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POLISI PENGGANTIAN BERDASARKAN FREKUENSI GUNA SEMULA 

BERSAMA PERAMAL PEMBILANG PROGRAM PADA PELBAGAI JENIS 

MEMORI AKSES UNTUK ARAS AKHIR INGATAN SORAKAN 

 

ABSTRAK 

Pada masa ini, haluan utama penyelidikan dalam ingatan sorakan 

mikroprosesor adalah ingatan sorakan aras akhir (LLC). Saiz LLC biasanya antara 2 

MB hingga 20 MB. Penyelidikan menumpukan pada peningkatan prestasi LLC dari 

segi Instruction Per Cycle (IPC). Polisi penggantian Static Re-ference Interval 

Prediction Hit Priority (SRRIP-HP) boleh membuang ingatan sorakan yang kerap 

digunakan dan akan digunakan tidak lama lagi. Dalam tesis ini, polisi penggantian 

baru yang menggunakan penggunaan semula frekuensi dan Re-reference Interval 

Value (RRPV) dicadangkan untuk mengurangkan masalah SRRIP-HP dan bertujuan 

meningkatkan prestasi dari segi IPC. Polisi penggantian ini dipanggil Promosi 

Frekuensi Digunakan Semula (RFP). Walau bagaimanapun, RFP terlalu awal 

membuang ingatan sorakan yang baru dimasukkan pada program yang recency-

friendly. Hal ini kerana pemasukan frekuensi yang digunakan semula dan RRPV 

adalah secara statik dan tanpa mengetahui ingatan sorakan yang mana perlu disimpan 

lebih lama. Oleh itu, peramal blok mati yang baru dipanggil peramal Program 

Counter Hit Miss (PCHM) digunakan untuk mengubah keputusan pemasukan RFP. 

Peramal PCHM membenarkan ingatan sorakan yang diramalkan akan digunakan 

semula pada masa depan disimpan lebih lama dalam ingatan LLC. Ini dapat 

meningkatkan peluangnya untuk digunakan semula dan meningkatkan prestasi. 



xxi 

Gabungan RFP dan Peramal PCHM dipanggil RFP-PCHM. Walau bagaimanapun, 

RFP-PCHM mempunyai prestasi yang buruk dalam beberapa program kerana 

pelbagai jenis akses memori mengemaskini pada Peramal PCHM yang sama. Jenis-

jenis akses memori adalah load/RFO, prefetching dan writeback. Tingkah laku 

kekerapan akses memori ini mungkin berbeza. Oleh itu, operasi mengubah 

pengemaskinian dan pemasukan Peramal PCHM dari RFP-PCHM; dan juga operasi 

mengubah keputusan promosi RFP-PCHM harus berdasarkan jenis akses memori. 

Polisi penggantian ini disebut RFP-PCHM-I. Dalam penilaian prestasi, RFP, RFP-

PCHM dan RFP-PCHM-I telah diuji pada penilaian single-thread, multi-thread dan 

multi-program. Eksperimen ini diuji dengan menggunakan penanda aras SPEC CPU 

2006 dan Cloudsuite pada simulator ChampSim. Polisi penggantian Least Recently 

Used (LRU) digunakan sebagai penanda aras. LRU membuang ingatan sorakan yang 

paling lama tidak digunakan dalam memori LLC. RFP, RFP-PCHM dan RFP-PCHM-

I mempunyai prestasi yang lebih baik berbanding dengan LRU, di mana prestasi 

masing-masing ialah 0.72%, 0.77% dan 2.52% dari segi purata geometri berwajaran 

IPC yang dinormalisasi. RFP-PCHM-I juga secara keseluruhan mempunyai prestasi 

yang lebih baik daripada SHiP++ dan Leeway. Kesimpulannya, penggunaan semula 

frekuensi bagi RFP telah meningkatkan prestasi SRRIP-HP. Tambahan pula, dengan 

adanya Peramal PCHM bagi RFP-PCHM juga telah meningkatkan prestasi RFP. Di 

samping itu, pengubahsuaian bagi pengemaskinian dan keputusan kemasukan bagi 

peramal PCHM dan pengubahsuaian keputusan promosi bagi RFP-PCHM telah juga 

meningkatkan prestasi RFP-PCHM.  
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REUSED FREQUENCY-BASED REPLACEMENT POLICY WITH 

PROGRAM COUNTER PREDICTOR ON VARIOUS MEMORY ACCESS 

TYPES FOR LAST-LEVEL CACHE MEMORY 

 

ABSTRACT 

Currently, the main trend of microprocessor cache research is on the last level 

cache (LLC) memory. The typical LLC memory size is between 2 MB to 20 MB. The 

researches focus on improving the performance of LLC memory in terms of 

instruction per cycle (IPC) by using replacement policy. Static Re-reference Interval 

Prediction Hit Priority (SRRIP-HP) replacement policy can evict cache line that is 

frequently used and might be reused very soon. In this thesis, a new replacement 

which uses reused frequency and Re-reference Interval Value (RRPV) is proposed to 

mitigate the problem of SRRIP-HP with the aim to improve performance in terms of 

IPC. This replacement policy is called as Reused Frequency Promotion (RFP). 

