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ζ
2 

Variance 

τ Generalized force 

ηr Thrust in sway direction 

ηu Thrust in surge direction 

υ Measured signal intensity value 

Φ Boundary layer thickness of a sliding mode controller 

θk Relative turning angle at step k 

ϕk Absolute turning angle at step k 

ϕnew New absolute turning angle 

τ Course angle measured by GPS 

υ Yaw angle in NED frame 

φ Inertia weight value of ADAPSO or PSO 

φini Initial inertia weight value of ADAPSO 

φn Natural frequency of PI controller  
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ALGORITMA PENCARIAN DAN PENJEJAK SUMBER BESEPADU 

BOLEH UBAH UNTUK LOKALISASI SUMBER BUNYI BAWAH AIR  

 

ABSTRAK 

 

Robotik kawanan adalah satu bentuk kajian tentang bagaimana untuk mengatur 

sejumlah robot yang agak banyak tetapi ringkas untuk mendapatkan kaedah 

penyelesaian yang tahan lasak, mempunyai kebolehlenturan dan berskala. Mencari 

sumber yang mempunyai corak pengedaran ruang yang rumit adalah salah satu tugas 

yang boleh dilakukan oleh robotik kawanan. Dalam tugasan ini, terdapat dua 

kemungkinan yang boleh berlaku iaitu sumber dapat dikesan dan sumber tidak dapat 

dikesan. Dalam kajian ini, penyelesaian kepada dua kemungkinan tersebut diterokai 

melalui strategi penukaran algoritma secara penyesuaian. Pertama, untuk pengesanan 

sumber, Algoritma Pengesanan Sumber (SDA) yang dikenali sebagai Agihan 

Penerbangan Lévy (DLF) diperkenalkan. Untuk meningkatkan keupayaan 

penerokaan pada peringkat individu ejen, had sudut peralihan dan pantulan di 

sempadan kawasan carian diperkenalkan. Untuk mengoptimumkan penerokaan ruang 

carian dan untuk mengekalkan hubungan komunikasi antara kawanan robot, 

algoritma penyebaran berdasarkan daya tarikan dan daya penolakan dicadangkan. 

Kedua, untuk menjejaki lokasi sumber, Algoritma Penjejakan Sumber (STA) yang 

dikenali sebagai kaedah Pengoptimuman Kelompok Zarah Boleh Ubah Tidak 

Serentak (ADAPSO) dicadangkan. Untuk meningkatkan keupayaan menjejak bagi 

mengelakkan robot terperangkap ke dalam lokasi optima lokal dan untuk 

meminimumkan kebarangkalian terlajak sasaran, pekali inersia dan pekali pecutan 

untuk ADAPSO dikemas kini secara penyesuaian dan tidak serentak. Sebagai 
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tambahan, persamaan kedudukan algoritma ADAPSO diubahsuai untuk memastikan 

kesinambungan rangkaian komunikasi. Untuk penukaran antara algoritma, algoritma 

penukaran secara adaptif melalui keadah Ujian Nisbah Kemungkinan Umum 

(GLRT) diperkenalkan. Untuk membuktikan keberkesanan kaedah yang 

dicadangkan, satu kajian kes mengenai pencarian sumber akustik bawah air 

menggunakan Kenderaan Autonomi Permukaan Air (ASV) dilakukan. Berdasarkan 

model ASV yang dibangunkan, setiap algoritma dinilai dan ditanda aras berdasarkan 

beberapa kaedah sedia ada melalui kajian simulasi. Hasil simulasi membuktikan 

bahawa prestasi algoritma DLF yang dicadangkan mencapai peningkatan peratusan 

penerokaan ruang dan penurunan masa menjejaki berbanding algoritma yang ditanda 

aras. Algoritma ADAPSO pula mencapai peratusan peningkatan kejayaan menjejak 

dan  penurunan kadar masa yang diambil untuk menjejaki sumber berbanding 

algoritma yang ditanda aras. Akhir sekali, keberkesanan strategi pencarian sumber 

yang dicadangkan dibuktikan melalui penyelesaian masalah tersetempat sumber 

akustik bawah air melalui kaedah simulasi dan ujikaji di mana ketepatan anggaran 

purata kedudukan sumber bunyi yang dicapai adalah 0.4 m untuk hasil simulasi dan 

4.2 m untuk hasil eksperimen. 
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AN ADAPTIVE SWITCHING COOPERATIVE SOURCE SEARCHING AND 

TRACING ALGORITHMS FOR UNDERWATER ACOUSTIC SOURCE 

LOCALIZATION 

 

ABSTRACT 

 

 

Swarm robotics is a study of how to organize a relatively large number of simple 

robots to achieve a robust, flexible and scalable solution for a given task. Searching a 

source with a complex spatial distribution pattern is one of the possible swarm 

robotics tasks. In a source searching task, two possible scenarios can occur: source 

detected and source not detected. In this study, a complete solution to the two 

scenarios through an adaptive algorithm switching strategy is explored. Firstly, to 

detect the source, a Source Detection Algorithm (SDA) known as a Distributed Lévy 

Flight (DLF) is proposed. To improve exploration performance of the individual 

agent, a turning angle limit and boundary reflection is introduced in DLF. In order to 

optimize search space exploration and to maintain inter-robot communication 

connectivity at swarm level, a dispersion algorithm based on attraction and repulsion 

force is proposed. Secondly, to trace the source to its approximate location, a Source 

