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TIUBNANO BERASASKAN ANODIK ZIRKONIUM DIOKSIDA 

UNTUK FOTOPENURUNAN KROMIUM ENAM (Cr(VI) 

 

ABSTRAK 

 

Pencemaran air oleh ion-ion logam berat seperti kromium enam, Cr(VI) menjadi salah 

satu kebimbangan utama global. Pendedahan kepada Cr(VI) boleh menyebabkan 

masalah kesihatan yang teruk kerana ia adalah bahan karsinogen. Penyingkiran Cr(VI) 

daripada punca air kumbahan perlu dilakukan. Salah satu kaedah untuk menyingkirkan 

Cr(VI) daripada air kumbahan industri ialah melalui penurunan Cr(VI) kepada Cr(III) 

yang kurang berbahaya di atas foto-mangkin yang sesuai. Tiubnano berasaskan ZrO2 

difabrikasikan untuk fotopenurunan Cr(VI): tiubnano ZrO2 berdiri bebas (FSZNTs), 

campuran oksida tiubnano t-ZrO2 + a-TiO2 + amorfus ZrTiO2 dan orthorhombik-

ZrTiO4 + a-TiO2 (ZTNTs), dan campuran oksida tiubnano m-ZrO2 + α-Fe2O3 + Fe3O4 

(ZFNTs) melalui pengoksidaan anod kerajang-kerajang Zr, Ti-40 wt,% Zr, dan Fe-40 

wt.% Zr. Penganodan dilakukan di dalam elektrolit etilena glikol mengandungi F- pada 

parameter penganodan yang berbeza i.e. kepekatan NH4F, jumlah K2CO3 atau air, 

voltan yang dikenakan, dan masa penganodan. Panjang FSZNTs meningkat dari 5.6 

ke 12.5 µm dengan peningkatan tempoh penganodan tetapi berkurang dengan 

peningkatan NH4F, K2CO3, dan voltan yang dikenakan disebabkan pembubaran kimia 

yang pantas pada antara muka oksida|elektrolit. Manakala, panjang ZTNTs meningkat 

sehingga 28.6 µm dengan peningkatan tempoh penganodan, voltan yang dikenakan, 

dan NH4F tetapi berkurang kepada 7.5 µm dalam 9 vol.% air disebabkan terlebih 

pembubaran kimia di permukaan ZTNTs. Panjang ZFNTs tidak boleh diukur 

disebabkan susun atur ZFNTs yang tidak sejajar.  Kesan suhu penyepuhlindapan 
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terhadap morfologi, struktur kristal, sifat permukaan, dan sifat optikal tiubnano juga 

diperiksa dan dikaitkan dengan fotopenurunan Cr(VI). Daripada hasil kajian, amorfus 

FSZNTs lebih fotoaktif berbanding FSZNTs berhablur di bawah cahaya matahari 

(95% vs. 30% selepas 5 jam) yang dikaitkan dengan penyerapan Cr(VI) dan 

penyerapan cahaya yang lebih tinggi. Sebagai tambahan, campuran oksida ZTNTs dan 

ZFNTs mempamerkan kecekapan penyingkiran Cr(VI) yang lebih tinggi berbanding 

tiubnano oksida tulen seperti tiubnano ZrO2 (ZNTs), tiubnano TiO2 (TNTs), dan 

tiubnano α-Fe2O3 + Fe3O4 (FNTs) ditumbuh masing-masing di atas Zr, Ti, dan Fe yang 

dikaitkan dengan penyerapan Cr(VI) yang lebih baik dan pemisahan pembawa cas 

yang lebih tinggi. ZTNTs yang disebuhlindap pada 600 °C mempunyai kecekapan 

penyingkiran Cr(VI) lebih tinggi berbanding ZTNTs yang disepuhlindap pada 400 °C 

(100% vs. 53% selepas 5 h) bererti kekuatan penyerapan UV oleh fasa orthorhombik-

ZrTiO4. Sama juga dengan ZFNTs yang disepuhlindap pada 600 °C mempunyai 

kecekapan penyingkiran Cr(VI) yang sedikit tinggi berbanding ZFNTs yang 

disepuhlindap pada 400 °C (86% vs. 83% selepas 3 h) disebabkan kandungan fasa 

aktif cahaya nampak α-Fe2O3 yang lebih tinggi. Berbanding semua sampel, campuran 

oksida ZFNTs dianggap sebagai foto-pemangkin yang terbaik disebabkan penyerapan 

Cr(VI) yang sangat baik dan fotoaktiviti yang tinggi di bawah cahaya matahari.  
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ANODIC ZIRCONIUM DIOXIDE-BASED NANOTUBES FOR 

PHOTOREDUCTION OF HEXAVALENT CHROMIUM (Cr(VI))  

 

ABSTRACT 

 

Contamination of water by harmful heavy metal ions like hexavalent chromium, 

Cr(VI) is one of the major global concerns. Exposure to Cr(VI) can cause severe health 

problems as Cr(VI) is carcinogen. Removal of Cr(VI) from point of wastewater 

discharged is therefore required. One of the method to remove Cr(VI) from industrial 

wastewater is by reducing Cr(VI) to less harmful Cr(III) on a suitable photocatalyst. 