However, the proposed RFP evicts newly inserted lines too early on recency-friendly 

benchmarks. This is because RFP inserts the reused frequency and RRPV in static 

manner without knowing which lines need to be kept longer. Therefore, a new dead 

block predictor called Program Counter Hit Miss (PCHM) Predictor is use to modify 

the insertion decision of RFP. The PCHM Predictor allows line that is predicted to be 

reused in future very soon to be stored longer in LLC memory. This can increase its 

chance of being reused and improve performance. The combination of RFP and 

PCHM Predictor is called RFP-PCHM. However, RFP-PCHM performs worse on 

some benchmark due to different type of memory access are updating the PCHM 

Predictor. Each type of memory access namely load/RFO, prefetching and writeback 

has different reused behavior. Therefore, the updating and insertion decision of 
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PCHM predictor from RFP-PCHM is modified; and the promotion decision of RFP-

PCHM is also modified based on the type of memory access namely load/RFO, 

prefetching and writeback. This replacement policy is called RFP-PCHM-I. In the 

performance evaluations, the proposed RFP, RFP-PCHM and RFP-PCHM-I are tested 

at single-thread, multi-thread and multi-program evaluation using SPEC CPU 2006 

and Cloudsuite benchmarks on ChampSim simulator. Least Recently Used (LRU) 

replacement policy is used as baseline. LRU evicts cache line that is the least recently 

used in LLC memory. The RFP, RFP-PCHM and RFP-PCHM-I outperform LRU with 

0.72%, 0.77% and 2.52% respectively in terms of weighted geometric mean of 

normalized IPC. RFP-PCHM-I also overall outperforms the Signature-based hit 

predictor ++ (SHiP++) and Leeway. In conclusion, the reused frequency of RFP have 

further improved the performance of SRRIP-HP. In addition, the PCHM predictor of 

RFP-PCHM have further improved the performance of RFP. The modification of 

updating and insertion decision of PCHM predictor; and promotion decision of RFP-

PCHM have further improve the performance of RFP-PCHM.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 In recent decades, the advancement of semiconductor fabrication technology 

continues to shrink the size of transistor in microprocessor. This leads to more 

transistors being packed in a given die size and allows more functions to be included 

in microprocessor designs. There are many research and development activities on 

improving the performance of microprocessors which results in fast and power 

efficient processors.  However, main memory (Random Access Memory) and 

primary storage (Hard Disk) do not have the same rapid advancement as 

microprocessor. The long memory latency from these memories has negatively 

impacted the performance of microprocessor (Chu and Park, 2014; Das and Kapoor, 

2016; Liu et al., 2017; Xue et al., 2017; Bartolini, Foglia and Prete, 2018). 

 Cache memory is a solution to migrate the problem of long memory latency 

from main memory (Xue et al., 2017). The cache memory is a fast but low capacity 

memory (P Michaud, 2016). Cache memory works by exploiting the spatial and 

temporal locality of programs. It stores data and instructions that have higher chance 

of being reused by processor’s cores. Most of the programs only execute a small part 

of its entire codes at one time. Therefore, it is not necessary to load all the data and 

instructions into memory. This works in favor of cache memory because it is usually 

small in capacity and can be expensive to fabricate large cache memory. There has 

been a trend for quite some time now to integrate two-level or three-level cache 

memory hierarchy to further improve the performance of microprocessor.  
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 Since last decade, microprocessors have not much improvements in terms of 

clock speed due to “power wall” problem (Shi et al., 2016). Engineers in 

microprocessor field have moved to design multi-core processor as a way to achieve 

performance improvement (Das and Kapoor, 2016; Kedar, Mendelson and Cidon, 

2017; Liu et al., 2017; Valls et al., 2017). Those multi-core processors have two-

level or three-level cache memory hierarchy. Normally, the last level cache (LLC) 

memory is shared among the cores (Kharbutli and Sheikh, 2014; Sridharan and 

Seznec, 2017). Each core has its own private cache memory namely level 1 (L1) or 

level 2 (L2) or both which cannot be accessed by other cores (Fernández-Pascual, 

Ros and Acacio, 2017). LLC memory is L2 and L3 of two-level and three-level 

cache memory hierarchy. 

