Equation (2.9) into: 
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


  (2.10) 

The detailed description about vector fitting can be found in [23-25]. In [26], poles 

and residues are used in place of S-parameters as inputs to neural networks. The S-

parameters of the designs are extracted into poles and residues as in Equation (2.10). 

A higher order of approximation, Q can lead to better fitting accuracy during the 

vector fitting process, but it can also increase the number of inputs to neural 

networks. Thus, it is important to keep the Q as small as possible without 

compromising the fitting accuracy. The poles and residues, with their corresponding 

eye heights and eye widths are used for the neural model development process. The 

comparison between neural networks with S-parameters and poles/residues as inputs 

in terms of training time is shown in Table 2.3. The results display significant 

speedup when vector fitting is used, the speedup factor ranges from about 22× (1 

hidden neuron) to 1642× (10 hidden neurons). The speedup factor is obtained by 

dividing the average training time of neural models with S-parameters as inputs by 

the average training time of neural models with poles and residues as inputs. This is 

because the vector fitting reduces the total number of inputs to the neural networks 

from 1002 to just 108, thus reducing the amount of time required for the learning 

process of neural networks. 
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Table 2.3: Training speed comparison of the neural models [27] 

No. of 

Hidden 

Neurons 

Average Training Time of 

Neural Models with S-

parameters as Inputs (s) 

Average Training Time of 

Neural Models with Poles and 

Residues as Inputs (s) 

1 5.16 0.23 

2 31.15 0.24 

3 77.31 0.29 

4 199.86 0.35 

5 398.91 0.50 

6 455.62 0.63 

7 661.28 0.84 

8 1069.50 1.04 

9 6261.60 1.18 

10 6418.70 3.91 

 

2.3.3 Eye Diagram Prediction 

Eye diagram prediction is one of the most commonly seen applications of 

neural networks in the field of signal integrity. Specifically, most of the works focus 

on modeling the eye-height and eye-width [13-18]. This is because the minimum 

height and width of signals at the receiver are important metrics for the performance 

evaluation of a high-speed channel. Sometimes, a neural network is also used to 

model the timing jitter of the eye [12]. The eye diagram modeling problem is 

described as follows. Suppose there is a function that maps design parameters (input) 

to eye metrics (output), and that a neural network is to be used to learn that function. 

Conventionally, two simulations are carried out to obtain the eye diagram. First, 

frequency responses such as S-parameters are extracted from the design. Then the S-

parameters are used as a representation of the design in a transient simulation to 

obtain the output waveform and the eye diagram is constructed. Therefore using a 

trained neural network as a replacement for this mapping, both simulations can be 

omitted, speeding up the design process significantly. This is especially useful in 

cases where the eye diagram needs to be generated repeatedly as the design 

parameters are tweaked, for example during an optimization process. In this work, 
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the neural networks are responsible for mapping the design parameters to eye 

diagram metrics, which allow us to replace both simulators with the neural models.  

2.4 Knowledge Embedded Neural Networks 

 Sometimes, the performance of the ANN is not satisfactory when the 

modeled problem has a highly nonlinear input-output relationship. In this case, the 

existing knowledge can be incorporated into the structure of ANN. Several types of 

knowledge embedded neural model are discussed such as prior knowledge input 

ANN (PKI-ANN) and difference neural network. 

2.4.1 Prior Knowledge Input ANN 

 A PKI-ANN is just like a conventional ANN except that the PKI-ANN has 

one or more additional input, and the inputs are the outputs of a mathematical model. 

The mathematical model can be an empirical model or another ANN. For example, 

the output space mapping neural model is a type of PKI-ANN where it models the 

fine model responses from the coarse model responses and the design parameters. 

The fine model represents an accurate but slow model such as the 3D EM field solver 

whereas the coarse model represents a faster but less accurate model such as the 

empirical model. Let the design parameters be xf, the independent variables be φ, the 

coarse model responses be fc(xf, φ), the fine model responses be ff(xf, φ), and the PKI-

ANN outputs be yPKI. The independent variables can be frequency if the outputs are 

in the frequency domain, and can be time if the outputs are in the time domain. The 

main purpose of the output space mapping model is to map the coarse model 

responses to fine model responses, which gives the speed of the coarse model and 

accuracy of the fine model. The additional information from the coarse model can 

reduce the complexity of a modeled problem compared to the modeling from design 
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parameters alone. This is because the problem has been changed to just correcting 

the mistake made by the coarse model, which is usually easier. Sometimes, another 

ANN can also be used as the coarse model. For example, a first ANN that is trained 

to model the S-parameters of a transistor can be used in the construction of a second 

ANN, which is used to model the S-parameters of another transistor that belongs to 

the same class [27]. However, the performance of PKI-ANN largely depends on the 

quality of the coarse model. A good coarse model can improve the accuracy of the 

PKI-ANN significantly while a bad coarse model may give only minimal 

improvement. The general structure of a PKI-ANN with the output space mapping 

approach is shown in Fig. 2.6.  

 
Figure 2.6: General structure of a PKI-ANN with output space mapping approach, 

adapted/modified from [27]. 

 

2.4.2 Difference ANN 

A difference ANN is a type of primitive PKI-ANN. Instead of modeling the 

fine model responses, the difference ANN models the differences between fine and 

coarse model responses. Then, the outputs of the difference ANN, yD is summed up 

with the corresponding coarse model responses to obtain the final outputs. The 

general structure of a difference ANN is shown in Fig. 2.7. Usually, the designers 
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assume that it is easier to model the differences than to model the actual fine model 

responses. However, this is not always the case. Sometimes, the differences can have 

a more complicated relationship with the inputs than that of the fine model 

responses. In this case, the improvement may be small or even none. 

 
Figure 2.7: General structure of a difference ANN, adapted/modified from [27]. 

 

2.4.3 Prior Knowledge Input Difference ANN 
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prior knowledge input difference ANN (PKID-ANN). The general structure of a 
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knowledge two times during the forward computation, first for the PKI-ANN and 

second for the difference ANN. In [28], a 3-step modeling strategy using knowledge-

based technique is proposed. The first step is to create a conventional ANN. The 

second step is to create a PKI-ANN by using the conventional ANN created in the 

first step as the coarse model. In the third step, a difference ANN is created to model 

the differences between the fine model and the PKI-ANN created during the second 

step.  The PKID-ANN outputs and the difference ANN outputs are summed to obtain 
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the final outputs, yPKID. It is shown that the 3-step modeling strategy can give lower 

errors as compared to the conventional neural modeling. Moreover, it takes less time 

to train as well, provided that the total number of iterations and hidden neurons are 

the same for both methods. The comparison between 3-steps and conventional ANN 

techniques for Branin function modeling are tabulated in Table 2.4. Mathematical 

formulation of Branin function is given as follows: 

 
2

2

1 1
1 2 2 12

5 5 1
, 6 10 1 cos 10.

4 8

x x
f x x x x

  

   
         

  
 (2.11) 

Both the 3-steps and conventional ANNs are trained using 10000 points. The 3-steps 

ANN is constructed by combining ANN models developed during step one, two, and 

three. As can be observed, the 3-steps ANN is able to give lower maximum and 

mean errors compared to the conventional ANN. Other than that, the 3-steps ANN 

also requires less time during the training process. 

 

Figure 2.8: General structure of a PKID-ANN, adapted/modified from [28]. 
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