ZrO2-based nanotubes were fabricated for Cr(VI) photoreduction: freestanding ZrO2 

nanotubes (FSZNTs), mixed oxides t-ZrO2 + a-TiO2 + amorphous ZrTiO2 nanotubes 

and orthorhombic-ZrTiO4 + a-TiO2 nanotubes (ZTNTs), and mixed oxides m-ZrO2 + 

α-Fe2O3 + Fe3O4 nanotubes (ZFNTs) by anodization of Zr, Ti-40 wt.% Zr, and Fe-40 

wt.% Zr foils respectively. Anodization was conducted in F- containing ethylene glycol 

electrolyte at varying anodization parameters i.e. NH4F concentration, K2CO3 or water 

volume, applied voltage, and anodization time. Length of FSZNTs increased from 5.6 

to 12.5 µm with increasing anodization time but decreased at high NH4F, high K2CO3, 

and high applied voltage due to accelerated chemical dissolution at oxide|electrolyte 

interface. Whereas, the ZTNTs length increased up to 28.6 µm with increasing 

anodization time, applied voltage, and NH4F but decreased to 7.5 µm in 9 vol.% water 

due to excessive chemical dissolution at ZTNTs surface. Length of ZFNTs cannot be 

measured due to non-aligned ZFNT arrays. The effect of annealing temperature on 

morphology, crystal structure, surface properties, and optical properties of the 

nanotubes also were examined and correlated to photoreduction of Cr(VI). From the 
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results, the amorphous FSZNTs with BET surface area 25.3 m2/g were more 

photoactive than the crystalline FSZNTs under sunlight (95% vs. 30% after 5 h) that 

attributed to enhanced Cr(VI) adsorption and enhanced light absorption. In addition, 

the mixed oxide ZTNTs and ZFNTs exhibited higher Cr(VI) removal efficiency than 

pure oxide nanotubes like ZrO2 nanotubes (ZNTs), TiO2 nanotubes (TNTs), and α-

Fe2O3 + Fe3O4 nanotubes (FNTs) grown on Zr, Ti, and Fe foils, respectively that 

ascribed to high Cr(VI) adsorption and enhanced charge carriers separation. ZTNTs 

annealed at 600 °C has higher Cr(VI) removal efficiency than the ZTNTs annealed at 

400 °C (100% vs. 53% after 5 h) implies strong UV absorption of orthorhombic-

ZrTiO4 phase. Similarly, the Cr(VI) removal efficiency of ZFNTs annealed at 600 °C 

slightly higher than ZFNTs annealed at 400 °C (86% vs. 83% after 3 h) due to higher 

concentration of visible light active α-Fe2O3 phase. Among all samples, the mixed 

oxide ZFNTs were considered as the best photocatalyst due to excellent Cr(VI) 

adsorption and high photoactivity under sunlight.  
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Research background 

 In recent years, contamination of surface and ground waters by heavy metal 

ions like hexavalent chromium, Cr(VI) has attracted the attention from scientists, 

public, and government agencies as Cr(VI) is toxic and carcinogenic. It can induced 

many harmful effects to human beings and animals. Cr(VI) ions usually found in 

poorly treated wastewater released by industries like textile, leather tanning, paint, 

pigment manufacturing, photography, chrome plating, corrosion protection, wood 

preservation, fertilizers (Alanis et al., 2013), and metallurgy (Ketir et al., 2012). Since 

Cr(VI) ions are non-biodegradable, they can be bioaccumulated then biomagnified in 

animal or plant tissues. This happens when Cr(VI) ions are taken up by human or 

aquatic animals and stored faster than they are metabolized or excreted.    

 Cr(VI) has been classified as a Group 1 human carcinogen by the International 

Agency for Research on Cancer (IARC) and as a Group A inhalation carcinogen by 

the United State Environmental Protection Agency (US-EPA) (Lakshmanraj et al., 

2009). On the other hand, consumption of Cr(VI) can leads to serious health effects 

such as skin and stomach irritation or ulceration, dermatitis, liver damage, kidney 

circulation, nerve tissue damage, and death (Owlad et al., 2009).  

 According to the World Health Organization (WHO) (WHO, 2011) and 

Malaysian Drinking Water Quality Standard (Division, 2010), the permissible limit of 

Cr(VI) in drinking water is 0.05 mg/L. However, the concentration of Cr(VI) released 

by industries usually exceeds the permissible limit due to improper wastewater 

treatment prior discharge to surface water.   
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 Various methods have been employed to remove Cr(VI) from wastewater 

including chemical reduction and precipitation, coagulation, membrane separation, 

oxidation-reduction, ion exchange, electrochemical, and adsorption (Alanis et al., 

2013). Nonetheless, some of these methods provide serious sludge generation, 

exhausted materials disposal, and high operational costs that restricts their actual 

application (Alanis et al., 2013).  

 Photoreduction is considered as a clean and efficient method to remove Cr(VI) 

despite in small concentration. This process requires free electrons for reduction of 

Cr(VI). This can be achieved by utilize the photogenerated electrons in the conduction 

band (CB) of a semiconductor (Barakat, 2011). As shown in Figure 1.1, illumination 

of semiconductor with photon energy greater than the band gap of semiconductor leads 

to an excitation of electron (e-) from the valence band (VB) to the CB of a 

semiconductor producing a hole (h+) in the VB. The photogenerated electron-hole (e- 

- h+) pairs are then migrated to the semiconductor surface and under suitable redox 

potential, Cr(VI) is reduced to a less harmful trivalent chromium, Cr(III). 

Simultaneously, the photogenerated holes will oxidize water into oxygen (Botta et al., 

1999).   

 ZrO2 is a wide band gap semiconductor (Eg = ~5 - 6 eV) and possesses a highly 

negative CB edge level that beneficial for reduction (Gionco et al., 2013). As shown 

in Figure 1.2, the CB edge level for ZrO2 is -1.0 eV versus (vs.) normal hydrogen 

electrode (NHE) at pH = 0 which is more negative than TiO2 and Fe2O3. The reduction 

potential of Cr(VI) to Cr(III) in the form of ions HCrO4
−/Cr3+ under the standard 

condition is E0 = +1.35 V vs. NHE at pH = 0 (Vanysek, 2000). For efficient Cr(VI) 

photoreduction, the CB potential of semiconductor must be more cathodic than the 

reduction potential of Cr(VI)/Cr(III) (Cheng et al., 2015). Therefore, ZrO2 has higher 
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reduction potential of Cr(VI) than TiO2 and Fe2O3 despite the band gap of TiO2 and 

Fe2O3 is much smaller than ZrO2. This is the main reason of producing ZrO2-based 

photocatalysts for remediation of Cr(VI) in wastewater.  