 Cache memory utilizes 40% to 60% of total microprocessor silicon area and 

consumes as much as 50% of total power consumption of entire microprocessor (Chu 

and Park, 2014; Asad et al., 2017; Chakraborty and Kapoor, 2017; Kim, Lee and 

Kim, 2017; Yasir Qadri et al., 2017). LLC is the largest cache memory compared to 

L1 and L2 cache memory. It is between 2 MB to 20 MB depending on the 

architecture design of the processor and the market segments that the designers are 

aiming for. While, a L1 cache memory can be between 16 KB to 64 KB and L2 

cache memory can be between 64 KB to 512 KB for each core. The power 

consumption and silicon area usage of LLC is significant larger than L1 and L2 

cache memory.  

The performance and power consumption of cache memory can be improved 

by using replacement policy. Example of replacement policies are Re-reference 

Interval Prediction (RRIP) (Jaleel et al., 2010) and Signature-based Hit Predictor 

(SHiP) (Wu et al., 2011). A good replacement policy can evict lines that will not be 
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used soon while keeping the lines longer that will be used soon. This can improve the 

performance of microprocessor because the cache memory is able to handle demands 

from processor’s cores with minimum delay. If the replacement policy evicts the 

wrong lines, the processor’s cores have to wait longer for the data or instructions to 

be retrieved from main memory or primary storage. This can degrade the 

performance of the processor if the replacement policy frequently evicts the wrong 

lines. Power consumption can be improved because a good replacement policy can 

avoid the processor from accessing main memory and primary storage which 

consumes more power. 

In the cache memory, there are two events, namely hit and miss. Hit occurs if 

the requested data or instructions are in the cache memory. Miss occurs if the 

requested data or instructions are not in the cache memory. 

A cache memory replacement policy is a subsystem of cache memory, which 

the main function (eviction operation) is to evict cache line when the cache memory 

set is fully occupied and miss occurs.  Besides eviction operation, cache memory 

replacement policy tasks involve insertion and promotion operation. When a new 

line is stored in the cache memory after eviction operation, the insertion operation 

needs to update the associated replacement policy information of the line. When a hit 

occurs (data or instructions are in cache memory), the promotion operation also 

needs to update the replacement policy information of the line. The information 

determines whether the line will be considered as replacement or not during eviction 

operation at miss. For example, information maintained by Least Recently Used 

(LRU) replacement policy is called as recency. At miss (data or instructions are in 

cache memory), LRU evicts the least recently used line based on the recency value. 
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During insertion, LRU inserts the line as most recently used. At hit, LRU promotes 

the line as most recently used.  

Figure 1.1 shows the operation of replacement policy using LRU as an 

example on 4-way set associative cache memory. Each rectangular represents the 

recency of cache line where recency of 0 means the most recently used and recency 

of 3 means the least recently used. During eviction operation, LRU looks for cache 

line with recency of 3 as replacement as shown in Figure 1.1 a). It searches logically 

from way-0 to way-3 and found cache line at way-3 is the candidate of replacement. 

After eviction, new cache line is stored in LLC memory and the recency needs to be 

updated as shown in Figure 1.1 b). The update is called as insertion. Using Figure 1.1 

a) as initial condition, the insertion operation is done by assigning recency value as 0 

at way-3. The other recency values are increased by one. During hit, the recency also 

needs to be updated as shown in Figure 1.1 c). LRU assigned the recency value as 0 

at way-2 because hit occurs at way-2. Then, the other recency values are increased 

by one. 

 
 Figure 1.1 LRU Operation on 4-way set associative 

In recent years, there have been a lot of researches focused on LLC 

replacement policy because there is a performance gap between conventional 
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replacement policy namely LRU and theoretical Optimal replacement policy (Do et 

al., 2015). This gap shows that there is a room of performance improvement on LLC 

replacement policy. Optimal is an offline replacement policy which required looking 

ahead for cache line that will be reused in furthest in future as replacement. It 

requires significant modification of the simulator to allow Optimal to check the 

future access memory stream to identify cache line that will be reused far in future 

during miss. 

Furthermore, LLC replacement policy can improve the performance and 

power consumption of multi-core processor by avoiding memory access that has high 

latency and power consumption penalty (Park, Lee and Kim, 2016). The multi-core 

processor configurations give a new challenge to be efficiently managed of the LLC 

utilization due to competition of multiple program threads on shared LLC (Yin et al., 

2016).  

Instruction per cycle (IPC) is the conventional metric used to measure the 

performance of microprocessor. The IPC is obtained from simulation result using 

simulator. Normally, the simulations are ran between 100 million to 8 billion 

instructions (Faldu and Grot, 2017; Jain and Lin, 2016; Jiménez and Teran, 2017; 

Vakil-Ghahani et al., 2018; Young et al., 2017). In 2nd International Cache 

Replacement Championship, the current performance improvement of replacement 

policies in terms of IPC over LRU at LLC memory is between 0.5% and 3.3% which 

are mentioned in Section 2.5 (Crc2.ece.tamu.edu, 2017). 

