
REUSED FREQUENCY-BASED REPLACEMENT

POLICY WITH PROGRAM COUNTER

PREDICTOR ON VARIOUS MEMORY ACCESS

TYPES FOR LAST LEVEL CACHE MEMORY

YEE MING CHUNG

UNIVERSITI SAINS MALAYSIA

2019

REUSED FREQUENCY-BASED REPLACEMENT

POLICY WITH PROGRAM COUNTER

PREDICTOR ON VARIOUS MEMORY ACCESS

TYPES FOR LAST LEVEL CACHE MEMORY

by

YEE MING CHUNG

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

July 2019

ii

ACKNOWLEGEMENTS

This dissertation is dedicated to everyone in the field of microprocessor architecture

especially in Last-level cache memory who is going through the journey as

professional researcher at novice level that needed guidance for similar research.

Throughout the entire years of earning Ph.D qualification, my supervisor Assoc. Prof.

Dr. Zaini Abdul Halim has supported me in various ways namely her guidance and

advice. Thanks to her dedication, she enables my research and thesis to be completed

in a timely manner. In addition, I would like to express my gratitude to the School of

Electrical and Electronic Engineering staff namely Mr. Jamaludin Bin Mohamad for

his support and permission to allow the usage of computers in the Microprocessor

laboratory. This research would not have been possible completed in a timely manner

without the computers in the laboratory. Lastly, my parents whom are important

people in my life give me the encouragement and morale support to go through this

highly demanding intellectual journey. I would also like to thank my father particular

for his willingness to support me financially.