Tracing Algorithm (STA) known as an Asynchronous Dynamically Adjustable 

Particle Swarm Optimization (ADAPSO) is suggested. The ADAPSO parameters are 

adaptively and asynchronously adjusted based on feedback informations to improve 

convergence speed, to avoid robot trapped into local optima and to minimize target 

overshooting. In addition, the ADAPSO position update equation is modified to 

anticipate position adjustment to ensure communication connectivity. To adaptively 

switches between the two algorithms, an adaptive switching algorithm based on a 
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Generalized Likelihood Ratio Test (GLRT) is proposed. To demonstrate the 

algorithm switching principle, underwater acoustic source localization using a swarm 

of Autonomous Surface Vehicles (ASVs) is considered. By considering the ASVs as 

swarm robotics testing platforms, each algorithm is evaluated and benchmarked 

against several existing algorithms through simulation studies. The obtained results 

show that the performance of the DLF for source detection outperformed other 

benchmark algorithms in term of search space exploration capability and the time 

taken to detect the source. The ADAPSO for source tracing achieved better tracing 

performance with better success rate and reduced the time taken to trace the source to 

its approximate location compared to the benchmark algorithms. Finally, the 

feasibility of the proposed algorithms for underwater acoustic source localization is 

confirmed through simulation and experimentation where the achieved average 

accuracy of source position estimation is 0.4 m and 4.2 m, respectively.    
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CHAPTER ONE 

INTRODUCTION 

 

 

 

1.1 Background and Motivation 

Robots have been used for various applications over the past few decades. Since the 

beginning of the robotics era, several types of robotic systems have been developed 

to accommodate modern-day tasks which are complex and challenging to solve. In 

early age of robotic system development, a single robotic system has been developed 

from a complex connection of electromechanical pieces which is complicated to 

design, situated in place (i.e. immobile), expensive to fabricate and possesses limited 

capability and autonomy. However, rapid evolution of robotics research supported by 

advancement of sensors, actuators, communications and data processing technology, 

the functionalities, autonomies and capabilities of the robotic systems has been 

significantly improved. As a result, a multi-robotics system (MRS) which consists of 

autonomous robots has been introduced in mid 90s to perform tasks that are not 

feasible to a single-robotic system (Veloso and Nardi, 2006).  

Applications of MRS cover a wide range of tasks such as tasks that are 

unreachable and dangerous to human operator, tasks that involve wide area coverage, 

and operations in a complex and unstructured environment. However, many of these 

applications not only require multiple robots to work autonomously and 

cooperatively but they also need to be robust, flexible and scalable in order to adapt 

to the change of the preset conditions of a given task and workspace. To fulfill the 

aforementioned requirements of robotic task, swarm robotics system (SRS) has been 

later introduced and currently, swarm robotics has become one of the most active 
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research areas in the field of robotics. Technically, swarm robotic has been defined 

as (Şahin, 2005):  

“the study of how large numbers of relatively simple, physically 

embodied agents can be designed such that a desired collective 

behavior emerges from the local interactions among agents and 

between the agents and the environment.” 

The concept of swarm robotics is closely related to the principle of swarm 

intelligence (SI) and multi agents system (MAS) in which both are inspired mostly 

by the social behaviors of insects, microorganisms or animals in nature. Some 

examples include cooperative and social behavior of ants, birds, fish and bees 

performing their routine activities or task in the absence of a group leader as 

portrayed in examples shown in Figure 1.1. Some examples of the collective 

behavior can be observed in nature include termites building a giant nest, red ants 

searching for foods, a migration of geese, honey bees foraging, a flock of fish 

avoiding predators, etc. These examples share a common characteristic where the 

extraordinary behavior is shaped by simple local interactions among the individuals.     

 

  
(a)  (b) 

  
          (c)        (d) 

 

 

 

Figure 1.1: Examples of collective task in nature (a) Ants (b) Birds (c) Fish (d) Bees 
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In the perspective of swarm, each member of the swarm is not capable of 

performing a meaningful group task on their own due to limited capability. However, 

a variation of complex tasks can be easily performed through collective behavior as a 

result of local interaction between member of the swarm and its nearest neighbors. 

Thus, the cooperative behavior has become one of the fundamental requirements in 

swarm robotic applications.  As a result of cooperative behavior based on local 

interaction, swarm robotic has three distinctive advantages compared to other types 

of robotic systems, namely, flexibility, scalability and robustness. According to 

(Şahin, 2005), these characteristics can be defined as: 

 Flexibility – The ability of the swarm robot to withstand the change of 

environments and tasks by adjusting their cooperative strategies and 

generating modularized solutions, respectively.  

 Scalability – The capability of the swarm to perform well with different 

group size to accommodate different sizes of workspace and complexity of 

the assigned group task.  

 Robustness – The capability of the swarm to cope with losses of one or more 

robots from the group without deteriorating the given task through a 

decentralize coordination and local interaction.   

These characteristics allow swarm robots to perform a relatively complex 

task by using a relatively simple cooperative algorithm embedded into a group of a 

physically simple robotic platform. However, despite of huge efforts on research and 

development have been made to optimize swarm robotic to its full potentials, it is 

considered as a relatively new and immature robotic technology. From the 

perspective of current stage of swarm robotic research and development, there are 

none (i.e. if not a few) commercial applications can be found have adapted SRS for 
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solving real world problems (Tan and Zheng, 2013). It dictates that the SRS research 

field is widely opened to be explored and studied stretching from fundamental idea to 

concept development towards real world implementations and testing. Thus, this 

factor becomes one of the key motivations that motivate this research work. 