1.2 Motivation and Research Problems 

Re-reference interval prediction (RRIP) is a hardware efficient replacement 

policy based on reused prediction. RRIP keeps lines that are predicted to be re-
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referenced in near-intermediate future longer while keeps lines that are predicted to 

be re-referenced in distant future for short time at LLC memory (Peng, Yu and Zhu, 

2015). 

Each cache line is assigned with RRIP value which represents the likelihood 

of reused in future. The RRIP value is called Re-reference Prediction Value (RRPV).  

The RRPV can be from 0 until 3. The high RRPV means the line are predicted to be 

re-referenced in distant future while low value RRPV means the line are predicted to 

be re-referenced in near-intermediate future. However, the RRIP replacement policy 

does not consider the reused frequency of each line. If the RRPVs are the same in the 

cache set, the first line will be evicted, normally line at way-0. There is a possibility 

for frequently reused line to be evicted even though it has the highest reused 

frequency value. 

Figure 1.2 shows the operation of RRIP where the value in square box 

represents RRPV. When miss occurs and cache memory is full, RRIP evicts cache 

line with RRPV of 3 as shown in Figure 1.2 a). RRIP searches logically from way-0 

to way-3 for the first line with RRPV of 3 to be evicted. RRPV of 3 means the line 

would not be reused or will be reused in distant future. After eviction, RRIP always 

insert the new line with RRPV as 2 as shown in Figure 1.2 b), which the line is 

predicted to be reused far in future. This line will be evicted soon because its time in 

cache memory will be short. When hit occurs, the RRPV is promoted to 0 which 

means the line is predicted to be reused in near-intermediate future as shown in 

Figure 1.2 c). This can increased the chance the line will be reused in future because 

it stay longer in cache memory. 
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 Figure 1.2 RRIP Operation on 4-way set associative 

 Figure 1.3 shows the problem of RRIP with a theoretical example and detail 

operation. At initial condition as shown in Figure 1.3 at row No.1, the a1, a2, a3 and 

a4 line have been reused (reused frequency) many times where a1 has been reused 3 

times while a2, a3 and a4 have been reused 2 times. The RRPV for all lines are 0 

which represents near-intermediate re-reference interval prediction. This means the 

lines will be reused very soon. When a5 is accessed, it is a miss since there is no a5 

resides in the cache lines. According to eviction operation of RRIP, it searches 

logically from way-0 to way-3 for the line with RRPV of 3. However, there is no 

such line. So, RRIP increased all the RRPVs of all lines by 1 and continue to search 

again. The process of searching and increasing are repeated until the first line with 

RRPV of 3 is found. This line is the candidate of the replacement. As shown in 

Figure 1.3 at row No.2, line at way-0 is selected as replacement. The RRPV of a5 is 

updated as 2 which represents long re-reference interval prediction. This means the 

a5 line is predicted to be reused in distant future. Next, a1 is accessed and a miss has 

occured. RRIP evicts line at way-1 because it is the first line with RRPV of 3. The a1 

is updated with RRPV of 2 as shown in row No.3. 
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RRIP does not keep any reused frequency information of each memory 

access of line in the LLC memory. RRIP can evict line that has been reused 

frequently and will be reused again very soon. It is shown in Figure 1.3 where RRIP 

evicts the line at way-0 that will be reused very soon. If RRIP keeps the reused 

frequency information, it can avoid evicting that line by evicting other line instead. 

This will avoid a miss and can improve the performance if RRIP is reused frequency 

aware.  

To the best of author’s knowledge in this research field, there is no research 

to use the reused frequency and the RRPV to make replacement decision in LLC 

memory replacement policy. Hence, a new replacement policy is proposed which 

uses the reused frequency and the RRPV to make replacement decision in this thesis 

with the goal of performance improvements in terms of IPC. The used of reused 

frequency for the new proposed replacement policy is different compared to Least 

Frequently Used (LFU) and Least Recently Frequently Used (LRFU). LFU evicts 

randomly when there are more than one least frequently used lines. The proposed 

replacement policy uses RRPV to find line that is predicted to be re-reference in 

distant future in the group of least reused lines. On the other hand, LRFU uses 

floating point number to represent the likehood of being reused while the proposed 

replacement policy uses simple counter to count the reused frequency. LRFU is more 

complex in terms of calculating the floating point number. 
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Figure 1.3 RRIP Problem 

A dead block predictor is another method to improve the performance of LLC 

memory replacement policy in terms of IPC (Diaz Maag et al., 2017; Faldu and Grot, 

2017; Jain and Lin, 2016; Jiajun et al., 2017; Wu et al., 2011; Vakil-Ghahani et al., 

2018; Young et al., 2017). The predictor works by modifying the insertion decision 

of the replacement policy. The cache lines will be evicted later or sooner based on its 

prediction whether the new incoming line will be reused or not in future. One of the 

replacement policies that is using the dead block predictor is Signature-based Hit 

Predictor (SHiP). 