 
Figure 1.1:  Mechanism of Cr(VI) photoreduction under illumination with photon 

energy greater than the band gap of semiconductor (Shaban, 2013) 

 

 

 

Figure 1.2: CB and VB edges for various semiconductors with respect of reduction 

potential of Cr(VI) to Cr(III). Adapted from (Jafari et al., 2016)  
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  Fabrication of ZrO2 photocatalysts in the form of one-dimensional (1-D) 

nanotubes (NTs) have become a research interest due to their large surface area, 

unidirectional electron transport, high active sites, and better charge carriers separation 

(Roy et al., 2010). High surface curvature of NTs contribute to quantum size effects. 

It generally alters the electronic properties of the semiconductor making them much 

more reactive to perform redox reaction on their surfaces (Roy et al., 2011). 

 ZrO2 nanotubes (ZNTs) can be synthesized by templated (Rao et al., 1997) or 

anodization (Tsuchiya and Schmuki, 2004) methods. Anodization is a process of 

growing metal oxide on metal surface in a suitable electrolyte under certain applied 

voltage.  Typical morphologies of anodic NT arrays grown on a metal foil are shown 

in Figure 1.3 (Fang et al., 2012b). As seen, the anodic oxide film comprised of closed-

pack self-organized NT arrays that grown perpendicular on metal substrate. The NTs 

exhibit an opened-top and closed-bottom in the scallop shaped.  

 

Figure 1.3: Typical morphologies of anodic NTs grown on a metal foil (adapted from 

Fang et al. (2012b) 
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1.2 Problem statement 

Efficiency of photocatalyst usually reduced due to limited visible light 

harvesting and fast recombination of photoinduced charge carriers. Despite ZrO2 

possesses the highly negative CB edge level than other oxide semiconductors (Figure 

1.2), the wide band gap ZrO2 (Eg = ~5 - 6 eV) (Inagaki et al., 1991;Vempati et al., 

2015) restricts its activation under UV light that accounts for less than 5% of solar 

radiation (Chen et al., 2010). The use of an artificial light source only adds into the 

complexity of wastewater treatment plant. Thus, sunlight activated photocatalysts are 

more preferred. To the best of knowledge, there are very limited works on Cr(VI) 

photoreduction over pure ZrO2 apart Botta et al. (1999) and Karunakaran et al. (2009). 

To date, none work reported on Cr(VI) photoreduction over ZrO2 nanotubes (ZNTs) 

under visible light.  

Numerous efforts have been devoted to extend the visible light harvesting of 

ZrO2 including: (i) coupling with lower band gap oxides (Vignesh et al., 2013) such 

as ceria (CeO2) (Wang et al., 2013b;Hao et al., 2017), zinc oxide (ZnO) (Sherly et al., 

2014;Ibrahim, 2015), lead dioxide (PbO2) (Kaviyarasu et al., 2017), bismuth oxide 

(Bi2O3) (Vignesh et al., 2013), and TiO2 (Zhang et al., 2015;Li et al., 2015;Ji et al., 

2017), or (ii) doping with metal (Xiao et al., 2015) or non-metal (Agorku et al., 2015) 

elements. For these reasons, titanium dioxide (TiO2) and hematite (α-Fe2O3) are the 

suitable candidates for formation of mixed oxide ZrO2 photocatalysts due to their 

lower energy band gaps; 3.2 eV  (Wu et al., 2013) and 2.2 eV  (Zhang et al., 2010), 

respectively.   

Since discovery of photocatalytic water splitting on TiO2 electrode in 1972 

(Fujishima, 1972), anatase (a)-TiO2 is the most studied photocatalyst due to its high 

photoactivity under UV, high stability towards photocorrosion, and low cost 
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(Hernández-Ramírez and Medina-Ramírez, 2015). Nevertheless, inefficient charge 

separation and limited range of light absorption are still a major challenge that 

diminishing the photocatalytic activity of TiO2. Whereas, due to narrow band gap of 

α-Fe2O3, it can be activated under visible light that collects up ~40% of the total solar 

energy. It also has high resistivity to corrosion, low toxicity, and perhaps the cheapest 

semiconductor because of its abundance in environment (Zhang et al., 2010;Xie et al., 

2014). However, it suffers poor electron mobility that become the major challenge for 

its practical application (Zhang et al., 2010). Hence, the combination of ZrO2 with α-

Fe2O3 could improve the photocatalytic activity of α-Fe2O3.  

It is generally accepted the photocatalytic performance of semiconductor is 

depending on light absorption range, reducibility, and oxidicability of species based 

on the CB and VB levels of the semiconductor (Li et al., 2017). In order to reduce 

Cr(VI) to Cr(III), the CB level of semiconductor must be more cathodic than the 

reduction potential of Cr(VI)/Cr(III) in the form of bichromate (HCrO4
-)/Cr3+) ions 

which is E0 = +1.35 V vs. NHE at pH = 0 (Vanysek, 2000). As listed in Table 1.1, the 

calculated CB levels for ZrO2, a-TiO2, and α-Fe2O3 are more negative than the 

reduction potential of Cr(VI)/Cr(III). Thus, all oxides can reduce Cr(VI) as consistent 

with other researchers (Ai et al., 2008;Mekatel et al., 2012;Djellabi and Ghorab, 

2014;Cheng et al., 2015). The equations for determine the CB and VB edges of 

semiconductor are given in the Appendix A. 