iii

TABLE OF CONTENTS

ACKNOWLEGEMENTS .. ii

TABLE OF CONTENTS ..iii

LIST OF TABLES .. x

LIST OF FIGURES ...xiii

LIST OF ABBREVIATIONS ...xviii

ABSTRAK…………………………….………………………………….…………. xx

ABSTRACT………………………………...………………...…………………….xxii

CHAPTER 1 INTRODUCTION…………………………………..…………….. 1

1.1 Introduction .. 1

1.2 Motivation and Research Problems ... 5

1.3 Objectives ... 12

1.4 Scope Limitation .. 13

1.5 Outline of Thesis .. 14

CHAPTER 2 LITERATURE REVIEW .. 16

2.1 Introduction .. 16

2.2 Background of LLC memory ... 16

2.2.1 Basic Architecture of LLC Memory .. 19

2.3 Background of Basic LLC Replacement Policy Operation 22

2.4 Conventional replacement policy ... 23

2.4.1 Least Recently Used (LRU) ... 23

2.4.2 Least Frequently Used (LFU) .. 25

iv

2.5 LFU Variants .. 26

2.5.1 Least Recently Frequently Used (LRFU) .. 27

2.5.2 Counter-based cache replacement and bypassing algorithms 28

2.6 Recent development for LLC replacement policies ... 31

2.6.1 Re-reference Interval Prediction (RRIP) ... 32

2.6.2 Signature-based Hit Predictor (SHiP) .. 35

2.6.3 Hawkeye .. 37

2.6.4 Multiperspective .. 39

2.6.5 Less Is MorE (LIME) ... 41

2.6.6 Reuse Detection (ReD) .. 43

2.6.7 Leeway ... 45

2.6.8 Signature-based Hit Predictor ++ (SHiP++) 46

2.6.9 Expected Hit Count (EHC) .. 49

2.6.10 Summary .. 51

2.7 ChampSim Simulator ... 54

2.8 Prefetching ... 58

2.9 Benchmarks .. 59

2.10 Chapter Summary ... 63

CHAPTER 3 REUSED FREQUENCY PROMOTION 65

3.1 Introduction .. 65

3.2 Investigation of Reused Frequency Behavior at LLC Memory 65

3.2.1 Methodology of Investigating of Reused Frequency 66

v

3.2.2 Experimental Setups for Reused Frequency Investigation 67

3.2.3 Analysis of Reused Frequency Behavior ... 71

3.3 The Proposed Reuse Frequency Promotion (RFP) .. 74

3.3.1 RFP Background .. 74

3.3.2 Eviction operation of RFP ... 78

3.3.3 Promotion operation of RFP .. 81

3.3.4 Insertion operation of RFP ... 83

3.4 Theoretical Performance Improvement of RFP ... 83

3.4.1 Recency-friendly .. 84

3.4.2 Mixed access pattern with same reuse ... 88

3.4.3 Mixed access pattern with different reuse.. 91

3.4.4 Summary .. 94

3.5 Experiment Setups ... 94

3.5.1 Performance Metric.. 95

3.6 Performance of RFP ... 97

3.6.1 Factorial Design Analysis .. 97

3.7 Comparison .. 104

3.7.1 t-test Analysis ... 106

3.8 Analysis .. 110

 3.8.1 Performance Analysis ... 110

 3.8.2 Access Pattern Analysis ... 113

 3.8.3 Analysis of RFP, LFU and LRFU .. 114

vi

 3.8.4 Analysis of RFP problem ... 116

3.9 Storage Hardware Budget .. 119

3.10 Chapter Summary ... 120

CHAPTER 4 PCHM PREDICTOR .. 122

4.1 Introduction .. 122

4.2 Background .. 122

4.3 Methodology of PCHM Predictor .. 124

4.3.1 Insertion ... 129

4.3.2 Updating of PCHM Predictor .. 132

4.4 Experimental setups for PCHM Predictor Performance Evaluations 136

4.5 Performance Evaluation of PCHM Predictor ... 137

4.5.1 Factorial Design Analysis .. 137

4.5.2 Size of PCHM Tables Entries .. 145

4.5.3 Size of Counter of PCHM Tables .. 146

4.5.4 Size of Sample Sets .. 147

4.6 RFP-PCHM Comparison ... 148

4.6.1 t-test Analysis for Comparison Performance of PCHM

Predictor ... 149

4.7 Analysis .. 153

 4.7.1 Performance Analysis ... 153

 4.7.2 Problem of RFP-PCHM ... 157

4.8 Storage Hardware Overhead .. 160

vii

4.9 Chapter Summary ... 162

CHAPTER 5 RFP-PCHM-I ... 164

5.1 Introduction .. 164

5.2 Background .. 164

5.3 Methodology of Adaptation for Memory Access Type 166

5.3.1 Prefetching ... 170

 5.3.1(a) Updating of PCHM Predictor .. 170

 5.3.1(b) Insertion Operation .. 174

 5.3.1(c) Promotion Operation ... 177

5.3.2 Writeback ... 178

 5.3.2(a) Insertion Operation .. 178

5.4 Experiment Setups ... 179

5.5 Results of RFP-PCHM with and without Prefetching 180

5.6 Performance Evaluation of RFP-PCHM-I and Comparison 183

5.6.1 t-test Analysis for RFP-PCHM-I.. 187

5.7 Analysis .. 192

 5.7.1 Performance Analysis ... 193

 5.7.2 Analysis between RFP-PCHM-I and comparison replacement

 policy ... 197

5.8 Storage Hardware Comparison .. 199

5.9 Chapter Summary ... 200

CHAPTER 6 CONCLUSION ... 202

viii

6.1 Conclusion .. 202

6.2 Future work .. 204

REFERENCES

APPENDIX A: REUSED FREQUENCY DISTRIBUTION

APPENDIX B: PERFORMANCE OF RFP

APPENDIX C.1: RFP PERFORMANCE ON astar_23B

APPENDIX C.2: LFU PERFORMANCE ON astar_23B

APPENDIX C.3: LRFU PERFORMANCE ON astar_23B

APPENDIX C.4: RFP ANALYSIS ON astar_23B

APPENDIX C.5: LRU ANALYSIS ON astar_23B

APPENDIX C.6: LRU ANALYSIS ON Nutch

APPENDIX C.7: RFP ANALYSIS ON Nutch

APPENDIX C.8: LRU ANALYSIS ON Mix-7

APPENDIX C.9: RFP ANALYSIS ON Mix-7

APPENDIX C.10: INSERTING DIFFERENTLY FOR RFP ON astar_23B

APPENDIX D: RFP-PCHM FACTORIAL DESIGN EXPERIMENTS

APPENDIX E: RFP-PCHM ADDITIONAL EXPERIMENTS

APPENDIX F.1: ANALYSIS OF RFP-PCHM ON Nutch

APPENDIX F.2: ANALYSIS OF RFP-PCHM ON Mix-7

APPENDIX F.3: ANALYSIS OF SHIP-PC ON mcf_46B

APPENDIX F.4: ANALYSIS OF RFP-PCHM ON mcf_46B

APPENDIX F.5: ANALYSIS OF RFP ON mcf_46B

APPENDIX F.6: ANALYSIS OF SHIP-PC ON gcc_16B

APPENDIX F.7: ANALYSIS OF RFP-PCHM ON gcc_16B

APPENDIX F.8: ANALYSIS OF RFP ON gcc_16B

ix

APPENDIX G: RFP-PCHM-I CODES

APPENDIX H:ALL COMPARISON IN IPC

APPENDIX I.1: RFP ANALYSIS ON lbm_94B

APPENDIX I.2: RFP-PCHM ANALYSIS ON lbm_94B

APPENDIX I.3: RFP-PCHM-I ANALYSIS ON lbm_94B

APPENDIX I.4: SHiP++ ANALYSIS ON sphinx_883B

APPENDIX I.5: RFP-PCHM-I ANALYSIS ON sphinx_883B

APPENDIX I.6: SHiP++ ANALYSIS ON mcf_46B

APPENDIX I.7: RFP-PCHM-I ANALYSIS ON mcf_46B

APPENDIX I.8: SHiP++ ANALYSIS ON lbm_94B

APPENDIX I.9: Hawkeye ANALYSIS ON lbm_94B

APPENDIX I.10: Multiperspective ANALYSIS ON lbm_94B

APPENDIX I.11: RFP-PCHM-I ANALYSIS ON lbm_94B

x

LIST OF TABLES

Page

Table 2.1 Summary of Related Replacement Policies 52

Table 2.2 ChampSim cache memory configurations .. 55

Table 2.3 Summary of SPEC CPU 2006 Benchmarks 60

Table 3.1 MPKI of Benchmarks ... 69

Table 3.2 Multi-program mixes .. 70

Table 3.3 Summary of experiment settings for all evaluations 70

Table 3.4 The Average Percentage of Reused Frequency Behavior of All

Evaluations ... 74

Table 3.5 Data collection for factorial design experiment of single-thread

evaluation .. 99

Table 3.6 ANOVA result for single-thread evaluation 100

Table 3.7 Data collection for factorial design experiment of multi-program

evaluation .. 101

Table 3.8 ANOVA result for multi-program evaluation 101

Table 3.9 Data collection for factorial design experiment of multi-thread

evaluation .. 103

Table 3.10 ANOVA result for multi-thread evaluation 103

Table 3.11 Normalized IPC for Single-thread Evaluation 108

Table 3.12 t-test Result for Single-thread Evaluation 108

Table 3.13 Normalized IPC for Multi-program Evaluation 109

Table 3.14 t-test Result for Multi-program Evaluation 109

Table 3.15 Normalized IPC of Multi-thread Evaluation 110

Table 3.16 t-test Result for Multi-thread Evaluation .. 110

xi

Table 3.17 Summary of hardware storage budget of the replacement

policies .. 120

Table 4.1 Data collection for factorial design experiment of PCHM

Predictor for single-thread evaluation .. 140

Table 4.2 ANOVA result for single-thread evaluation of PCHM Predictor .. 140

Table 4.3 Data collection for factorial design experiment of PCHM

Predictor for multi-program evaluation .. 142

Table 4.4 ANOVA result for multi-program evaluation of PCHM

Predictor .. 142

Table 4.5 Data collection for factorial design experiment of PCHM

Predictor for multi-thread evaluation ... 144

Table 4.6 ANOVA result for multi-thread evaluation of PCHM Predictor ... 144

Table 4.7 Normalized IPC for SHiP-PC, RFP and RFP-PCHM from

Single-thread Evaluation .. 150

Table 4.8 t-test Result for Single-thread Evaluation 151

Table 4.9 Normalized IPC for SHiP-PC, RFP and RFP-PCHM of

Multi-program Evaluation .. 152

Table 4.10 t-test Result for Multi-program Evaluation 152

Table 4.11 Normalized IPC for SHiP-PC, RFP and RFP-PCHM of

Multi-thread Evaluation .. 153

Table 4.12 t-test Result for Multi-thread Evaluation .. 153

Table 4.13 Reused behavior of load/RFO and Writeback 158

Table 4.13 Reused behavior of load/RFO and Writeback (con’t) 159

Table 4.14 Reused behavior of load/RFO, Prefetch and Writeback 160