SHiP has been used to improve the existing RRIP replacement policy 

performance by modifying its insertion decision (Wu et al., 2011). SHiP introduces 

three different signatures which are program counter (PC), memory region (Mem) 

and instruction sequence (ISeq); and named the SHiP replacement policy as SHiP-PC, 

SHiP-Mem and SHiP-ISeq respectively. The SHiP predicts whether a line will be 

reused in future based on the counter value associated with the signature in the 
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signature history counter table (SHCT). If the counter value of SHCT is larger than 

zero, it means the line is predicted to be reused soon. Hence, SHiP inserts the RRPV 

as 2 which allow the line to be stored in LLC memory longer. While, the line is 

predicted to be reused far in future if the counter value is zero. Therefore, SHiP 

inserts the RRPV as 3 which allow the line to be evicted very soon. SHiP works 

better than RRIP because it can make better insertion decision by using reused 

behaviors of instructions which share the same signature (Wu et al., 2011; Sardashti 

and Wood, 2017). The improvement of SHiP over LRU is 9.7% in average while the 

RRIP is only 5.5% (Wu et al., 2011). 

However, SHiP does not make any different prediction when the SHCT 

counter reaches saturation because lines have the highest chance of being reused very 

soon compared to counter value that is more than zero but not saturated (Young et al., 

2017). This is an opportunity to further improve the performance of SHiP. In 

addition, the updating of SHCT is imbalance during hit and miss (Young et al., 2017). 

Every time a hit occurs at a line, the associated SHCT counter is updated. However, 

SHCT is only updated once if the evicted line is not reused at all during miss. This 

can become a problem because the SHCT cannot be updated fast enough when the 

program behavior changes from high reused to no reuse as SHCT needs more time 

and many misses to change from high counter value to low counter value.  

To address these problems, a new dead block predictor based on SHiP is 

proposed. This new dead block predictor is used to modify the proposed replacement 

policy insertion decision in this thesis. 

 Modern multi-core processors have prefetcher implemented which is another 

method to improve performance (Gupta, Gao and Zhou, 2013; Li et al., 2014). 
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Prefetcher fetches instruction or data that may be used or may not be used into LLC 

memory before the program is accessing it (Panda and Balachandran, 2016). When 

processor’s core access data or instructions at LLC memory due to program miss, 

this type of memory access is called load. Prefetching and load are the type of 

memory accesses in microprocessor that may have different reused frequency 

behavior. Writeback is another type of memory access. It is accessed by the 

processor’s core to maintain data coherence in memory hierarchy.  

If data or instructions are not available at LLC memory during prefetching 

access, this will trigger a miss. The replacement policy needs to evict a line and 

requests memory access to main memory. The evicted line might be reused in future 

while the incoming prefetched lines from main memory may or may not be reused at 

all. This introduces a problem at LLC memory because prefetching memory accesses 

essentially competing LLC memory space and may interfere with replacement policy 

eviction decision if the prefetched line is not reused for program execution (Panda, 

2016; Sridharan, Panda and Seznec, 2017). Recent study has shown that 95% of 

prefetched lines are not reused after their first load hit (Seshadri et al., 2015).  

Besides prefetching, writeback access is another memory access that can compete 

with LLC memory resources. Writeback memory access may not improve the 

execution speed of program because the memory latency due to a miss of writeback 

access can be hidden (Jiajun et al., 2017, Lee, Kim and Chung, 2018).  

To the best of author’s knowledge, there are not many replacement policy 

researches that consider and treat the load, writeback and prefetching memory access 

differently in terms of promotion and insertion operation replacement policy (Diaz 

Maag et al., 2017; Faldu and Grot, 2017; Jiajun et al., 2017; Jiménez and Teran, 
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2017; Young et al., 2017). This provides an opportunity to make different insertion 

and promotion replacement policy decision based on type of memory access.  

In this thesis, the proposed replacement policy promotion decision is 

modified based on type of memory access namely load, prefetching and writeback. 

In addition, the updating and insertion decision of the proposed dead block predictor 

is also modified based on the type of memory access.  

1.3 Objectives 

In short, the main objective of this thesis is to investigate the performance in 

terms of IPC of the new replacement policy which use reused frequency and RRPV 

in making decision of replacement. In addition, the performance of the proposed 

replacement policy is investigated further using a proposed dead block predictor; and 

by modifying the insertion and promotion decision based on the type of memory 

accesses.  Below are the objectives of the thesis: 

(i) To improve the performance in terms of IPC over RRIP at LLC memory by 

using the proposed replacement policy that uses reused frequency and RRPV 

to make replacement policy decision.  

(ii) To improve the performance in terms of IPC over the proposed replacement 

policy in (i) by using the proposed dead block predictor based on SHiP.  