Swarm robotic has enormous potential for real world applications and tasks 

especially the one that is not possible or inefficient to be performed using a single 

robotic system. In general, different types of task that suit SRS can be classified into 

several categories such as task that is dangerous to human, task that requires area 

coverage, task that demands number of robots to be scaled up/down and task that 

requires redundancy (Şahin, 2005, Tan and Zheng, 2013). Source searching or source 

seeking is one of the tasks that falls within the classification. In real world scenarios, 

source searching and localization is an important task in many applications such as in 

a search and rescue operation, environmental monitoring, detection of chemical 

leakage, mine countermeasures, searching for a flight recorder (black box) and 

scientific studies. An example application of source searching task using swarming 

robots in search and rescue operation is illustrated in Figure 1.2.  

 

 

Figure 1.2: Cooperative searching task in search and rescue operation using swarm 

robots (Hauert et al., 2013) 
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For a source searching and localization task, swarm robotic offers several 

advantages compared to other types of robotic systems such as it reduces searching 

time, provides large area coverage and not easily trapped into a local optima (Li et 

al., 2008a). Swarm robotics is proven to be reliable and practical for source searching 

task, especially if the sources exhibit a complex or a non-smooth spatial pattern of 

distribution such as acoustic, magnetic, radioactive, light, heat, biology and chemical 

odor in which source’s intensity strength is influenced by the characteristics of the 

surrounding environment and the transferring medium (Navarro and Matia, 2013). 

Searching these types of sources is a challenging task because there is no guarantee 

that the source is detectable throughout the entire search space to assist a direct 

searching process (Jatmiko et al., 2011). Thus, considering this issue, a complete and 

reliable source searching algorithm should be developed considering the 

inconsistency of source signal detection.  

Depending on type of operation on demands, the source searching task can 

take place in different types of search space. Despite of many potential applications, 

source searching in an underwater environment has not been extensively studied. In 

underwater environments, one of the source searching tasks is to search and localize 

an unknown location of an acoustic source in a noisy underwater environment (Paull 

et al., 2014). The real world examples include searching for a flight black box after 

airplane crash and recovery of a failure underwater vehicle in a remote ocean 

environment. In these examples, the interested source is an acoustic signal (i.e. 

specifically a ping signal). Acoustic signal exhibits a complex spatial pattern 

distribution characteristic where its intensity measurement is strongly influenced by 

noises from the surrounding environment. In addition, a large search space makes it 

even harder to detect the signal if only a single searching platform is used to locate 
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the source. Searching using a single platform becomes inefficient because of a large 

and unpredictable search space involves. Thus, swarm robotics which offers a simple 

and a low cost solution (i.e. due to simple robotic platform and algorithm as per 

swarm robotic definition) can be employed to autonomously search and locate the 

underwater acoustic source within the unknown environment.  

In order to implement a source searching algorithm in a real environment, a 

suitable swarm robotic platform must be considered. Currently, for an on ground 

source searching and localization task, mobile robots have been widely used due to 

high maneuverability, easy to control, possesses reliable communication and 

positioning systems and the platform is commercially available. For underwater 

source searching task, two types of robotic platform can be considered: autonomous 

surface vehicle (ASV) or autonomous underwater vehicle (AUV). Nevertheless, 

ASV has advantages of simpler communication and positioning, easier to control and 

its development cost is lower compared to AUV. However, unlike mobile robot, a 

conventional type of ASV has disadvantages of relatively low maneuverability due to 

poor turning capability especially in a bounded workspace and thus, not applicable 

when the source searching algorithm requires fast turning while transitioning from 

one direction to another. Thus, these issues motivate the need of designing a new 

ASV platform specifically for underwater source searching and localization.       

 

1.2 Problem Statement  

Automatic source searching using autonomous robot has long been studied to replace 

or to assist human in solving many real life problems in order to optimize searching 

time and to handle hazardous task (Zohar et al., 2009). Source searching using a 

single robotic system has low accuracy, slow convergence speed and lack of 
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robustness (Akat et al., 2010, Sànchez et al., 2018).  In contrast, source searching 

using multiple robots is a relatively new research field and has not yet been 

comprehensively studied (Couceiro et al., 2014b, Cao et al., 2015). Source searching 

using multiple robots has better performance in term of searching time, robustness 

and accuracy compared to a single robotic system (Tang and Eberhard, 2013). 

Additionally, source searching using multiple robots has better decision making due 

to the capability of providing multiple and simultaneous sensors reading which is not 

applicable in a single robotic system. Swarm robotic enhances these capabilities 

further by providing a flexible, scalable and robust solution to the problem through a 

cooperative algorithm (Chung et al., 2018, Sànchez et al., 2018).  