Besides can increase the visible light absorption, the combination of two 

different oxide semiconductors also can suppress the e- - h+ recombination at 

semiconductor-semiconductor heterojunction (Kumar et al., 2016). Long-lived e- - h+ 

pairs are obtained if ZrO2 is coupled with lower band gap semiconductor that has more 

negative CB edge level. Hence, the CB electrons can be transferred from the lower 



 

7 

 

band gap semiconductor to the wide band gap ZrO2 for an effective e- - h+ separation 

(Su et al., 2011).  

 

Table 1.1: List of semiconductors with their corresponding band gap, absorption 

edge, and the calculated CB and VB energy levels with respect to NHE at pH = 0 

(Xu and Schoonen, 2000;Kärkkänen, 2014;Polliotto et al., 2017;Tatarchuk et al., 

2018) 

Semiconductor 
Band gap 

(eV) 

Absorption 

edge (nm) 
ECB (eV) EVB (eV) 

m-ZrO2 5.4 230 -1.30 4.12 

t-ZrO2 6.4 194 -1.79 4.61 

α-Fe2O3 2.2 539 0.28 2.48 

a-TiO2 3.2 413 -0.29 2.91 

ortho-ZrTiO4 3.6 345 -0.49 3.19 

 

 As shown in Table 1.1, the CB edges for a-TiO2 and α-Fe2O3 are more positive 

than ZrO2. Thus, the CB electrons of a-TiO2 or α-Fe2O3 do not have sufficient energy 

to be transferred into the higher CB level of ZrO2. But, it can be overcome by an 

intermediate energy levels in the band gap of ZrO2 whereby the CB electrons are 

transferred to the lower defect levels instead of CB level of ZrO2 (Thejaswini et al., 

2017). While, the photogenerated holes are transferred from the more positive VB of 

ZrO2 to the more negative VB of the oxides for e- - h+ pair separation. Ortho-ZrTiO4 

is also listed in the Table 1.1 as this oxide was discovered after annealing the anodized 

Zr-40Ti alloy. 

 Defective and disordered oxide semiconductor has also attracted a great 

attention from the researchers due to its excellent visible light absorption. It is 

attributed to the presence of oxygen vacancies and defects in non-stoichiometric oxide 

leading to band gap narrowing (Wang et al., 2012). For instance, Sinhamapatra et al. 

(2016) synthesized a defective black ZrO2 powders by magnesiothermic reduction in 

5% hydrogen/argon from white ZrO2 powder. Low band gap of black ZrO2 (Eg = ~1.5 
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eV) was attributed to high concentration of oxygen vacancies and surface defects 

leading to enhanced sunlight absorption and excellent photocatalytic hydrogen 

production than white stoichiometric ZrO2 powder (Sinhamahapatra et al., 2016). 

Hence, it can be anticipated the structural disorder in the oxide is not essentially 

detrimental for photocatalysis but if made properly can produce the sunlight activated 

oxide semiconductor.  

Most of the photocatalytic studies usually performed on crystalline ZrO2 while 

little attention has been paid on amorphous ZrO2. It is commonly accepted the 

amorphous oxide tend to have low photocatalytic activity due to fast charge carrier’s 

recombination at the defect centers (Ohtani et al., 1997;Ghuman and Singh, 2013). 

Conversely, enhanced photocatalytic activity of the amorphous oxide was reported on 

photoreduction of Cr(VI) (Samarghandi et al., 2015), photodegradation of methylene 

blue (Buddee et al., 2011), and photodegradation of rhodamine B and 4-chlorophenol 

(Shao et al., 2015) that attributed to increased adsorption sites and efficient Cr(VI) 

reduction by photogenerated CB electrons (Samarghandi et al., 2015).  

Influence of ZrO2 polymorphs, e.g., tetragonal (t-ZrO2), monoclinic (m-ZrO2), 

and cubic (c-ZrO2) on photodegradation of methyl orange (MO) under UV light was 

reported by Basahel et al. (2015) and Rozana et al. (2017). Nevertheless, there is no 

general consensus on the most photoactive ZrO2 polymorphs. According to Basahel et 

al. (2015), m-ZrO2 was the most photoactive polymorph. Whereas, as oppose to 

Basahel et al. (2015), t-ZrO2 has higher photocatalytic activity than m-ZrO2 (Rozana 

et al., 2017). Therefore, the influence of ZrO2 polymorphs was investigated towards 

photoreduction of Cr(VI) by varying the annealing temperature of freestanding ZNTs 

(FSZNTs).  
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Despite there are several reports that investigate the effect of anodization 

parameters (i.e. ammonium fluoride (NH4F) concentration, water content, applied 

voltage, and anodization time) on ZNTs formation, no systematic study was made for 

ZNTs grown in ethylene glycol (EG)/NH4F added to it potassium carbonate (K2CO3) 

except Soaid et al. (2017). The author focused on the effect of K2CO3 volume on 

adhesion and dimension of the ZNTs for photocurrent and photodegradation of MO 

(Soaid et al., 2017). Similarly, apart from Grigorescu et al. (2013), none work reported 

on the effect of anodization parameters on Ti-Zr alloy grown in F- containing EG 

electrolyte. Grigorescu et al. (2013) only focused on the influence of applied voltage 

on diameter of ZTNTs for antibacterial application (Grigorescu et al., 2013). To date, 

only Guo et al. (2013) reported on NTs grown on Fe-Zr alloy in F- containing EG. But, 

no systematic studies have been carried out by the authors on the effect of anodization 

parameters towards morphology of anodized Fe-Zr. As mentioned, this thesis 

attempted to record all observation on oxide growth on Zr-alloys.   