Table 4.14 Reused behavior of load/RFO, Prefetch and Writeback (Con’t) 160

xii

Table 4.15 RFP-PCHM storage hardware budget .. 161

Table 4.16 Comparison of Storage Hardware of PCHM Predictor 162

Table 5.1 Differences of RFP-PCHM-I Insertion Decision for Prefetching

and Load Memory Access .. 176

Table 5.2 Comparison of RFP, RFP-PCHM and RFP-PCHM-I 186

Table 5.3 Normalized IPC for RFP-PCHM-I and comparison replacement

policy from Single-thread Evaluation ... 188

Table 5.4 t-test Result for Single-thread Evaluation 190

Table 5.5 Normalized IPC for RFP-PCHM-I and comparison replacement

policy from Multi-program Evaluation .. 190

Table 5.6 t-test Result for Multi-program Evaluation 191

Table 5.7 Normalized IPC for RFP-PCHM-I and comparison replacement

policy from Multi-thread Evaluation .. 191

Table 5.8 t-test Result for Multi-thread Evaluation .. 192

Table 5.9 Storage Hardware of RFP-PCHM-I ... 200

Table 5.10 Storage Hardware Size Comparison between Related Works 200

xiii

LIST OF FIGURES

Page

Figure 1.1 LRU Operation on 4-way set associative ... 4

Figure 1.2 RRIP Operation on 4-way set associative .. 7

Figure 1.3 RRIP Problem ... 9

Figure 1.4 Visualization of a) single-thread, b) multi-program, and

c) multi-thread .. 14

Figure 2.1 Basic architecture of 4-way associative .. 20

Figure 2.2 Operation of Promotion, Eviction and Insertion of LRU 23

Figure 2.3 LRU chain ... 24

Figure 2.4 AIP Storage Hardware .. 30

Figure 2.5 The flow chart of pre-existing work SRRIP-HP 33

Figure 2.6 The RRIP chain for a) SRRIP-HP b) SRRIP-FP and c) BRRIP 34

Figure 2.7 SHiP Block Diagram .. 36

Figure 2.8 Hawkeye Block Diagram .. 38

Figure 2.9 Insertion, Promotion and Eviction Operation of Multiperspective .. 40

Figure 2.10 LIME Block Diagram ... 41

Figure 2.11 ReD Operation .. 44

Figure 2.12 Block Diagram of Leeway .. 45

Figure 2.13 SHiP++ Flow Chart .. 48

Figure 2.14 EHC Block Diagram ... 50

Figure 2.15 Compiler command for ChampSim simulator 58

Figure 2.16 Flow Chart of Overall Thesis ... 64

Figure 3.2 Algorithm 3.1 - Tracking the number of lines with reused

frequency of i .. 67

xiv

Figure 3.3 The percentage of number of references of single-thread

evaluation .. 71

Figure 3.4 The percentage of number of references of multi-program

evaluation .. 72

Figure 3.5 The percentage of number of references of multi-thread

evaluation .. 73

Figure 3.6 The flow chart of RFP operations ... 76

Figure 3.7 Example of RFP eviction operation .. 79

Figure 3.8 Algorithm 3.2 - Eviction operation of RFP 81

Figure 3.9 Example of RFP Promotion Operation of RFP 81

Figure 3.10 Algorithm 3.3 - Promotion and Insertion Operation of RFP 82

Figure 3.11 Example of RFP Insertion Operation of RFP 83

Figure 3.12 Theoretical performances at recently-friendly access pattern of

a) LRU, b) SRRIP-HP, c) SRRIP-FP, d) BRRIP, e) RFP

and f) LFU .. 87

Figure 3.13 Theoretical performances at mixed access pattern with same reuse

behavior of a) LRU, b) SRRIP-HP, c) SRRIP-FP, d) BRRIP,

e) RFP and f) LFU .. 90

Figure 3.14 Theoretical performances at mixed access pattern with different

reuse behavior of a) LRU, b) SRRIP-HP, c) SRRIP-FP, d) BRRIP,

e) RFP and f) LFU .. 93

Figure 3.15 Interaction Plot for y1 response of single-thread evaluation 100

Figure 3.16 Interaction Plot for y2 response of single-thread evaluation 100

Figure 3.17 Interaction Plot for y1 response of multi-program evaluation 102

Figure 3.18 Interaction Plot for y2 response of multi-program evaluation 102

xv

Figure 3.19 Interaction Plot for y1 response of multi-thread evaluation 104

Figure 3.20 Interaction Plot for y2 response of multi-thread evaluation 104

Figure 3.21 Comparison performances .. 106

Figure 3.22 Single-thread evaluation of comparison performances 112

Figure 3.23 Multi-program evaluation of comparison performances 112

Figure 3.24 Multi-thread evaluation of comparison performances 113

Figure 4.1 Operations of PCHM Predictor .. 127

Figure 4.2 SHiP-PC Operations. .. 129

Figure 4.3 Example of Insertion Operation of PCHM Predictor 130

Figure 4.4 Algorithm 4.1 - Insertion Operation of PCHM Predictor 132

Figure 4.5 Example of updating PCHM Predictor during hit 133

Figure 4.6 Example of updating PCHM Predictor during miss 134

Figure 4.7 Algorithm 4.2 - PCHM Predictor updating upon hit and miss 136

Figure 4.8 Interaction plot for y1 on single-thread evaluation of

PCHM Predictor ... 141

Figure 4.9 Interaction plot for y2 on single-thread evaluation of

PCHM Predictor ... 141

Figure 4.10 Interaction plot for y1 on multi-program evaluation of

PCHM Predictor ... 143

Figure 4.11 Interaction plot for y2 on multi-program evaluation of

PCHM Predictor ... 143

Figure 4.12 Interaction plot for y1 on multi-thread evaluation of

PCHM Predictor ... 144

Figure 4.13 Interaction plot for y2 on multi-thread evaluation of

PCHM Predictor ... 145

xvi

Figure 4.14 Performance of RFP-PCHM in terms of entries size. 146

Figure 4.15 Performance of RFP-PCHM in terms of counter size. 147

Figure 4.16 Performance of RFP-PCHM in terms of sample sets size. 148

Figure 4.17 Comparison performance of PCHM Predictor 149

Figure 4.18 Individual performance for single-thread evaluation 154

Figure 4.19 Individual mix performance for multi-program evaluation 155

Figure 4.20 Individual performance for multi-thread evaluation 155

Figure 5.1 The complete RFP-PCHM-I Insertion operation and training

flow on ChampSim simulator ... 169

Figure 5.2 PCHM Predictor updating for prefetching and load access

during hit ... 171

Figure 5.3 PCHM Predictor updating during miss .. 172

Figure 5.4 Algorithm 5.1 - PCHM Predictor updating for prefetching

access .. 174

Figure 5.5 Insertion operation for load and prefetching access 175

Figure 5.6 Algorithm 5.2 - Insertion operation for prefetching access 176

Figure 5.7 Algorithm 5.3 - Promotion operation for prefetched line 177

Figure 5.8 Insertion operation for writeback ... 178

Figure 5.9 Algorithm 5.4 - Insertion operation for writeback 179

Figure 5.10 The performance of RFP-PCHM with and without prefetching

on single-thread evaluation ... 181

Figure 5.11 The performance of RFP-PCHM with and without prefetching

on multi-program evaluation .. 182

Figure 5.12 The performance of RFP-PCHM with and without prefetching

on multi-thread evaluation .. 183

xvii

Figure 5.13 Performance comparisons of proposed works and related works. . 187

Figure 5.14 Performance on single-thread evaluation without prefetching. 193

Figure 5.15 Performance on multi-program evaluation without prefetching. ... 194

Figure 5.16 Performance on multi-thread evaluation without prefetching. 194

Figure 5.17 Performance on single-thread evaluation with prefetching. 195

Figure 5.18 Performance on multi-program evaluation with prefetching. 195

Figure 5.19 Performance on multi-thread evaluation with prefetching. 196

xviii

LIST OF ABBREVIATIONS

BRRIP Bimodal Re-reference Interval Prediction

CPU Central Processor Unit

EHC Expected Hit Count

FP Frequency Priority

FPGA Field Programmable Gate Array

FSM Finite State Machine

HP Hit Priority

HHT Hit History Table

IPC Instruction Per Cycle

L1 Level 1

L2 Level 2

LIME Less Is MorE

LLC Last-Level Cache

LRU Least Recently Used

LFU Least Frequently Used

LRFU Least Recently Frequently Used

MRU Most Recently Used

NRU Not Recently Used

OPT Optimal

PC Program Counter

PCHM Program Counter Hit Miss

PCHT Program Counter Hit Table

PCMT Program Counter Miss Table

ReD Reused Detection

RRIP Re-reference Interval Prediction

RRPV Re-reference Prediction Value

RFP Reused Frequency Promotion

RFO Read For Only

SRRIP Static Re-reference Interval Prediction

SRRIP-HP Static Re-reference Interval Prediction Hit Priority

SRRIP-FP Static Re-reference Interval Prediction Frequency Priority

SHiP Signature-based Hit Predictor

xix

SHCT Signature Hit Counter Table

SPEC Standard Performance Evaluation Corporation

xx

POLISI PENGGANTIAN BERDASARKAN FREKUENSI GUNA SEMULA

BERSAMA PERAMAL PEMBILANG PROGRAM PADA PELBAGAI JENIS

MEMORI AKSES UNTUK ARAS AKHIR INGATAN SORAKAN

ABSTRAK

Pada masa ini, haluan utama penyelidikan dalam ingatan sorakan

mikroprosesor adalah ingatan sorakan aras akhir (LLC). Saiz LLC biasanya antara 2