In a real source searching problem, there are three possible scenarios can 

occur due to robot limited sensing range and intensity decaying property of the 

source. Firstly, there is a possibility that the source is not detected as soon as robots 

are deployed into the search space. In this scenario, robots must rely on an algorithm 

which is independent of source intensity to optimize search space exploration in 

order to optimize detection time. Secondly, there is possibility that the intensity of 

the source is directly detected once robots are deployed into the search space. In this 

case, an algorithm which exploits source intensity measurement must be used to 

optimize convergence speed and accuracy of convergence. In the third scenario, 

robots do not detect the source once they are deployed but the source may become 

detected after robots explore the search space and vice versa. In this case, 

independent algorithms for both detectable and undetectable source signal must be 

considered. As a result, a complete and optimal source searching algorithm must be 

able to work in both situations where source signal is detected and source signal is 

not detected. Currently, this issue has not been thoroughly studied where in most 
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studies it assumed that source signal is always detected or a nonoptimal random 

movement is considered when source is not detected (Melo et al., 2018, Kumar et al., 

2017, Husni et al., 2017). Thus, the problem statement is stated as follow:   

In a real source searching task, source signal is not always detected throughout the 

searching period and searching space. Thus, a source searching algorithm without 

considering the possibilities of source signal being detected and source signal not 

being detected may cause the overall source searching failure. 

In order to switches between the two independent algorithms (i.e. algorithm 

when source is detected and algorithm when source is not detected), a switching 

strategy is needed where robot should be able to adaptively switches between the two 

algorithms depending on the measured source signal intensity. Currently, a switching 

algorithm uses a direct threshold setting where robot switches from one algorithm to 

another when the measured source signal intensity exceeds or falls below a specific 

threshold value  (Nurzaman et al., 2010, W. Jatmiko, 2016, Khan et al., 2016). 

However, this approach does not consider the effect of background noise level and 

source signal strength which may causes switching error and the confident level of 

detection cannot be monitored. Moreover, the corresponding threshold must be 

determined manually and an appropriate intensity threshold is difficult to determine. 

Additionally, in order to implement source searching algorithm for underwater 

acoustic source localization, ASV which offers a simple and reliable communication, 

positioning and control can be used. However, a conventional ASV platform for 

swarm robotics has low maneuverability due to large turning radius as a result of a 

large length to breadth ratio of the hull (Ghosh, 2016). Thus, a conventional type of 

ASV is not reliable for implementing a source searching algorithm which requires 

fast turning and involves relatively small step length of movement. 
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1.3 Research Objectives  

The main objective of this study is to develop an optimal source searching algorithm 

by considering underwater acoustic source localization as a case study. The sub-

objectives of the research are:   

i. To develop an optimal source searching algorithm considering detectable and 

undetectable source signal 

ii. To develop an adaptive switching algorithm considering source signal 

strength and noise level 

iii. To develop a reliable swarm robotics platform for underwater acoustic source 

localization 

 

1.4 Research Scopes 

In this study, some limitations have been imposed to simplify the study process. The 

scopes of this research are: 

i. The source is assumed to be a static underwater pinger located in a two 

dimensional search space and the noises that affect the intensity measurement 

are assumed to be Gaussian white noise to closely resemble distribution 

characteristic of actual noise measured by sensor.    

ii. The testing environment is assumed to be free from the obstacles and thus, 

obstacle avoidance algorithm and the possibilities of collision with obstacles 

are not considered.   

iii. Some performance evaluations are restricted to simulation studies only such 

as variation number of robots and variation of search space size due to limited 

number of prototypes have been developed and search space is limited to a 

single size swimming pool, respectively.  
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iv. Experiments are performed in a controlled environment where the influences 

of the environmental disturbances such as wind, wave and current have been 

ignored due to inaccessible information. Thus, all experiments are conducted 

in a calm Olympic size swimming pool.  

 

1.5 Thesis Outline  

This thesis consists of six chapters and it is organized as follows: Chapter 1 presents 

the introduction of the dissertation and discussed the background and motivation of 

the study. Problem statements, significance of the problem, research objectives, 

research scopes, thesis outline are also presented. In Chapter 2, an overview of 

swarm robotics, state of the art and comparison of swarm robotic source searching 

methods are discussed in detail. This chapter also reviews briefly about the 

transformation of autonomous robot for swarm robotic application specifically ASV. 

Finally, a brief overview of underwater acoustic source localization is also conveyed. 

In Chapter 3, a complete development of the localization strategy is discussed which 

include the source localization problem formulation, source detection algorithm 

development, source tracing algorithm development, adaptive switching algorithm, 

communication framework and initialization and termination conditions. In Chapter 

4, ASV prototype development, ASV modeling and parameters identification, ASV 

controller design and algorithm implementation are discussed in details. The 

simulation design and experimental design are also discussed. In Chapter 5, the 

discussions of the research findings related to the proposed localization strategies are 

presented and the performance comparison against several benchmark algorithms is 

also discussed. Finally, a brief summary of the research findings, the overall 

contributions of the study and the recommendations are highlighted in Chapter 6. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

In this chapter, a review related to this research work is presented. Firstly, a brief 

overview of the swarm robotics system which includes its characteristic, 

communication topology and control architecture classification is discussed. 

Secondly, the swarm robotics source searching problem classification is briefly 

highlighted and the corresponding source searching methods are comprehensively 

reviewed. Then, a comparison study and gap analysis of the swarm robotics source 

searching methods is presented. Thirdly, a brief review of autonomous surface 

vehicle design in the perspective of swarm robotic platform is also discussed. 

Finally, a brief discussion on the different types of underwater acoustic source 

localization methods and its limitations is presented.  