(iii) To improve the performance in terms of IPC by modifying the proposed dead 

block predictor in (ii) to make updating and insertion decision differently; and 

modifying the proposed replacement policy in (ii) to make different 

promotion decision based on type of memory access namely, load, writeback 

and prefetching memory access.  
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1.4 Scope Limitation  

 In this thesis, the main focus is on the research of algorithm-based 

replacement policy by using software simulation to evaluate the performance on LLC 

memory. The proposed replacement policy is developed with the intention of 

hardware implementation in future. Therefore, the additional storage hardware is 

presented in this thesis because it is easier to be estimated. In this thesis, there is no 

hardware-based development on field programmable gate array (FPGA) or using 

silicon die fabrication. 

There are three evaluations considered in this thesis namely single-thread, 

multi-thread and multi-program. A single-thread is a sequence of program 

instructions execution that is managed by operating system scheduler as shown in 

Figure 1.4 a). Multi-program is basically a group of single-thread program which 

runs individually on each core. Each thread in the multi-program setup has its own 

codes (instructions) and data as shown in Figure 1.4 b). Multi-thread is a single 

program with a parent thread that can issue multiple child threads which are 

distributed and run among all the cores. These programs have a group of common 

data and codes that share among all cores as shown in Figure 1.4 c). In this thesis, 

single-thread evaluation is evaluated at single-core. Although multi-thread and multi-

program evaluation can be evaluated in large number of cores, only quad-core 

configuration is evaluated in this thesis. 
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Figure 1.4 Visualization of a) single-thread, b) multi-program, and c) multi-

thread 

 

 Furthermore, the thesis is not about design exploration in terms of cache size, 

line size and associative at LLC memory. Therefore, these parameters are fixed 

where the line size is 64 bytes and the associative is 16 at LLC memory. The LLC 

memory size is 2 MB and 8 MB for single-core and quad-core configuration 

respectively. Only single-core and quad-core are evaluated because the simulator 

only supports these configurations. Simulator used is called as ChampSim. It is 

modeling an quad-core Intel i7 Skylake processor with 8 MB LLC memory. 

1.5 Outline of Thesis 

In this thesis, six chapters are presented. The first chapter is introduction of 

the thesis. This chapter briefly explains the background of research topic, the 

motivation, the research problems, the objectives of research and the research scope. 

The second chapter is literature review of previous researches on LLC memory 

replacement policy. In addition, this chapter also elaborates more on the background 

of cache memory field, the benchmarks and the simulator used. In chapter three, the 

reused frequency analysis of SPEC CPU 2006 and Cloudsuite benchmarks are 
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presented. This chapter also describes the proposed replacement policy in detail 

along with its performance.  

Chapter four describes the proposed dead block predictor and the 

performance of the proposed replacement policy with the proposed predictor. In 

chapter five, a number of modifications on the updating of proposed dead block 

predictor; insertion and promotion operation of the proposed replacement policy on 

different type of memory accesses are discussed. Chapter five also presents the 

performance of the modified proposed replacement policy by comparing its 

performance with previous related works. Lastly, chapter six concludes the thesis 

findings.   
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

 In this chapter, the background of LLC memory is presented. Detail reviews 

of related replacement policies at LLC memory are also presented. In addition, the 

simulator used for this research is also discussed. Prefetching is also discussed in this 

Chapter. The details of benchmarks used in this study are also presented. 

2.2 Background of LLC memory 

Typical memory access patterns found in LLC memory are recency-friendly, 

thrashing, streaming or scanning and mixed (Jaleel et al., 2010). The recency-

friendly access pattern occurs when memory access have high temporal locality. The 

thrashing access pattern occurs when there is a cyclic access pattern that is larger 

than the cache size. The streaming or scanning access pattern occurs when a series of 

memory access does not show any reused behavior. This access pattern is normally 

seen in streaming video or scanning a larger file. The mixed access pattern is a 

mixture of recency-friendly and a burst of streaming or scanning access patterns. 

The characteristic of cache memory are categorized into split or unified, 

mapping function, write policy and inclusivity. For split cache architecture, the data 

and instruction are stored separately in data and instructions array respectively. 

While the unified cache architecture store all the data and instructions in a single 

array.  

 LLC memory capacity is smaller compared to main memory. The main 

memory can be a few Gigabytes in size. There are three methods to map the main 
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memory address to a cache memory. The first one is called set-associative. The main 

memory address is divided into three fields namely, tag, set and word. The LLC 

memory is divided into a few arrays. If there are two arrays, the set-associative is 

called 2-way and so on in base number of 2. Each array has of its own tag, data or 

instructions array. All the tag arrays are accessed simultaneously to find the address. 

If matched, the associated data or instruction array is accessed. Any data or 

instructions can be stored in one of the data or instruction arrays. The placement of 

data or instructions in the array is dependent on replacement policy decision. The 

number of candidates available for replacement is based on the number of 

associativity. A typical associativity of LLC memory is 16-way. The energy 

constraint of microprocessor does not allow the associativity of LLC memory to 

increase further around 16-way (Sridharan and Seznec, 2017).  