MB hingga 20 MB. Penyelidikan menumpukan pada peningkatan prestasi LLC dari

segi Instruction Per Cycle (IPC). Polisi penggantian Static Re-ference Interval

Prediction Hit Priority (SRRIP-HP) boleh membuang ingatan sorakan yang kerap

digunakan dan akan digunakan tidak lama lagi. Dalam tesis ini, polisi penggantian

baru yang menggunakan penggunaan semula frekuensi dan Re-reference Interval

Value (RRPV) dicadangkan untuk mengurangkan masalah SRRIP-HP dan bertujuan

meningkatkan prestasi dari segi IPC. Polisi penggantian ini dipanggil Promosi

Frekuensi Digunakan Semula (RFP). Walau bagaimanapun, RFP terlalu awal

membuang ingatan sorakan yang baru dimasukkan pada program yang recency-

friendly. Hal ini kerana pemasukan frekuensi yang digunakan semula dan RRPV

adalah secara statik dan tanpa mengetahui ingatan sorakan yang mana perlu disimpan

lebih lama. Oleh itu, peramal blok mati yang baru dipanggil peramal Program

Counter Hit Miss (PCHM) digunakan untuk mengubah keputusan pemasukan RFP.

Peramal PCHM membenarkan ingatan sorakan yang diramalkan akan digunakan

semula pada masa depan disimpan lebih lama dalam ingatan LLC. Ini dapat

meningkatkan peluangnya untuk digunakan semula dan meningkatkan prestasi.

xxi

Gabungan RFP dan Peramal PCHM dipanggil RFP-PCHM. Walau bagaimanapun,

RFP-PCHM mempunyai prestasi yang buruk dalam beberapa program kerana

pelbagai jenis akses memori mengemaskini pada Peramal PCHM yang sama. Jenis-

jenis akses memori adalah load/RFO, prefetching dan writeback. Tingkah laku

kekerapan akses memori ini mungkin berbeza. Oleh itu, operasi mengubah

pengemaskinian dan pemasukan Peramal PCHM dari RFP-PCHM; dan juga operasi

mengubah keputusan promosi RFP-PCHM harus berdasarkan jenis akses memori.

Polisi penggantian ini disebut RFP-PCHM-I. Dalam penilaian prestasi, RFP, RFP-

PCHM dan RFP-PCHM-I telah diuji pada penilaian single-thread, multi-thread dan

multi-program. Eksperimen ini diuji dengan menggunakan penanda aras SPEC CPU

2006 dan Cloudsuite pada simulator ChampSim. Polisi penggantian Least Recently

Used (LRU) digunakan sebagai penanda aras. LRU membuang ingatan sorakan yang

paling lama tidak digunakan dalam memori LLC. RFP, RFP-PCHM dan RFP-PCHM-

I mempunyai prestasi yang lebih baik berbanding dengan LRU, di mana prestasi

masing-masing ialah 0.72%, 0.77% dan 2.52% dari segi purata geometri berwajaran

IPC yang dinormalisasi. RFP-PCHM-I juga secara keseluruhan mempunyai prestasi

yang lebih baik daripada SHiP++ dan Leeway. Kesimpulannya, penggunaan semula

frekuensi bagi RFP telah meningkatkan prestasi SRRIP-HP. Tambahan pula, dengan

adanya Peramal PCHM bagi RFP-PCHM juga telah meningkatkan prestasi RFP. Di

samping itu, pengubahsuaian bagi pengemaskinian dan keputusan kemasukan bagi

peramal PCHM dan pengubahsuaian keputusan promosi bagi RFP-PCHM telah juga

meningkatkan prestasi RFP-PCHM.

xxii

REUSED FREQUENCY-BASED REPLACEMENT POLICY WITH

PROGRAM COUNTER PREDICTOR ON VARIOUS MEMORY ACCESS

TYPES FOR LAST-LEVEL CACHE MEMORY

ABSTRACT

Currently, the main trend of microprocessor cache research is on the last level

cache (LLC) memory. The typical LLC memory size is between 2 MB to 20 MB. The

researches focus on improving the performance of LLC memory in terms of

instruction per cycle (IPC) by using replacement policy. Static Re-reference Interval

Prediction Hit Priority (SRRIP-HP) replacement policy can evict cache line that is

frequently used and might be reused very soon. In this thesis, a new replacement

which uses reused frequency and Re-reference Interval Value (RRPV) is proposed to

mitigate the problem of SRRIP-HP with the aim to improve performance in terms of

IPC. This replacement policy is called as Reused Frequency Promotion (RFP).

However, the proposed RFP evicts newly inserted lines too early on recency-friendly

benchmarks. This is because RFP inserts the reused frequency and RRPV in static

manner without knowing which lines need to be kept longer. Therefore, a new dead

block predictor called Program Counter Hit Miss (PCHM) Predictor is use to modify

the insertion decision of RFP. The PCHM Predictor allows line that is predicted to be

reused in future very soon to be stored longer in LLC memory. This can increase its

chance of being reused and improve performance. The combination of RFP and

PCHM Predictor is called RFP-PCHM. However, RFP-PCHM performs worse on

some benchmark due to different type of memory access are updating the PCHM

Predictor. Each type of memory access namely load/RFO, prefetching and writeback

has different reused behavior. Therefore, the updating and insertion decision of

xxiii

PCHM predictor from RFP-PCHM is modified; and the promotion decision of RFP-

PCHM is also modified based on the type of memory access namely load/RFO,

prefetching and writeback. This replacement policy is called RFP-PCHM-I. In the

performance evaluations, the proposed RFP, RFP-PCHM and RFP-PCHM-I are tested

at single-thread, multi-thread and multi-program evaluation using SPEC CPU 2006

and Cloudsuite benchmarks on ChampSim simulator. Least Recently Used (LRU)

replacement policy is used as baseline. LRU evicts cache line that is the least recently

used in LLC memory. The RFP, RFP-PCHM and RFP-PCHM-I outperform LRU with

0.72%, 0.77% and 2.52% respectively in terms of weighted geometric mean of

normalized IPC. RFP-PCHM-I also overall outperforms the Signature-based hit

predictor ++ (SHiP++) and Leeway. In conclusion, the reused frequency of RFP have

further improved the performance of SRRIP-HP. In addition, the PCHM predictor of

RFP-PCHM have further improved the performance of RFP. The modification of

updating and insertion decision of PCHM predictor; and promotion decision of RFP-

PCHM have further improve the performance of RFP-PCHM.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

 In recent decades, the advancement of semiconductor fabrication technology

continues to shrink the size of transistor in microprocessor. This leads to more

transistors being packed in a given die size and allows more functions to be included

in microprocessor designs. There are many research and development activities on

improving the performance of microprocessors which results in fast and power

efficient processors. However, main memory (Random Access Memory) and

primary storage (Hard Disk) do not have the same rapid advancement as

microprocessor. The long memory latency from these memories has negatively

impacted the performance of microprocessor (Chu and Park, 2014; Das and Kapoor,

2016; Liu et al., 2017; Xue et al., 2017; Bartolini, Foglia and Prete, 2018).