 

2.2 Swarm Robotic Overview 

In order to study swarm robotic for a specific task, it is necessary to provide a 

general overview of the fundamental concept of swarm robotic. In this section, the 

basic characteristics, communication topology and control architecture of the swarm 

robotic system (SRS) are briefly discussed. In general, a swarm robotic system is 

uniquely characterized by five characteristics that differentiate the system from other 

types of robotic system. The characteristics of swarm robotics and some important 

remarks related to the corresponding characteristics are summarized in Table 2.1. In 

general, swarm robot communication architecture can be classified into two types: 

explicit (i.e. direct) and implicit (i.e. indirect).  
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Table 2.1: Characteristic of swarm robots 

Characteristics Remarks 

Autonomous 

 Possess sensors and actuators to navigate and perform 

task autonomously (Brambilla et al., 2013) 

 Able to avoid collision with obstacles and other robots 

(Tan and Zheng, 2013) 

Large Number 

 Number of robots is acceptable as long it is permitted by 

the control rules (Navarro and Matia, 2013)  

 Examples:14 robots (Couceiro et al., 2014b), 5 robots (Li 

et al., 2014), 4 robots (Pugh and Martinoli, 2006), 3 

robots (Hereford and Siebold, 2010, Ma'sum et al., 2013)  

 Depends on a specific task (Bratton and Kennedy, 2007, 

Boubou and Tagawa, 2011) 

Limited 

Capabilities 

 Limited sensing, communication and processing power 

 Each robot should not be assigned with a specific role 

(Tan and Zheng, 2013) 

Local Sensing & 

Communication 

 Robot can only sense and communicate with its nearest 

neighboring robots (i.e. robot within limited 

communication range) (Tan and Zheng, 2013) 

Homogenous 

Robots 

 Homogenous in term of both physical structure and 

capability (Dorigo et al., 2013, Patil et al., 2016) 

 It is acceptable as long as number of the non-homogenous 

robots are relatively smaller compared to homogenous 

robots (Navarro and Matia, 2013) 

 

In implicit communication or known as stigmergic, communication is established 

through-the-world interactions (Couceiro et al., 2014b, Aleksandar and Diego, 2007). 

The characteristics of the pheromone based communication include the message is 

conveyed through the environment, the conveyed message is not directed or 

specified to a specific recipient and the deposited messages are localized within the 

space (Paull et al., 2014). Currently, implicit communication is realized in swarm 

robotic by using visual sensor, stereo vision wireless data (Gray, 2009, Zetterstrom, 

2007) or beacons to represent virtual pheromone (Meng et al., 2007).  Implicit 

communication is scalable and reliable for when explicit communication link cannot 
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be established. However, this type of communication disappeared over time and 

eventually difficult to establish and not practical for tasks that require fast and rapid 

data sharing such as searching, localization and mapping.  

In explicit communication, information exchange takes place through a 

wireless communication such as Wi-Fi, Bluetooth, acoustic, etc. (Kernbach et al., 

2013). The advantages of explicit communication include it is well established, it can 

guarantee accuracy and consistency of the information exchange among the robots 

and it is easier to implement compared to the stigmergic communication. However, 

as the number of the robots in the network increase, burden on the communication 

network also increases. In swarm robotic, this problem is solved by using local 

communication topology to minimize data congestion (Senanayake et al., 2016). 

Typically, graph-theory is used to model communication among the robots (Navarro 

and Matia, 2013) and one of the main concerns is to maintain mobile ad-hoc network 

(MANET) in a swarm or multiple swarms (Couceiro et al., 2014b). 

In general, there are two types of control architecture commonly implemented 

in SRS, namely centralized and distributed architectures. In a centralized control, 

task is implemented based on a central command where a host monitors and gives 

necessary command during the overall control process. The main advantages of a 

centralized architecture includes it is easy to monitor and robot behavior can easily 

be planned before execution (Barca and Sekercioglu, 2013). However, this type of 

control architecture is computationally expensive for large number of robots (Şahin, 

2005), lack of robustness (Parker, 2008) and causes faster energy depletion due to 

excessive processing (Barca and Sekercioglu, 2013). However, many research works 

found in literature rely on distributed control architecture. The distributed control 

allows simplification of the algorithm implementation and parallelism where control 
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burden is distributed to all agents and complexity of the control is not associated with 

a specific number of robots (Barca and Sekercioglu, 2013). It also reduced the 

possibility of the entire system failures and promotes scalability since there is no 

single central processor is responsible to command the overall operation. However, 

the distributed control architecture does not allow system to be developed based on 

global knowledge since there is no central informations are collected during the 

process.  

 

2.3 Swarm Robotic Source Searching  

Source searching problems have been studied extensively in the past using a single 

robotic system but it possesses many limitations such as slow convergence, attempts 

to fail, inflexible, not scalable and incurs high cost of operation (Wang et al., 2014, 

Das Sharma et al., 2014, Pugh and Martinoli, 2007, Jatmiko et al., 2011). On the 

other hand, scalability, flexibility and robustness characteristics of the swarm robotic 

make it reliable for source searching task and it has been proven to be efficient 

compared to a single robotic system (Senanayake et al., 2016, Hayes et al., 2002). 