The second method of mapping is direct mapping. The address is also divided 

into tag, line and word field. Direct mapping is a special case of set-associative 

where the associativity is one. If there is a miss, only one candidate is available for 

replacement.  

Fully-associative only has single tag; and data or instruction array. The main 

memory address is divided into tag and word fields. Data or instructions can be 

stored at any lines in the array. When finding the right address, all tags are checked 

simultaneously.  

 Write policy is used to maintain data coherence among all cores. When a 

cache line is updated at high level cache namely L1 or L2, the write policy needs to 

decide when to update all other copies of the same data which may be located at L1 

or L2 or LLC or main memory. Write back policy will only update the data if the line 
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which stores the data is selected for replacement. Write through policy will update all 

the data copies every time the new data are written.  

The inclusivity of cache memory keeps a copy of lines from higher level 

cache memory at lower level cache memory such as LLC memory. The redundant 

lines at LLC memory are wasting memory resources that might not to be used at all. 

Furthermore, these redundant lines do not help to improve much performance 

because the processor’s core will mostly access high level cache memory than LLC 

memory. Therefore, LLC memory becomes less effective in utilization. 

In this thesis, 16-way set-associative of unified LLC memory with cache line 

size of 64 bytes is used. The writeback and non-inclusivity are also used in this thesis. 

These cache characteristics modeled on the simulator as shown in Section 2.7. 

There are many factors that make the utilization of LLC less effective. One of 

the factors is the dead block phenomena (Zhibin, Mingfa and Limin, 2013). Dead 

block is referring to line that is not referenced again by processor’s cores. These lines 

are not referenced at all or only re-referenced a few times for a short period and later 

become useless in the entire time at LLC memory. Another issue is cache pollution 

where high reused line get evicted instead of low reused line (Shahtouri and Ma, 

2015).  Workload such as scanning a file that is larger than the cache size exhibits 

cache pollution. The diverse memory behavior of various applications in LLC 

memory of multi-core processor is a problem for cache memory replacement policy. 

This is because the replacement policy needs to be aware of this diversity of 

workload mix and able to assign a fair amount of resources for each application 

(Sridharan and Seznec, 2017). 
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Least Recently Used (LRU) is the replacement policy baseline used when 

comparing performance of replacement policy for microprocessor (Qureshi et al., 

2007; Wang et al., 2018). This replacement policy evicts cache line that is least 

recently used by using recency information which is associated with each cache line. 

LRU does not perform as good as Optimal replacement policy at LLC memory 

because of diverse reused characteristic between multiple concurrent running 

programs which interfered each other (Park, Park and Mahlke, 2016). Hence, there is 

a need to research a better replacement policy than LRU at LLC memory for 

performance improvement. 

2.2.1 Basic Architecture of LLC Memory 

 Basic architecture of LLC memory consists of tag array, data or instruction 

array, cache controller and replacement policy. Example of basic architecture of 4-

way LLC memory is shown in Figure 2.1. The tag array contains a portion of main 

memory address, valid bit and dirty bit. The first few most significant bits (MSB) of 

main memory address are stored in tag array. The “Tag” array is used to find 

whether the data or instructions are available in cache memory or not. The “Valid” 

bit is to indicate whether there are data or instruction stored or not. The “Dirty” bit is 

to indicate whether the line has been written or not. The data or instruction array is 

further divided into 4 arrays because 4-way set associative. Each row in the array is 

called cache line or line. This is where at least one data or instruction is stored. 



20 

 

 
Figure 2.1 Basic architecture of 4-way associative (Stallings, 2016) 

 The cache controller is a finite state machine (FSM) that receives read or 

write data or instructions access from processor’s cores via PStrobe which enable the 

controller itself and PRW for read or write signal. The cache controller determines 

whether the data or instruction is in the cache memory by checking the tag array for 

the specific MSB address. If the data or instructions are there, the cache controller 

activates the right latches or multiplexers using Select way and R/W that controls the 

data flow of data or instructions array for read and write. The cache controller will 

send PReady if the data or instructions are ready to be sent to processor’s core. If a 

miss occurs and LLC memory is full, the cache controller requests the replacement 

policy for a replacement using Enable, hit or miss and select way signal. While at the 

same time, the cache controller passes the accesses to main memory via MStrobe and 

MRW signal. The cache controller will read the data or instructions from main 

memory if the MReady signal is set. The cache controller also decides whether the 

line needs to be updated at main memory first to maintain data coherence before the 

new incoming instructions or data are written on the evicted line. During hit, the 
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cache controller also sends signals to replacement policy to update the replacement 

policy information.  

 The replacement policy decides which line to be evicted in the LLC cache set 

based on the information. The replacement policy stores information such as recency 

for LRU. The replacement policy tells which line to be evicted to the cache controller 

via select way.  