 Cache memory is a solution to migrate the problem of long memory latency

from main memory (Xue et al., 2017). The cache memory is a fast but low capacity

memory (P Michaud, 2016). Cache memory works by exploiting the spatial and

temporal locality of programs. It stores data and instructions that have higher chance

of being reused by processor’s cores. Most of the programs only execute a small part

of its entire codes at one time. Therefore, it is not necessary to load all the data and

instructions into memory. This works in favor of cache memory because it is usually

small in capacity and can be expensive to fabricate large cache memory. There has

been a trend for quite some time now to integrate two-level or three-level cache

memory hierarchy to further improve the performance of microprocessor.

2

 Since last decade, microprocessors have not much improvements in terms of

clock speed due to “power wall” problem (Shi et al., 2016). Engineers in

microprocessor field have moved to design multi-core processor as a way to achieve

performance improvement (Das and Kapoor, 2016; Kedar, Mendelson and Cidon,

2017; Liu et al., 2017; Valls et al., 2017). Those multi-core processors have two-

level or three-level cache memory hierarchy. Normally, the last level cache (LLC)

memory is shared among the cores (Kharbutli and Sheikh, 2014; Sridharan and

Seznec, 2017). Each core has its own private cache memory namely level 1 (L1) or

level 2 (L2) or both which cannot be accessed by other cores (Fernández-Pascual,

Ros and Acacio, 2017). LLC memory is L2 and L3 of two-level and three-level

cache memory hierarchy.

 Cache memory utilizes 40% to 60% of total microprocessor silicon area and

consumes as much as 50% of total power consumption of entire microprocessor (Chu

and Park, 2014; Asad et al., 2017; Chakraborty and Kapoor, 2017; Kim, Lee and

Kim, 2017; Yasir Qadri et al., 2017). LLC is the largest cache memory compared to

L1 and L2 cache memory. It is between 2 MB to 20 MB depending on the

architecture design of the processor and the market segments that the designers are

aiming for. While, a L1 cache memory can be between 16 KB to 64 KB and L2

cache memory can be between 64 KB to 512 KB for each core. The power

consumption and silicon area usage of LLC is significant larger than L1 and L2

cache memory.

The performance and power consumption of cache memory can be improved

by using replacement policy. Example of replacement policies are Re-reference

Interval Prediction (RRIP) (Jaleel et al., 2010) and Signature-based Hit Predictor

(SHiP) (Wu et al., 2011). A good replacement policy can evict lines that will not be

3

used soon while keeping the lines longer that will be used soon. This can improve the

performance of microprocessor because the cache memory is able to handle demands

from processor’s cores with minimum delay. If the replacement policy evicts the

wrong lines, the processor’s cores have to wait longer for the data or instructions to

be retrieved from main memory or primary storage. This can degrade the

performance of the processor if the replacement policy frequently evicts the wrong

lines. Power consumption can be improved because a good replacement policy can

avoid the processor from accessing main memory and primary storage which

consumes more power.

In the cache memory, there are two events, namely hit and miss. Hit occurs if

the requested data or instructions are in the cache memory. Miss occurs if the

requested data or instructions are not in the cache memory.

A cache memory replacement policy is a subsystem of cache memory, which

the main function (eviction operation) is to evict cache line when the cache memory

set is fully occupied and miss occurs. Besides eviction operation, cache memory

replacement policy tasks involve insertion and promotion operation. When a new

line is stored in the cache memory after eviction operation, the insertion operation

needs to update the associated replacement policy information of the line. When a hit

occurs (data or instructions are in cache memory), the promotion operation also

needs to update the replacement policy information of the line. The information

determines whether the line will be considered as replacement or not during eviction

operation at miss. For example, information maintained by Least Recently Used

(LRU) replacement policy is called as recency. At miss (data or instructions are in

cache memory), LRU evicts the least recently used line based on the recency value.

4

During insertion, LRU inserts the line as most recently used. At hit, LRU promotes

the line as most recently used.

Figure 1.1 shows the operation of replacement policy using LRU as an

example on 4-way set associative cache memory. Each rectangular represents the

recency of cache line where recency of 0 means the most recently used and recency

of 3 means the least recently used. During eviction operation, LRU looks for cache

line with recency of 3 as replacement as shown in Figure 1.1 a). It searches logically

from way-0 to way-3 and found cache line at way-3 is the candidate of replacement.

After eviction, new cache line is stored in LLC memory and the recency needs to be

updated as shown in Figure 1.1 b). The update is called as insertion. Using Figure 1.1

a) as initial condition, the insertion operation is done by assigning recency value as 0

at way-3. The other recency values are increased by one. During hit, the recency also

needs to be updated as shown in Figure 1.1 c). LRU assigned the recency value as 0

at way-2 because hit occurs at way-2. Then, the other recency values are increased

by one.

 Figure 1.1 LRU Operation on 4-way set associative

In recent years, there have been a lot of researches focused on LLC

replacement policy because there is a performance gap between conventional

5

replacement policy namely LRU and theoretical Optimal replacement policy (Do et

al., 2015). This gap shows that there is a room of performance improvement on LLC

replacement policy. Optimal is an offline replacement policy which required looking

ahead for cache line that will be reused in furthest in future as replacement. It

requires significant modification of the simulator to allow Optimal to check the

future access memory stream to identify cache line that will be reused far in future

during miss.

Furthermore, LLC replacement policy can improve the performance and

power consumption of multi-core processor by avoiding memory access that has high

latency and power consumption penalty (Park, Lee and Kim, 2016). The multi-core

processor configurations give a new challenge to be efficiently managed of the LLC

utilization due to competition of multiple program threads on shared LLC (Yin et al.,

2016).

Instruction per cycle (IPC) is the conventional metric used to measure the

performance of microprocessor. The IPC is obtained from simulation result using

simulator. Normally, the simulations are ran between 100 million to 8 billion

instructions (Faldu and Grot, 2017; Jain and Lin, 2016; Jiménez and Teran, 2017;

Vakil-Ghahani et al., 2018; Young et al., 2017). In 2nd International Cache

Replacement Championship, the current performance improvement of replacement

policies in terms of IPC over LRU at LLC memory is between 0.5% and 3.3% which

are mentioned in Section 2.5 (Crc2.ece.tamu.edu, 2017).

1.2 Motivation and Research Problems

Re-reference interval prediction (RRIP) is a hardware efficient replacement

policy based on reused prediction. RRIP keeps lines that are predicted to be re-

6

referenced in near-intermediate future longer while keeps lines that are predicted to

be re-referenced in distant future for short time at LLC memory (Peng, Yu and Zhu,

2015).

Each cache line is assigned with RRIP value which represents the likelihood

of reused in future. The RRIP value is called Re-reference Prediction Value (RRPV).

The RRPV can be from 0 until 3. The high RRPV means the line are predicted to be

re-referenced in distant future while low value RRPV means the line are predicted to

be re-referenced in near-intermediate future. However, the RRIP replacement policy

does not consider the reused frequency of each line. If the RRPVs are the same in the

cache set, the first line will be evicted, normally line at way-0. There is a possibility

for frequently reused line to be evicted even though it has the highest reused

frequency value.