Source searching task is important in many real world applications such as in a 

search and rescue operation, detection of harmful gases and chemical leakage (Ferri 

et al., 2009). To accommodate complexity of the searching task, the algorithm must 

be designed to be distributed, computationally simple, scalable and must allow for a 

continuous movement of the robots (Hereford and Siebold, 2010). The swarm robotic 

source searching task has been studied from different perspectives of the source 

searching problem. Moreover, this problem has been solved using different methods 

and strategies which include swarm intelligence, stochastic and systematic 

approaches. Details are reviewed in the following subsections.  
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2.3.1 Classification of Source Searching Problems  

In general, there are many research topics related to swarm robotics have been 

studied and explored by swarm robotics research community where some related 

topics are listed in Figure 2.1. However, for the purpose of this research work, a 

specific topic which is swarm robotic collective source searching and localization is 

explored (indicated by the *). Source searching (or source seeking) tasks have been 

studied using many types of robotic systems which include single robotic system, 

multi robotics system and swarm robotics system. In a general classification, swarm 

robotics source and target searching problems can be classified into several major 

classes of searching problems. This classification can be made based on number of 

the targets to be searched, type of the targets, mobility of the targets and trackers and 

complexity of the environment. The classifications of the robotic source or target 

searching problems based on these criteria are summarized in Table 2.2. The solution 

to these source searching problems can be categorized based on three major 

approaches: swarm intelligence (SI) based searching, random based searching and 

systematic (i.e. deterministic) based searching. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Swarm robotics task classification 
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Table 2.2: Classification of swarm robotic target search problem and related works 

Search 

Classification 

Sub 

Classification 
Main Task Example Related Work 

Number of 

Target 

Single target Optimize searching time Gas, chemical 
Zou et al. (2015), Arvin et al. 

(2018)  

Multiple targets 
Optimize number of target found within a 

specified searching time 
Sound 

Sakurama and Nishida (2016), 

Kumar et al. (2017) 

Types of Target 

or Source 

Uniform 

distribution 

source 

Optimize searching time based on gradient 

or non-gradient approach 

Light Jada et al. (2017) 

Sound Shaukat et al. (2013) 

Electromagnetic Basiri et al. (2014) 

Non-uniform 

distribution 

source 

Source searching considering 

environmental dynamic and measurement 

uncertainty 

Chemical plume 
Li et al. (2008a), Jatmiko et al. 

(2011), Braga et al. (2017) 

Gas odor W. Jatmiko (2016) 

Target Mobility 

Mobile Target 
Search and track source considering 

mobility of the source 
Marine animals Wang and Gu (2012) 

Static Target Optimize searching time Black box 
Jada et al. (2017), Husni et al. 

(2017) 

Tracker 

Mobility 

Mobile Tracker 

To cooperatively explore the environment 

and searching for the target or source of 

interest 

A swarm of 

mobile robot 

Wang and Gu (2012), Sakurama 

and Nishida (2016) 

Static Tracker 
Served as active beacons either for indirect 

communication or positioning reference 

Implicit 

communication 

Hollinger et al. (2009), Russell et 

al. (2015) 

Environment 

Complexity 

Open 
Studies of dispersion and exploration 

method for covering large area 

Ocean, lakes, 

underwater 

Suarez and Murphy (2011), 

Sutantyo et al. (2013) 

Unstructured 
Search planning including navigation and 

communication during searching 

Under the ruins of 

a collapsed 

building 

Songdong and Jianchao (2008), 

Hereford and Siebold (2010), 

Dadgar et al. (2016) 

1
6
 



 

  17 

2.3.2 Swarm Intelligence Search Methods 

Animals, insects and microorganisms use various movement strategies to optimally 

search for food. They perform this task through a direct or an indirect interaction 

among the members of the group (Tan and Zheng, 2013). Inspired by the intelligence 

and collective behavior of the socialize animals, swarm intelligence (SI) has been 

introduced to implant artificial intelligence behaviors to a multi-agent system  (Blum 

and Li, 2008). The concept of SI has been widely adopted to solve many 

optimization problems. A population-based optimization algorithm based on SI is 

known as a metaheuristic search method in the field of computer science and 

mathematical optimization (Ting et al., 2015). In robotics, there are two possible 

ways to perform source searching task: by sweeping the entire area (i.e. exhaustive 

search) or by adopting simple yet efficient biological inspired rules (Couceiro et al., 

2014b). However, the latter approach is well-suited with the working principle and 

nature of swarm robotic system (Şahin, 2005, Krishnanand and Ghose, 2017). 

The main purpose of the biological inspiration in source searching task is 

mainly to expedite the searching and exploration process and to obtain a better result 

(Pina-Garcia et al., 2016). SI based optimization problem and swarm robotics source 

searching task share a similar problem solving methodology where both are 

technically searching for the best or near-optimal solution within a specified search 

space by using multiple agents (Senanayake et al., 2016). In swarm robotics research, 

SI based optimization algorithms are commonly adopted for source localization and 

source searching task because the task itself is distributed in time and space (Parker, 

2008). Since most of the SI based optimization algorithms are simple yet effective in 

providing optimal solution, many source searching algorithms are developed based 

on SI approaches compared to other exhaustive search strategy (Khaldi and Cherif, 
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2015). Thus, to discuss further, a critical review of some selected SI based 

optimization algorithms and related works in swarm robotics source searching task 

are presented in the next subsections.   

 

2.3.2(a) Particle Swarm Optimization (PSO)  

Particle Swarm Optimization (PSO) was initially developed to model flocking 

behavior of birds and fish (Kennedy and Eberhart, 1995). The basic concept of PSO 

is to allow a number of particles (i.e. the possible solutions) flown through a solution 

space where these particles are attracted toward a position with higher fitness value 

to reach convergence. Some popular modified versions of PSO have been developed 

for mathematical optimization and have been occasionally used in swarm robotic 

source searching task are summarized in Table 2.3.    