 

1.3 Research objectives 

The objectives of this research are: 

i. To synthesis the FSZNTs, mixed oxide ZTNTs, and mixed oxide ZFNTs by 

anodic oxidation of Zr, Ti-40 wt.% Zr, and Fe-40 wt.% Zr foils in F- containing 

EG electrolyte. 

ii. To optimize the FSZNTs, mixed oxide ZTNTs, and mixed oxide ZFNTs by 

varying the anodization parameters (i.e. NH4F concentration, K2CO3 or water 

content, applied voltage, and anodization time) and annealing temperature. 

iii. To apply the fabricated FSZNTs, ZTNTs, and ZFNTs for photoreduction of 

Cr(VI) under irradiation of sunlight or UV. 
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1.4 Thesis outline 

 This thesis can be divided into five main chapters; Chapter 1 introduces the 

significant of this research and its objectives. Chapter 2 elaborates some theories or 

underlying mechanisms on NTs formation and photocatalysis. Literature surveys were 

included in this chapter to find the research gap. The detail procedures on fabrication 

of NTs and photoreduction test were explained thoroughly in Chapter 3. Chapter 4 

gives the detailed explanation regarding the obtained results. The discussion on the 

results was divided into three main parts; i) fabrication of FSZNTs by anodic oxidation 

of Zr in EG/NH4F/K2CO3 electrolyte, ii) fabrication of ZTNTs by anodic oxidation of 

Ti-40 wt.% Zr alloy in EG/NH4F/H2O electrolyte, and iii) fabrication of ZFNTs by 

anodic oxidation of Fe-40 wt.% Zr in EG/NH4F/H2O electrolyte. Finally, Chapter 5 

concludes all the research outcomes with some recommendations for future works.   
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CHAPTER TWO  

LITERATURE REVIEW 

 

2.1 Introduction 

 This chapter starts on describing Cr(VI) pollution in Malaysia, reasons and 

methods to remove them. Then, the growth of anodic ZNTs and mixed oxide NTs is 

reviewed in details. Photocatalytic reduction of Cr(VI) over ZrO2-based photocatalysts 

is also discussed by examining the related literatures.     

 

2.1.1 Heavy metal pollution in Malaysia 

 Heavy metal can be defined as a metal that has density more than 5 g/cm3 

(Järup, 2003). It naturally exists in the earth crust and found in soils, rocks, sediments, 

waters, and microorganisms (Mohammed et al., 2011). But, the main source of heavy 

metal usually arises from anthropogenic activities like mining, industrial, and 

agriculture. Heavy metal ions have high mobility and hence they can be transported 

from one medium to another within environment as illustrated in Figure 2.1 (Kobielska 

et al., 2018). From point of discharged or leaching, they can enter soil, ground or 

surface water and subsequently bioaccumulated within living organisms causing 

toxicity and damage. Despite some of heavy metal ions are essential for human 

biological system, but if the intake of these heavy metal ions exceeds the provisional 

maximum tolerable daily intake limit, they can cause toxicity. To make it worse, heavy 

metal ions are non-biodegradable and have an infinite lifetime hence they are persist 

in the environment. 
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 Contamination of heavy metal ions in Malaysia have been investigated by a 

few local researchers. Considerable amount of chromium (Cr) was detected in 

sediments (Sany et al., 2013), soils (Sow et al., 2013;Hossain et al., 2014), dusts (Latif 

et al., 2013), fishes (Bashir et al., 2013), groundwater (Isa et al., 2013), cooked rice 

(Omar et al., 2015), human teeth dentine (Asaduzzaman et al., 2017) and in cigarette 

(Ismail et al., 2017). 

 

Figure 2.1: Transportation routes for heavy metal ions within environment 

(Kobielska et al., 2018) 

 

Table 2.1 tabulates the Cr pollution in several states in Malaysia for the past 

five years (2013 – 2017). As seen, some states heavily contaminated with Cr like 

Ranau, Sabah (Tashakor et al., 2014), Bukit Rokan and Petasih, Negeri Sembilan 

(Tashakor et al., 2014), and Rawang, Selangor (Praveena and Aris, 2017) resulting 

from cocoa plantation, palm oil and rubber plantation, and automotive industry, 

respectively. The use of pesticides and herbicides to control the insects and weeds in 

plantation and chrome plating used in automotive industry contribute to Cr(VI) 
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pollution that consequently contaminating river, sediment, and soils. Hence, a proper 

wastewater treatment must be implemented to curb the Cr(VI) pollution from point of 

water discharge. 

 

Table 2.1: Cr pollution in several states in Malaysia from year 2013 – 2017 

Polluted area 
Cr 

(mg/kg) 
Possible sources Ref. 

Port Klang, 

Selangor 
46.4 

Industrial wastewater and 

port activities 
(Sany et al., 2013) 

Bandar Baru Bangi 

and Kajang, 

Selangor 

2.0 
Electronic and chemical 

industries 
(Latif et al., 2013) 

Kuala Lumpur 51.8 
Electronic and chemical 

industries 
(Han et al., 2013) 

Langat River, 

Selangor 
15.9 

Oil palm plantations, 

shipping, and steelmaking 
(Lim et al., 2013) 

Gebeng industrial 

city, Pahang 
10.7 Petrochemical plant 

(Hossain et al., 

2014) 

Ranau, Sabah 15145 Cocoa plantation 
(Tashakor et al., 

2014) 

Bukit Rokan and 

Petasih, Negeri 

Sembilan 

6614 
Palm oil and rubber 

plantation 

(Tashakor et al., 

2014) 

Klang, Selangor 14.0 
Electronic and chemical 

industries 

(Yuswir et al., 

2015) 

Langat River, 

Selangor 
21.0 

Oil palm plantations, 

shipping, and steelmaking 

(Kadhum et al., 

2015) 

Bayan Lepas Free 

Industrial Zone, 

Penang 

38.0 
Electronic and chemical 

industries 

(Khodami et al., 

2016) 

Kelantan River, 

Kelantan 
63.1 

Logging and mining 

activities 

(Wang et al., 

2017a) 

Rawang, Selangor 501.3 Automotive industry 
(Praveena and 

Aris, 2017) 

 

2.1.2 Hazards of heavy metals  

The consumption of animals or plants that have been contaminated by heavy 

metal ions can cause hazards to human body. The heavy metal ions will be 

accumulated in human body until reach to toxic level that subsequently induces 
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adverse health deterioration. The continuous exposure to heavy metal ions like As(III), 

Cd(II), Cr(VI), Pb(II), and Hg(II) can result in several health problems as shown in 

Table 2.2.  