Figure 1.2 shows the operation of RRIP where the value in square box

represents RRPV. When miss occurs and cache memory is full, RRIP evicts cache

line with RRPV of 3 as shown in Figure 1.2 a). RRIP searches logically from way-0

to way-3 for the first line with RRPV of 3 to be evicted. RRPV of 3 means the line

would not be reused or will be reused in distant future. After eviction, RRIP always

insert the new line with RRPV as 2 as shown in Figure 1.2 b), which the line is

predicted to be reused far in future. This line will be evicted soon because its time in

cache memory will be short. When hit occurs, the RRPV is promoted to 0 which

means the line is predicted to be reused in near-intermediate future as shown in

Figure 1.2 c). This can increased the chance the line will be reused in future because

it stay longer in cache memory.

7

 Figure 1.2 RRIP Operation on 4-way set associative

 Figure 1.3 shows the problem of RRIP with a theoretical example and detail

operation. At initial condition as shown in Figure 1.3 at row No.1, the a1, a2, a3 and

a4 line have been reused (reused frequency) many times where a1 has been reused 3

times while a2, a3 and a4 have been reused 2 times. The RRPV for all lines are 0

which represents near-intermediate re-reference interval prediction. This means the

lines will be reused very soon. When a5 is accessed, it is a miss since there is no a5

resides in the cache lines. According to eviction operation of RRIP, it searches

logically from way-0 to way-3 for the line with RRPV of 3. However, there is no

such line. So, RRIP increased all the RRPVs of all lines by 1 and continue to search

again. The process of searching and increasing are repeated until the first line with

RRPV of 3 is found. This line is the candidate of the replacement. As shown in

Figure 1.3 at row No.2, line at way-0 is selected as replacement. The RRPV of a5 is

updated as 2 which represents long re-reference interval prediction. This means the

a5 line is predicted to be reused in distant future. Next, a1 is accessed and a miss has

occured. RRIP evicts line at way-1 because it is the first line with RRPV of 3. The a1

is updated with RRPV of 2 as shown in row No.3.

8

RRIP does not keep any reused frequency information of each memory

access of line in the LLC memory. RRIP can evict line that has been reused

frequently and will be reused again very soon. It is shown in Figure 1.3 where RRIP

evicts the line at way-0 that will be reused very soon. If RRIP keeps the reused

frequency information, it can avoid evicting that line by evicting other line instead.

This will avoid a miss and can improve the performance if RRIP is reused frequency

aware.

To the best of author’s knowledge in this research field, there is no research

to use the reused frequency and the RRPV to make replacement decision in LLC

memory replacement policy. Hence, a new replacement policy is proposed which

uses the reused frequency and the RRPV to make replacement decision in this thesis

with the goal of performance improvements in terms of IPC. The used of reused

frequency for the new proposed replacement policy is different compared to Least

Frequently Used (LFU) and Least Recently Frequently Used (LRFU). LFU evicts

randomly when there are more than one least frequently used lines. The proposed

replacement policy uses RRPV to find line that is predicted to be re-reference in

distant future in the group of least reused lines. On the other hand, LRFU uses

floating point number to represent the likehood of being reused while the proposed

replacement policy uses simple counter to count the reused frequency. LRFU is more

complex in terms of calculating the floating point number.

9

Figure 1.3 RRIP Problem

A dead block predictor is another method to improve the performance of LLC

memory replacement policy in terms of IPC (Diaz Maag et al., 2017; Faldu and Grot,

2017; Jain and Lin, 2016; Jiajun et al., 2017; Wu et al., 2011; Vakil-Ghahani et al.,

2018; Young et al., 2017). The predictor works by modifying the insertion decision

of the replacement policy. The cache lines will be evicted later or sooner based on its

prediction whether the new incoming line will be reused or not in future. One of the

replacement policies that is using the dead block predictor is Signature-based Hit

Predictor (SHiP).

SHiP has been used to improve the existing RRIP replacement policy

performance by modifying its insertion decision (Wu et al., 2011). SHiP introduces

three different signatures which are program counter (PC), memory region (Mem)

and instruction sequence (ISeq); and named the SHiP replacement policy as SHiP-PC,

SHiP-Mem and SHiP-ISeq respectively. The SHiP predicts whether a line will be

reused in future based on the counter value associated with the signature in the

10

signature history counter table (SHCT). If the counter value of SHCT is larger than

zero, it means the line is predicted to be reused soon. Hence, SHiP inserts the RRPV

as 2 which allow the line to be stored in LLC memory longer. While, the line is

predicted to be reused far in future if the counter value is zero. Therefore, SHiP

inserts the RRPV as 3 which allow the line to be evicted very soon. SHiP works

better than RRIP because it can make better insertion decision by using reused

behaviors of instructions which share the same signature (Wu et al., 2011; Sardashti

and Wood, 2017). The improvement of SHiP over LRU is 9.7% in average while the

RRIP is only 5.5% (Wu et al., 2011).

However, SHiP does not make any different prediction when the SHCT

counter reaches saturation because lines have the highest chance of being reused very

soon compared to counter value that is more than zero but not saturated (Young et al.,

2017). This is an opportunity to further improve the performance of SHiP. In

addition, the updating of SHCT is imbalance during hit and miss (Young et al., 2017).

Every time a hit occurs at a line, the associated SHCT counter is updated. However,

SHCT is only updated once if the evicted line is not reused at all during miss. This

can become a problem because the SHCT cannot be updated fast enough when the

program behavior changes from high reused to no reuse as SHCT needs more time

and many misses to change from high counter value to low counter value.

To address these problems, a new dead block predictor based on SHiP is

proposed. This new dead block predictor is used to modify the proposed replacement

policy insertion decision in this thesis.

 Modern multi-core processors have prefetcher implemented which is another

method to improve performance (Gupta, Gao and Zhou, 2013; Li et al., 2014).

11

Prefetcher fetches instruction or data that may be used or may not be used into LLC

memory before the program is accessing it (Panda and Balachandran, 2016). When

processor’s core access data or instructions at LLC memory due to program miss,

this type of memory access is called load. Prefetching and load are the type of

memory accesses in microprocessor that may have different reused frequency

behavior. Writeback is another type of memory access. It is accessed by the

processor’s core to maintain data coherence in memory hierarchy.

If data or instructions are not available at LLC memory during prefetching

access, this will trigger a miss. The replacement policy needs to evict a line and

requests memory access to main memory. The evicted line might be reused in future

while the incoming prefetched lines from main memory may or may not be reused at

all. This introduces a problem at LLC memory because prefetching memory accesses

essentially competing LLC memory space and may interfere with replacement policy

eviction decision if the prefetched line is not reused for program execution (Panda,

2016; Sridharan, Panda and Seznec, 2017). Recent study has shown that 95% of

prefetched lines are not reused after their first load hit (Seshadri et al., 2015).

Besides prefetching, writeback access is another memory access that can compete

with LLC memory resources. Writeback memory access may not improve the

execution speed of program because the memory latency due to a miss of writeback

access can be hidden (Jiajun et al., 2017, Lee, Kim and Chung, 2018).

To the best of author’s knowledge, there are not many replacement policy

researches that consider and treat the load, writeback and prefetching memory access

differently in terms of promotion and insertion operation replacement policy (Diaz

Maag et al., 2017; Faldu and Grot, 2017; Jiajun et al., 2017; Jiménez and Teran,

12

2017; Young et al., 2017). This provides an opportunity to make different insertion

and promotion replacement policy decision based on type of memory access.

In this thesis, the proposed replacement policy promotion decision is

modified based on type of memory access namely load, prefetching and writeback.