 

Table 2.3: PSO and its derivatives in mathematical optimization problem 

Type of PSO Mathematical Expression Modification 

Constriction 

Factor PSO 

(CFPSO) 

(Clerc and 

Kennedy, 

2002) 

Velocity update is similar to original  PSO 

but it scaled by κ is the constriction factor, 

 4,,
42

2
21

2



 


 cc

 
where c1 and c2 is the acceleration coefficient 

for cognitive and social, respectively.   

Constriction factor 

κ to guarantee 

convergence and 

eliminates velocity 

limit, vmax 

Darwinian 

PSO (DPSO) 

(Tillett et al., 

2005)  

Velocity update is similar to inertia weighted 

PSO (IWPSO) but the following reset is 

implemented to reset search encounter, SC: 

  











1

1
1max

kill

ckillc
N

SCNSC  

Nkill is the number of deleted particles  

Based on punish 

(deleting particles) 

and reward 

(introducing new 

particles) based on 

SC to solve local 

optima  

Standard PSO 

(SPSO) 

(Bratton and 

Kennedy, 

2007) 

Velocity update is similar to inertia weighted 

PSO but local neigborhood is considered 

instead of global neighborhood and the 

number of particles, N are determined as 

follow: 

DN 210    

where D is dimension of search space 

Replace global 

best with the best 

previous position 

in the 

neighborhood, 

local best  
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PSO and its derivatives in general are susceptible to several weaknesses when 

they are implemented as a source searching algorithm. Pugh and Martinoli (2007) 

showed that using a constant value of inertia weight throughout the entire searching 

period may cause robots to oscillate around the target and do not converge to a stable 

position. In addition, Jatmiko et al. (2011) and Greenhagen et al. (2016) proved that 

the implementation of PSO with constant parameters in source searching has 

potential to cause robots being trapped into local optima. Zou et al. (2015) showed 

that a noisy electromagnetic source seeking using PSO with a damped inertia weight, 

PSO with a constriction factor and a standard PSO (SPSO) are possible. However, all 

the three algorithms demonstrate significance target overshooting effect as the robots 

attempt to converge to the source’s position. In addition, they also have not discussed 

the success rate of the implementation to evaluate the possibility of PSOs being 

trapped into local optima or slow convergence rate. Akat and Gazi (2008) showed 

that PSO with a global neighborhood has faster convergence speed as compared to a 

local neighborhood topology. However, PSO with local neighborhood has been 

shown having better performance in avoiding premature convergence (Doctor et al., 

2004). Gronemeyer et al. (2017) used CFPSO with a fixed communication topology 

which is robust to premature convergence but it scalability is low due to fixed 

communication topology. A CFPSO with group dynamic grouping strategy is 

proposed by Tang et al. (2018) for multiple targets searching. In addition, Melo et al. 

(2018) studied the impact of different fitness function of a local neighborhood PSO 

on source searching performance but the study only reliable in simulation as accurate 

fitness function of the source cannot be found in a real implementation.      

Since a direct implementation of PSO has some drawbacks, many 

modifications and improvements of the PSO and its derivatives have been proposed 
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for swarm robotics source searching task. One of the earliest attempts is performed 

by Doctor et al. (2004) where the authors investigate the quality factors of PSO 

parameters (i.e. w, c1 and c2). They implement a two-level PSO where the inner PSO 

is used for target searching task and the outer PSO is used for parameters 

optimization. The performance is improved but the scalability of the algorithm for 

large number of robots and premature convergence is not studied. Hereford (2006) 

proposed a distributed PSO (dPSO) to reduce communication traffic and improved 

scalability where each robot only broadcast its global best update to other robots if it 

found a new one. The main weakness of this approach is that for each local robot, 

both global best and the corresponding position should be updated at the same time 

to avoid robot stalls. Jatmiko et al. (2006) and Jatmiko et al. (2008)  proposed two 

versions of PSO for odor source localization task, namely detect and response PSO 

and Charge PSO which were developed based on a constriction factor PSO to solve 

local optima problem by improving diversity of the swarm. Robot detects the 

possibility of being trapped into local optima if global best remained constant for a 

certain number of iterations. As a result, robot responses by reset the global best and 

repulsive force is used to improve swarm diversity.  

The extension of PSO and DPSO for source searching task are known as 

Robotic PSO (RPSO) and Robotic Darwinian PSO (RDPSO), respectively (Couceiro 

et al., 2011a, Couceiro et al., 2011b). RPSO is an extended version of inertia weight 

PSO where the velocity update is modified as follows:  

      1k

i

g

n

1k

in

1k

i

1k

i

k

i xpxpxpvv
  332211 rcrcrc i  (2.1) 

The last term of (2.1) is added to handle obstacle avoidance. Parameters c3 and r3 

represent obstacle susceptibility weight and the corresponding random vector, 

respectively. The term g

np  is the position of robot n which optimizes monotonically 
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increasing or decreasing sensing function g(x(n)). The main purpose of RDPSO is 

mainly to solve local optima problem encountered by PSO and RPSO by applying 

social inclusion and social exclusion on the robots based on their level of 

participation in the searching task (determined by SC, see Table 2.3). However, this 

method requires quite large number of robots to achieve a stable and fast 

convergence and requires quadruple computational complexity compared to a 

traditional PSO. Couceiro et al. (2014a) studied the extension of RDPSO considering 

a systematic initial deployment known as Extended Spiral of Theodorus (EST) and a 

fault tolerance approach is used to avoid communication network splits. Ranger 

robots are used to handle deployment of several scout robots to ensure distributed 

transportation. They found that RDPSO has superior searching performance when 

EST deployment strategy is implemented but it cannot ensure communication 

connectivity throughout the searching mission.  