 The performance of microprocessor measures in terms of IPC is normally 

depending on the number of hits. The IPC is calculated as Total of instructions run / 

Total number of clock cycle. A hit in LLC memory can reduce the total clock cycle 

that the microprocessor’s core has to wait for the data or instructions to arrive. If 

miss occurs in LLC memory, the microprocessor’s core has to wait longer because 

data or instructions are being retrieved from slower main memory. Typically, the 

memory latency of LLC memory when hit occurs is around 20 clock cycles. The 20 

cycles is calculated at the moment the microprocessor’s core requested until data or 

instructions arrived from LLC memory. When a miss occurs at LLC memory, the 

typical memory latency to retrieve data or instructions from main memory to 

microprocessor’s core is around 200 clock cycles. If there are multiple misses, the 

Total number of clock cycle will increased. This decreases the IPC because the 

inverse relationship of IPC with total number of clock cycle. On the other hand, more 

hits at LLC memory means the Total number of clock cycle will decrease. This 

increased the IPC. The higher value of IPC means higher performance because it 

takes less time to execute all the instructions.  
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2.3 Background of Basic LLC Replacement Policy Operation 

 Figure 2.2 shows the basic operation of LRU replacement policy on a 4-way 

associative which is divided into three namely eviction, insertion and promotion 

operations. When a memory access is requested by processor’s core, the address of 

the memory access is check against Tag in the LLC memory as shown in operation 

①. If Tag is matched with the address, then a hit has occurs. This means data or 

instructions are available in LLC memory. When a hit occurs, it is an opportunity to 

update the LRU replacement policy information of the line. This operation ② is 

called promotion operation and it occurs only during hit. As shown in Figure 2.2, the 

recency of the hit line is updated as 0 to represent it is the most recently used line. At 

the same time a copy of data or instructions are send to processor’s core. 

If no match is found between Tag and address in LLC memory, then is miss 

has occurs. This means data or instructions are not available in LLC memory. During 

miss, eviction operation is done first then follow by insertion operation. The eviction 

operation involves evicting lines to make memory space for new incoming block 

from main memory. The eviction operation uses the replacement policy information 

to determine the best candidate of replacement as shown in ②. In this case, LRU 

find line with recency of 3 as replacement which represents the least recently used. 

At the same time, the memory request is send to main memory. LLC waits for the 

data or instructions to arrive from main memory. After arrived, insertion operation 

updates the replacement policy information for the new incoming block from main 

memory as shown in ③. During this operation, the recency information is updated 

as 0. At the same time, a copy of data or instructions are stored at LLC memory and 

sent to processor’s core.  



23 

 

 
 Figure 2.2 Operation of Promotion, Eviction and Insertion of LRU 

2.4 Conventional replacement policy 

 Least Recently Used (LRU) and Least Frequently Used (LFU) replacement 

policy are the conventional and commonly used replacement policies which are 

developed decades ago (Ji et al., 2017). LRU and LFU are based on recency and 

frequency of the referenced line in the cache respectively. In this section, detailed 

information is presented on these conventional replacement policies.  

2.4.1 Least Recently Used (LRU) 

 One of the conventional replacement policies that are still currently used as a 

comparison in research is LRU. The LRU replacement policy keep tracks the recency 

of lines in cache memory by using chain-based concept (Wei et al., 2017). The 

recency of lines are arranged logically from left to right as shown in Figure 2.3 

where the value in each square box represents recency. The most recently used 

(MRU) line is placed at the most left the chain which represented by recency value of 
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0. While, the least recently used (LRU) is placed at the most right of the chain which 

represented by value recency of 3. LRU replacement policy evicts line at LRU 

position in the chain.  

 

Figure 2.3 LRU chain 

At higher level cache memory namely, L1 or L2, LRU is the usual 

replacement policy used. LRU keeps line that has short reused distance or in other 

words, high temporal locality (Jin et al., 2013). The reused distance of the line means 

the number of unique line that has been accessed at a cache memory set before that 

line is referenced again. Let say, line A has been referenced, then followed by four 

unique lines at the same set. Next, line A is referenced again. So, the reused distance 

is four since four unique lines are referenced before line A is referenced again.  

 The operation of the LRU can be explained in terms of promotion, eviction 

and insertion. When a hit occurs, the promotion operation will move the line to MRU 

position. All the lines that are positioned at left side of the hit line is shifted 

rightward by one position before that hit line is moved to MRU position. When a 

miss occurs, LRU replacement policy selects the line at LRU position for 

replacement during eviction operation. After eviction operation, LRU replacement 

places the new incoming line at MRU position after the entire chain is shifted 

rightwards by one position. This insertion operation assumes that the incoming line 

will be re-referenced very soon. Therefore, it is inserted at the most recently used 
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