In addition, the updating and insertion decision of the proposed dead block predictor

is also modified based on the type of memory access.

1.3 Objectives

In short, the main objective of this thesis is to investigate the performance in

terms of IPC of the new replacement policy which use reused frequency and RRPV

in making decision of replacement. In addition, the performance of the proposed

replacement policy is investigated further using a proposed dead block predictor; and

by modifying the insertion and promotion decision based on the type of memory

accesses. Below are the objectives of the thesis:

(i) To improve the performance in terms of IPC over RRIP at LLC memory by

using the proposed replacement policy that uses reused frequency and RRPV

to make replacement policy decision.

(ii) To improve the performance in terms of IPC over the proposed replacement

policy in (i) by using the proposed dead block predictor based on SHiP.

(iii) To improve the performance in terms of IPC by modifying the proposed dead

block predictor in (ii) to make updating and insertion decision differently; and

modifying the proposed replacement policy in (ii) to make different

promotion decision based on type of memory access namely, load, writeback

and prefetching memory access.

13

1.4 Scope Limitation

 In this thesis, the main focus is on the research of algorithm-based

replacement policy by using software simulation to evaluate the performance on LLC

memory. The proposed replacement policy is developed with the intention of

hardware implementation in future. Therefore, the additional storage hardware is

presented in this thesis because it is easier to be estimated. In this thesis, there is no

hardware-based development on field programmable gate array (FPGA) or using

silicon die fabrication.

There are three evaluations considered in this thesis namely single-thread,

multi-thread and multi-program. A single-thread is a sequence of program

instructions execution that is managed by operating system scheduler as shown in

Figure 1.4 a). Multi-program is basically a group of single-thread program which

runs individually on each core. Each thread in the multi-program setup has its own

codes (instructions) and data as shown in Figure 1.4 b). Multi-thread is a single

program with a parent thread that can issue multiple child threads which are

distributed and run among all the cores. These programs have a group of common

data and codes that share among all cores as shown in Figure 1.4 c). In this thesis,

single-thread evaluation is evaluated at single-core. Although multi-thread and multi-

program evaluation can be evaluated in large number of cores, only quad-core

configuration is evaluated in this thesis.

14

Figure 1.4 Visualization of a) single-thread, b) multi-program, and c) multi-

thread

 Furthermore, the thesis is not about design exploration in terms of cache size,

line size and associative at LLC memory. Therefore, these parameters are fixed

where the line size is 64 bytes and the associative is 16 at LLC memory. The LLC

memory size is 2 MB and 8 MB for single-core and quad-core configuration

respectively. Only single-core and quad-core are evaluated because the simulator

only supports these configurations. Simulator used is called as ChampSim. It is

modeling an quad-core Intel i7 Skylake processor with 8 MB LLC memory.

1.5 Outline of Thesis

In this thesis, six chapters are presented. The first chapter is introduction of

the thesis. This chapter briefly explains the background of research topic, the

motivation, the research problems, the objectives of research and the research scope.

The second chapter is literature review of previous researches on LLC memory

replacement policy. In addition, this chapter also elaborates more on the background

of cache memory field, the benchmarks and the simulator used. In chapter three, the

reused frequency analysis of SPEC CPU 2006 and Cloudsuite benchmarks are

15

presented. This chapter also describes the proposed replacement policy in detail

along with its performance.

Chapter four describes the proposed dead block predictor and the

performance of the proposed replacement policy with the proposed predictor. In

chapter five, a number of modifications on the updating of proposed dead block

predictor; insertion and promotion operation of the proposed replacement policy on

different type of memory accesses are discussed. Chapter five also presents the

performance of the modified proposed replacement policy by comparing its

performance with previous related works. Lastly, chapter six concludes the thesis

findings.

16

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 In this chapter, the background of LLC memory is presented. Detail reviews

of related replacement policies at LLC memory are also presented. In addition, the

simulator used for this research is also discussed. Prefetching is also discussed in this

Chapter. The details of benchmarks used in this study are also presented.

2.2 Background of LLC memory

Typical memory access patterns found in LLC memory are recency-friendly,

thrashing, streaming or scanning and mixed (Jaleel et al., 2010). The recency-

friendly access pattern occurs when memory access have high temporal locality. The

thrashing access pattern occurs when there is a cyclic access pattern that is larger

than the cache size. The streaming or scanning access pattern occurs when a series of

memory access does not show any reused behavior. This access pattern is normally

seen in streaming video or scanning a larger file. The mixed access pattern is a

mixture of recency-friendly and a burst of streaming or scanning access patterns.

The characteristic of cache memory are categorized into split or unified,

mapping function, write policy and inclusivity. For split cache architecture, the data

and instruction are stored separately in data and instructions array respectively.

While the unified cache architecture store all the data and instructions in a single

array.

 LLC memory capacity is smaller compared to main memory. The main

memory can be a few Gigabytes in size. There are three methods to map the main

17

memory address to a cache memory. The first one is called set-associative. The main

memory address is divided into three fields namely, tag, set and word. The LLC

memory is divided into a few arrays. If there are two arrays, the set-associative is

called 2-way and so on in base number of 2. Each array has of its own tag, data or

instructions array. All the tag arrays are accessed simultaneously to find the address.

If matched, the associated data or instruction array is accessed. Any data or

instructions can be stored in one of the data or instruction arrays. The placement of

data or instructions in the array is dependent on replacement policy decision. The

number of candidates available for replacement is based on the number of

associativity. A typical associativity of LLC memory is 16-way. The energy

constraint of microprocessor does not allow the associativity of LLC memory to

increase further around 16-way (Sridharan and Seznec, 2017).

The second method of mapping is direct mapping. The address is also divided

into tag, line and word field. Direct mapping is a special case of set-associative

where the associativity is one. If there is a miss, only one candidate is available for

replacement.

Fully-associative only has single tag; and data or instruction array. The main

memory address is divided into tag and word fields. Data or instructions can be

stored at any lines in the array. When finding the right address, all tags are checked

simultaneously.

 Write policy is used to maintain data coherence among all cores. When a

cache line is updated at high level cache namely L1 or L2, the write policy needs to

decide when to update all other copies of the same data which may be located at L1

or L2 or LLC or main memory. Write back policy will only update the data if the line

18

which stores the data is selected for replacement. Write through policy will update all

the data copies every time the new data are written.

The inclusivity of cache memory keeps a copy of lines from higher level

cache memory at lower level cache memory such as LLC memory. The redundant

lines at LLC memory are wasting memory resources that might not to be used at all.

Furthermore, these redundant lines do not help to improve much performance

because the processor’s core will mostly access high level cache memory than LLC

memory. Therefore, LLC memory becomes less effective in utilization.

In this thesis, 16-way set-associative of unified LLC memory with cache line

size of 64 bytes is used. The writeback and non-inclusivity are also used in this thesis.

These cache characteristics modeled on the simulator as shown in Section 2.7.

There are many factors that make the utilization of LLC less effective. One of

the factors is the dead block phenomena (Zhibin, Mingfa and Limin, 2013). Dead

block is referring to line that is not referenced again by processor’s cores. These lines

are not referenced at all or only re-referenced a few times for a short period and later

become useless in the entire time at LLC memory. Another issue is cache pollution

where high reused line get evicted instead of low reused line (Shahtouri and Ma,

2015). Workload such as scanning a file that is larger than the cache size exhibits

cache pollution. The diverse memory behavior of various applications in LLC

memory of multi-core processor is a problem for cache memory replacement policy.