 Hereford and Siebold (2010) proposed a physically-embedded PSO (PEPSO) 

where each robot behaves exactly like a particle in PSO except its motion is 

restricted within a cone instead of a free omnidirectional movement. Robots only 

share their position if their solution is the best solution. The algorithm is claimed to 

be able to find a single peak in a complex search space and perform better compared 

to a basic PSO. Nevertheless, to execute this algorithm robots are required to stop 

after each iteration to properly handle all relevant information. A mechanical PSO 

guided by extremum seeking (SE) is suggested by Tang and Eberhard (2013) to 

account for mechanical properties of the robot and to eliminate precise localization 

requirement. Since PSO itself is a non-gradient based search algorithm, the ES 

algorithm provides information about the source gradient to assists PSO. A major 

advantage of mechanical PSO is it does not require robot localization but 
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disadvantages of the algorithm include robot must have capability to sense state of 

other robots and it consumes more processing power compared to the ordinary PSO. 

Rastgoo et al. (2015) combined PSO with A-star local search method known as 

Modified PSO with Local Search (ML-PSO). The algorithm is able to overcome 

premature convergence (i.e. occurs due to large static obstacle), improve balance 

between exploitation and exploration to achieve global convergence and reduces 

searching time. Nonetheless, ML-PSO requires a central station to compute the next 

position and velocity update for each robot and map of the search space. In the latest 

extension of RPSO, Dadgar et al. (2016) studied a multi-robot target searching for an 

unknown environment where an adaptive robotic-PSO (A-RPSO) is proposed. A-

RPSO is proposed to solve two source searching problems: to escape local optima 

and to minimize target overshooting by adjusting inertia weight and acceleration 

constants adaptively based on swarm aggregation degree and level of fitness 

improvement. The A-RPSO is proven to be reliable for searching in a large search 

space with a relatively small number of robots. However, the algorithm is updated 

synchronously which is less practical when real implementation is required. 

Unlike the previously discussed methods where PSO is directly modified, 

some research works focus on proper abstraction of source information and 

interpretation especially for sources with dynamic distribution behavior such as 

chemical odor. A Probability PSO (P-PSO) is introduced by Li et al. (2008a) where 

PSO with a fitness function is expressed as a local probability estimated by Bayesian 

and fuzzy inference system is used in attempts to overcome the source intensity 

fluctuation problem in odor source searching. P-PSO is proved to be able to reduce 

searching randomness and gives relatively high efficiency in odor searching task. 

The extended version of their work is performed by Meng et al. (2011) where P-PSO 
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is combined with an estimation method. However, this method tends to fail in a 

search space fills with obstacles. Similarly, Xue et al. (2009) suggested a fitness 

function generated from the fusion of multiple sources of signals. However, in some 

cases a good interpretation of source intensity is not critical if the source is not 

volatile and can be measured directly such as acoustics, light or heat sources. In these 

cases, priority is given to improve convergence speed and accuracy of solution by 

considering relevant information and strategies.    

 

2.3.2(b) Ant Colony Optimization (ACO) 

An Ant Colony Optimization (ACO) algorithm is proposed by Dorigo et al. (1999). 

Ants move randomly to search for food and once the food is found, they lay 

pheromone on their path as they moving back to their nest. Other ants will track the 

pheromone left by earlier ants and its strength is intensified if the pheromone lead to 

a potential food source. As the time passes, the intensity of the pheromone trail 

decreases due to evaporation. The less the path is followed by the ants, the less 

attractive the path becomes due to evaporation. The optimum solution is achieved 

when all or most ants followed the shortest path as illustrated in Figure 2.2.  

 

Figure 2.2: Ants shortest path convergence (Dorigo et al., 1999) 
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In swarm robotic source searching task, Hoff (2011) proposed an algorithm 

that mimics ACO for foraging task where a wireless communication is used as 

implicit communication where robot itself acts as a beacon that record the level of 

pheromone (i.e. contact information). In this method, a beacon robot becomes static 

and does not contribute to the searching task which may not be effective for a small 

number of robots. Meng et al. (2006) used an improved version of ACO for odor 

source localization which consists of three phases: local search based on genetic 

algorithm (GA), global search and pheromone update. The first two phases are added 

to ACO to improve performance of the search. GA in local search guarantees optimal 

or suboptimal points can be found in a local area while random search prevent the 

ACO from stuck at local optima. However, performance of the algorithm is highly 

influenced by the initial distribution of the robots. Moreover, Zou et al. (2009) 

proposed an ACO based odor searching strategy which consists of two parts: 

tracking strategy and localization strategy. The modified ACO consists of three 

phases: local traversal search, global search and pheromone update. In order to 

localize multiple sources, robot that found the source is assigned to the 

corresponding source while other robots continue their search. Their simulation 

results show that robots are capable of quickly and accurately trace the sources. Last 

but not least, Ferreira et al. (2018) studied robots searching behavior similar to ACO 

inspired by Brazilian Ants where RFID tag is used as pheromone.    

 

2.3.2(c) Artificial Bee Colony (ABC) Optimization  

Artificial Bee Colony Optimization (ABC) is initially proposed by Karaboga (2005) 

to solve multimodal and multidimensional optimization problems inspired by honey 

bees foraging behavior as illustrated in Figure 2.3. There are three essential 
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