 

Table 2.2: Toxicities of several heavy metal ions and their permissible limit in water 

(Division, 2010;WHO, 2011;EPA, 2017) 

Heavy 

metal 

ion 

Toxicities 

Permissible limit (mg/L) 

US-EPA WHO 

Malaysian 

Drinking 

Water 

Quality 

Standard 

As(III) 

Serious effects of the neurologic, 

respiratory, hematologic, 

cardiovascular, and 

gastrointestinal systems (Gehle, 

2009) 

0.000 0.01 0.01 

Cd(II) 

Lung damage, kidney disease, 

and lung cancer (Registry, 

2015b) 

0.005 0.003 0.003 

Cr(VI) 

Skin and stomach irritation or 

ulceration, dermatitis, liver 

damage, kidney circulation, 

nerve tissue damage, and death 

(Owlad et al., 2009) 

0.100 0.05 0.05 

Pb(II) 

Delays in physical or mental 

development, children could 

show slight deficits in attention 

span and learning abilities, 

kidney problems, and high blood 

pressure (Owlad et al., 2009) 

0.000 0.01 0.01 

Hg(II) 

Anxiety, excessive shyness, 

anorexia, sleeping problems, 

loss of appetite, irritability, 

fatigue, forgetfulness, tremors, 

changes in vision, and changes 

in hearing (Registry, 2015a) 

0.002 0.006 0.001 

 

The continuous exposure to Cr(VI) can leads to skin and stomach irritation or 

ulceration, dermatitis, liver damage, kidney problem, nerve tissue damage, and death 

(Owlad et al., 2009). The permissible limit of Cr(VI) in drinking water is 0.05 mg/L 
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as regulated by World Health Organization (WHO) (WHO, 2011) and Malaysian 

Drinking Water Quality Standard (Division, 2010). Inhaling Cr(VI) on the other hand 

can induce the formation of cancerous cell as Cr(VI) ions have been classified as a 

Group 1 human carcinogen by the International Agency for Research on Cancer and 

as a Group A inhalation carcinogen by the United State Environmental Protection 

Agency (US-EPA) (Lakshmanraj et al., 2009).  

Cr usually exists in the form of Cr(VI) and Cr(III). Cr(VI) is 1000 times more 

toxic and highly mobile than Cr(III) (Katz and Salem, 1993). As mentioned, Cr(VI) 

ions in wastewater usually released by industries like steelmaking (Bankole et al., 

2014), tanneries, electroplating, leathering, and textile (Ismail et al., 2013). Cr(III) on 

the other hand naturally occurred in the environment and is one of the essential 

nutrients for human body (Owlad et al., 2009). Converting Cr(VI) to Cr(III) may pose 

a solution towards excess of Cr(VI) in the environment. Cr(III) can then be easily 

removed by precipitation of chromium hydroxide, Cr(OH)3 at high pH (Barrera-Díaz 

et al., 2012). 

 

2.2 Techniques to remove Cr(VI)  

Several methods can be used to remove Cr(VI) from wastewater including 

adsorption, membrane filtration, ion exchange, electrochemical treatment, and 

reduction (Owlad et al., 2009). The explanation regarding each method is elaborated 

as follows. 

 

2.2.1 Adsorption 

 Adsorption is a process whereby the Cr(VI) ions are concentrated on adsorbent 
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surface (Owlad et al., 2009). Cr(VI) is transferred from bulk solution to an adsorbent 

solid surface via physical and/or chemical bonding (Barakat, 2011). Several low-cost 

adsorbents were used to remove Cr(VI) from contaminated wastewater including an 

agricultural waste, industrial by-product, natural material, or modified biopolymers 

(Barakat, 2011). The examples of natural adsorbents are clays (Zhao et al., 2013), 

eggshell membrane (Daraei et al., 2014), rice straw (Elmolla et al., 2016), and 

Hibiscus Cannabinus kenaf (Omidvar Borna et al., 2016). The examples of industrial 

by-product adsorbents are dolochar (Panda et al., 2017), cork waste (Sfaksi et al., 

2014), and sugar wastes (Anastopoulos et al., 2017). Despite this method is efficient 

to treat high concentration of Cr(VI) up to 500 ppm (Srivastava et al., 2017), the 

adsorbent surface still enriched with toxic Cr(VI) that requires further treatment 

method before discard them to the environment.  

 

2.2.2 Membrane filtration 

Membrane filtration is used to remove the suspended solid and inorganic 

contaminants like heavy metals from wastewater. The removal efficiency is dependent 

on membrane pore size and molecular weight of the suspended solid. To allow the 

water passage and filtration of unwanted contaminants, the size of solid contaminants 

must be larger than the membrane pore size (Barakat, 2011). Several kinds of 

membranes can be utilized including ultrafiltration (UF), reverse osmosis (RO), and 

nanofiltration (NF)  (Barakat, 2011).  

 UF is a membrane technique that working at low transmembrane pressure. The 

heavy metal ions can be passed easily through the UF membranes due to its small size. 

Whereas, RO uses a semi-permeable membrane that allows the purified water to pass 

through the membrane while rejecting the contaminants. NF is an intermediate process 
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of UF and RO (Fu and Wang, 2011). This method is suitable for remediation of low 

Cr(VI) concentration as low as 1 ppm (Li et al., 2016) but suffered to membrane 

fouling (Fu and Wang, 2011).  