This is because the replacement policy needs to be aware of this diversity of

workload mix and able to assign a fair amount of resources for each application

(Sridharan and Seznec, 2017).

19

Least Recently Used (LRU) is the replacement policy baseline used when

comparing performance of replacement policy for microprocessor (Qureshi et al.,

2007; Wang et al., 2018). This replacement policy evicts cache line that is least

recently used by using recency information which is associated with each cache line.

LRU does not perform as good as Optimal replacement policy at LLC memory

because of diverse reused characteristic between multiple concurrent running

programs which interfered each other (Park, Park and Mahlke, 2016). Hence, there is

a need to research a better replacement policy than LRU at LLC memory for

performance improvement.

2.2.1 Basic Architecture of LLC Memory

 Basic architecture of LLC memory consists of tag array, data or instruction

array, cache controller and replacement policy. Example of basic architecture of 4-

way LLC memory is shown in Figure 2.1. The tag array contains a portion of main

memory address, valid bit and dirty bit. The first few most significant bits (MSB) of

main memory address are stored in tag array. The “Tag” array is used to find

whether the data or instructions are available in cache memory or not. The “Valid”

bit is to indicate whether there are data or instruction stored or not. The “Dirty” bit is

to indicate whether the line has been written or not. The data or instruction array is

further divided into 4 arrays because 4-way set associative. Each row in the array is

called cache line or line. This is where at least one data or instruction is stored.

20

Figure 2.1 Basic architecture of 4-way associative (Stallings, 2016)

 The cache controller is a finite state machine (FSM) that receives read or

write data or instructions access from processor’s cores via PStrobe which enable the

controller itself and PRW for read or write signal. The cache controller determines

whether the data or instruction is in the cache memory by checking the tag array for

the specific MSB address. If the data or instructions are there, the cache controller

activates the right latches or multiplexers using Select way and R/W that controls the

data flow of data or instructions array for read and write. The cache controller will

send PReady if the data or instructions are ready to be sent to processor’s core. If a

miss occurs and LLC memory is full, the cache controller requests the replacement

policy for a replacement using Enable, hit or miss and select way signal. While at the

same time, the cache controller passes the accesses to main memory via MStrobe and

MRW signal. The cache controller will read the data or instructions from main

memory if the MReady signal is set. The cache controller also decides whether the

line needs to be updated at main memory first to maintain data coherence before the

new incoming instructions or data are written on the evicted line. During hit, the

21

cache controller also sends signals to replacement policy to update the replacement

policy information.

 The replacement policy decides which line to be evicted in the LLC cache set

based on the information. The replacement policy stores information such as recency

for LRU. The replacement policy tells which line to be evicted to the cache controller

via select way.

 The performance of microprocessor measures in terms of IPC is normally

depending on the number of hits. The IPC is calculated as Total of instructions run /

Total number of clock cycle. A hit in LLC memory can reduce the total clock cycle

that the microprocessor’s core has to wait for the data or instructions to arrive. If

miss occurs in LLC memory, the microprocessor’s core has to wait longer because

data or instructions are being retrieved from slower main memory. Typically, the

memory latency of LLC memory when hit occurs is around 20 clock cycles. The 20

cycles is calculated at the moment the microprocessor’s core requested until data or

instructions arrived from LLC memory. When a miss occurs at LLC memory, the

typical memory latency to retrieve data or instructions from main memory to

microprocessor’s core is around 200 clock cycles. If there are multiple misses, the

Total number of clock cycle will increased. This decreases the IPC because the

inverse relationship of IPC with total number of clock cycle. On the other hand, more

hits at LLC memory means the Total number of clock cycle will decrease. This

increased the IPC. The higher value of IPC means higher performance because it

takes less time to execute all the instructions.

22

2.3 Background of Basic LLC Replacement Policy Operation

 Figure 2.2 shows the basic operation of LRU replacement policy on a 4-way

associative which is divided into three namely eviction, insertion and promotion

operations. When a memory access is requested by processor’s core, the address of

the memory access is check against Tag in the LLC memory as shown in operation

①. If Tag is matched with the address, then a hit has occurs. This means data or

instructions are available in LLC memory. When a hit occurs, it is an opportunity to

update the LRU replacement policy information of the line. This operation ② is

called promotion operation and it occurs only during hit. As shown in Figure 2.2, the

recency of the hit line is updated as 0 to represent it is the most recently used line. At

the same time a copy of data or instructions are send to processor’s core.

If no match is found between Tag and address in LLC memory, then is miss

has occurs. This means data or instructions are not available in LLC memory. During

miss, eviction operation is done first then follow by insertion operation. The eviction

operation involves evicting lines to make memory space for new incoming block

from main memory. The eviction operation uses the replacement policy information

to determine the best candidate of replacement as shown in ②. In this case, LRU

find line with recency of 3 as replacement which represents the least recently used.

At the same time, the memory request is send to main memory. LLC waits for the

data or instructions to arrive from main memory. After arrived, insertion operation

updates the replacement policy information for the new incoming block from main

memory as shown in ③. During this operation, the recency information is updated

as 0. At the same time, a copy of data or instructions are stored at LLC memory and

sent to processor’s core.

23

 Figure 2.2 Operation of Promotion, Eviction and Insertion of LRU

2.4 Conventional replacement policy

 Least Recently Used (LRU) and Least Frequently Used (LFU) replacement

policy are the conventional and commonly used replacement policies which are

developed decades ago (Ji et al., 2017). LRU and LFU are based on recency and

frequency of the referenced line in the cache respectively. In this section, detailed

information is presented on these conventional replacement policies.

2.4.1 Least Recently Used (LRU)

 One of the conventional replacement policies that are still currently used as a

comparison in research is LRU. The LRU replacement policy keep tracks the recency

of lines in cache memory by using chain-based concept (Wei et al., 2017). The

recency of lines are arranged logically from left to right as shown in Figure 2.3

where the value in each square box represents recency. The most recently used

(MRU) line is placed at the most left the chain which represented by recency value of

24

0. While, the least recently used (LRU) is placed at the most right of the chain which

represented by value recency of 3. LRU replacement policy evicts line at LRU

position in the chain.

Figure 2.3 LRU chain

At higher level cache memory namely, L1 or L2, LRU is the usual

replacement policy used. LRU keeps line that has short reused distance or in other

words, high temporal locality (Jin et al., 2013). The reused distance of the line means

the number of unique line that has been accessed at a cache memory set before that

line is referenced again. Let say, line A has been referenced, then followed by four

unique lines at the same set. Next, line A is referenced again. So, the reused distance

is four since four unique lines are referenced before line A is referenced again.

 The operation of the LRU can be explained in terms of promotion, eviction

and insertion. When a hit occurs, the promotion operation will move the line to MRU

position. All the lines that are positioned at left side of the hit line is shifted

rightward by one position before that hit line is moved to MRU position. When a

miss occurs, LRU replacement policy selects the line at LRU position for

replacement during eviction operation. After eviction operation, LRU replacement

places the new incoming line at MRU position after the entire chain is shifted

rightwards by one position. This insertion operation assumes that the incoming line

will be re-referenced very soon. Therefore, it is inserted at the most recently used

	Reused frequency-based replacement policy with program counter predictor on various memory access types for last level cache memory_Yee Ming Chung_2019_E3_MYMY