 

2.2.3 Ion exchange 

Ion exchange works by exchanging cations between cations exchangers (e.g.  

synthetic resins, natural zeolites, or montmorillonites) with heavy metal ions in the 

solution. For synthetic resins, the most common cation exchangers are strongly acidic 

resins (sulfonic acid groups, i.e., -SO3H) and weakly acid resins (carboxylic acid 

groups, i.e., -COOH). Hydrogen ions in the functional groups exchange ions with 

metal cations in the heavy metals (Fu and Wang, 2011). It can efficiently remove 

Cr(VI) but the ion exchange resins must be reproduced by chemical reagents every 

time they are exhausted and this will induce serious secondary pollution. Besides, it is 

also expensive which is not suitable for large scale operation (Fu and Wang, 2011). 

 

2.2.4 Electrochemical treatment 

 This process can be divided into three established methods (Fu and Wang, 

2011):  

i. Electrocoagulation (EC) – by generation of coagulants via in-situ. The metal is 

firstly oxidized to produce the metal ions at anode, and the hydrogen gas is 

released at cathode. The hydrogen gas is used to float the flocculated 

particles/precipitates out from water. For instance, Cr(VI) is firstly reduced to 

Cr(III) at the cathode before precipitated into Cr(OH3) and removed from the 

solution by floatation of Cr(OH3) precipitates.  
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ii. Electroflotation (EF) – is a solid-liquid separation process, whereby the tiny 

bubbles of hydrogen and oxygen gases released from water electrolysis are 

used to float the solid Cr(OH)3 to the water surface.  

iii. Electrodeposition (ED) – for solid metal recovery from wastewater. The solid 

metal is deposited on the cathode surface.  

The rapid and high removal efficiency was obtained by using coupled 

techniques of EC-EF (Aoudj et al., 2015). But, it is not practical for actual application 

due to its expensive electrical supply. 

 

2.2.5 Reduction 

 Cr(VI) is a diprotic acid with pKa value of 5.9. At pH > 6, the main species is 

tetrahedral ion (CrO4
2-) which causes a yellowish color to the solution. At pH range 6 

> pH > 2, bichromate (HCrO4
-) and dichromate (Cr2O7

2-) ions coexist. At pH < 1, the 

main solute is chromic acid (H2CrO4) (Ottonello, 2002). Cr(VI) ions are highly mobile 

and strong oxidants. Because of this, sorption is rather difficult, making removal via 

adsorption to be less efficient. On the other hand, Cr(III) forms sparingly soluble solids 

like Cr(OH)3 which is less mobile. Therefore, redox transformation of Cr(VI) to Cr(III) 

has been seen as an effective process for controlling the transport of Cr(VI) in the 

environment. A number of mechanisms have been proposed for reduction of Cr(VI) 

involving combinations of one, two and three-electrons reduction processes.  There is 

a possibility of one-electron reducing steps from Cr(VI) to Cr(V) then to Cr(IV) and 

finally to Cr(III) as the stable final product or a single, three-electrons reduction 

process (Botta et al., 1999). For reduction to happens, electrons must be transferred 

from a reductant to Cr(VI) ions.  
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 Cr(VI) can be reduced by several well-known reductants that can donate 

electrons to Cr(VI) compounds. Fe(II) salts or Fe(II) containing solids typically used 

as reducing materials (Eary and Rai, 1988) and have been successful in the removal of 

Cr(VI) by chemical reduction process. Nevertheless, the process often leads to 

significant amount of sludge. Reduction can also occur by humic, organic compounds 

such as alkanes, alcohols, aldehydes, ketones, and aliphatic and aromatic acids. 

Reduction by common inorganic acids can also happen.   

 Apart from chemical reductants, some bacteria have also shown Cr(VI)-

reducing activities for examples escherichia coli and agrobacterium radiobacter 

(Chirwa and Molokwane, 2011). Although chromium-reducing bacteria are possible 

to be cultured and applied for Cr(VI) reduction in wastewater, significant amount of 

bacteria cells are required for an effective treatment.  Apart from microbial reduction, 

plants have also been used to reduce Cr(VI) (Lytle et al., 1998). Reduction of Cr(VI) 

can also be mediated biologically by various enzymes and nonenzymatic agents 

derived from plants.   

 Photocatalytic reduction on the other hand, as introduced, is an alternative route 

in achieving redox transformation of Cr(VI) to Cr(III). Referring to International 

Union of Pure and Applied Chemistry (IUPAC), the definition of photocatalysis is the 

change in the rate of a chemical reaction or its initiation under the action of ultraviolet, 

visible, or infrared radiation in the presence of a substance - the photocatalyst - that 

absorbs light and is involved in the chemical transformation of the reaction partners 

(IUPAC, 1997).  This translates to redox reactions that can occur on a surface of a 

catalyst when it is illuminated with light.  

 When a semiconductor photocatalyst is illuminated with photon energy greater 

than the band gap of semiconductor (hv > Eg), e
- - h+ pairs will be produced in the CB 
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and VB of semiconductor, respectively (Equation 2.1) (Barakat, 2011). These charge 

carriers then migrated to the semiconductor surface for redox reaction. Reduction 

occurs when electrons are transferred to an adsorbed Cr(VI) (Equation 2.2) (Wu et al., 

2013), while oxidation occurs when holes are transferred to water (Equation 2.3) 

(Botta et al., 1999): 

Semiconductor  e- (CB) + h+ (VB)     Equation 2.1 

HCrO4
- + 7H+ + 3e-  Cr3+ + 4H2O Equation 2.2 

2H2O + 4h+  O2 + 4H+ Equation 2.3 

 

In summary, reduction of Cr(VI) in wastewater can therefore be accomplished by: 

i. Abiotic reduction (without the presence of life organisms) i.e. by reactions with 

aqueous ions (Feo for example), reduction with organic (humic) substances or 

electron transfer at semiconductor photocatalysts surfaces or  

ii. Biotic reduction (in the presence of life organism) by microbes, enzymes or by 

plant tissue. 

 Therefore, the photoreduction process is considered as the most ideal method 

for Cr(VI) remediation in wastewater as the carcinogenic Cr(VI) can be converted to 

less harmful Cr(III) without generation of secondary pollutant. The process can be 

performed under solar irradiation over semiconductor photocatalyst as will be 

explained in the next section. The advantages and disadvantages of each method are 

listed in Table 2.3.  
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Table 2.3: Advantages and disadvantages of heavy metal removal methods (Barakat, 

2011;Fu and Wang, 2011) 

Method Advantages Disadvantages 

Adsorption 

Low-cost, easy operating 

conditions, wide pH 

range, and high metal 

binding capacities.  

Low selectivity and high 

production of solid 

wastes.  

Membrane filtration 

Small space requirement, 

low pressure, high 

separation, and high 

selectivity. 

High operational cost due 

to membrane fouling. 

Ion exchange 

High treatment capacity, 

high removal efficiency, 

and fast kinetics.  

Expensive and induce 

serious secondary 

pollution. 

Electrochemical Solid metal recovery. 
Expensive electrical 

supply. 

Photoreduction 

Cr(VI) can be reduced to 

less toxic Cr(III) with no 

harmful by products.  

Long duration time and 

limited applications. 

 

2.3 Fundamental of photocatalysis 

Photoreduction or photocatalytic reduction involves the process of chemical 

reduction of Cr(VI) that takes place in the presence of light. Fundamental of 

photocatalysis is reviewed here in order to explain on how a semiconductor 

photocatalyst is used to reduce Cr(VI) to Cr(III) under illumination. Illumination of 

semiconductor photocatalyst with photon energy greater than the band gap of 

semiconductor brings to excitation of electron in the VB to the CB of semiconductor 

producing an e- - h+ pair. These photogenerated e- - h+ pair follows several pathways 

as illustrated in Figure 2.2 (Linsebigler et al., 1995):  

i. “C” is a path where e- diffuses to semiconductor surface and transfers to an 

adsorbed acceptor molecule or ion (Acc) (Equation 2.4). This is a process 

occurs during the Cr(VI) reduction.  
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ii. “D” is a path where h+ diffuses to semiconductor surface and accept e- 

donated from a donor molecule or ion (Don) (Equation 2.5). Water is oxidized 

via this process.   

Acc(ads) + e-  Acc-
(ads) Equation 2.4 

Don(ads) + h+  Don+ (ads) Equation 2.5 

 

iii. “A’ is a path where e- loses its energy and recombines with h+ in the VB on 

photocatalyst surface. This results in annihilation of free carriers.   

Recombination happens at surface defects such as Zr3+ (Gionco et al., 2013). 

iv. “B” is also a recombination process but occurs in the bulk of semiconductor.  

This also results in annihilation of free carriers. Example of bulk defect is 

oxygen vacancies (Setvín et al., 2017).  

 

 

Figure 2.2: Phenomena takes place in a semiconductor photocatalyst. The 

photogenerated carriers can recombine at a surface trap (A) or in the bulk (B); 

otherwise, they can interact with acceptor (Acc) or donor (Don) species (Linsebigler 

et al., 1995) 

 

 Annihilation of free carriers is shown (Equation 2.6), where N is the neutral 

center and E is the energy released in the form of light or heat (Herrmann, 1999). Paths 
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A and B are therefore unwanted and must be minimized to allow for more e- and h+ 

transfer to photocatalyst surface for chemical processes. Several techniques are 

developed to suppress the charge carriers’ recombination such as producing highly 

pure semiconductors which is not possible for nanoscale semiconductor, deposition of 

a noble metal on semiconductor surface, coupling with other oxide, dye sensitization, 

or doping with metal or non-metal elements (Linsebigler et al., 1995). 

e- + h+  N + E Equation 2.6 

 

2.3.1 Charge carrier trapping or recombination 

 As seen in Equation 2.6, recombination of photoinduced charge carriers release 

energy when electron transit back to the VB. The energy released can be in form of 

light (radiative recombination) or heat (non-radiative recombination). In a 

photocatalyst, recombination occurs either at the surface (path A) or bulk (path B).  

The surface and bulk states are created due to various crystal defects or impurities in 

the semiconductor (Kasap, 2006). The nanosized materials usually have high structural 

imperfections and defects derived from sample preparation method (Gionco et al., 

2013). Nevertheless, these defects states can also serve as charge carrier traps. Traps 

can function as a “temporary level” in which electron can reside before jumping back 

to the VB. Traps can suppress the e- - h+ recombination (Linsebigler et al., 1995). The 

charge carriers can be trapped at shallow or deep/bulk states distributed in the energy 

gap (or forbidden gap), in which the shallow states are located nearer to band edges 

(Figure 2.3). This is regarded similar to wide band gap ZrO2 (Gionco et al., 2017). 

 As shown in Figure 2.4 , the shallow and bulk states can either act as 

recombination or trapped centers depending on particular events, either “a”, “b”, “c”, 

or “d” (Kasap, 2006). Kasap (2006) suggested the electron can be trapped and 
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detrapped several times before it finally recombines with a hole in the VB, associated 

with photon emission. 

 

Figure 2.3: Typical time scales for photocatalytic reactions on TiO2 (Paramasivam et 

al., 2012) 

 

 

Figure 2.4: Trap and recombination centers in band gap of semiconductor (Kasap, 

2006) 
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