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Abstract Smooth curve representation to visualize scientific data is very significant in Computer Graphics and in particular Data
Visualization. It is very important when the data is obtained from some complex functions or from some scientific experiments or
phenomena. It becomes crucial to incorporate the inherited features of the data. A very simple example is the visualization of positive data
such as the number of mosquito larvae compared to the amount of rainfall in a certain month. Moreover, smoothness is also an important
feature for a pleasing visual display of the data. This paper utilized the idea of curve interpolation to display the data, and spline is commonly
used and popular. However an alternative approach using piecewise rational cubic is proposed which preserved the desired properties of
positivity and smoothness as required by the data.
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1. Introduction

In the area of Computer Graphics and in particular Data Visualization, to visualize data obtained from
complex function or the scientific data from scientific experiments or phenomena as smooth curve
representation is very important. It becomes crucial to incorporate the inherited features of the data.. A very
simple example is the visualization of positive data such as the number of mosquito larvae compared to the
amount of rainfall in a certain month. Moreover, smoothness is also an important feature for a pleasing visual
display of the data.Therefore, data visualization has been considered by a number of authors. To cite a few are
Delbourgo and Gregory (1985), Fritsch and Butland (1984), ), Passow and Roulier (1977) and McAllister et. Al
(1977). This paper describes a piecewise rational cubic function which can be used to solve the problem of
shape preserving interpolation of convex data.

This paper begins with a definition of the rational function given in section 2 then in section 3, we
describe the generation of a C' spline, which can preserve the shape of a monotone, convex and positive data. In
section 4 an algorithm using mathematical software Mathematica is demonstrated using some real data. A brief
conclusinon and further works will be given in the last section.

2. Rational cubic spline with shape control

Data visualization using rational cubic spline consisting of piecewise rational Bezier cubic curves with
shape control was thoroughly discussed by Sarfraz (1997, 2000, 2002). In this paper we follow the same
approach as Sarfraz but with a rational cubic function defined by Ball (1974) as:

U(1-0) +vV,0(1-6)* +wW,0*(1-6)+Z,6°
(1-6)* +v,0(1-6)* +w,0*(1-0) + 6>
where V,, W, are the weights and U,V , W,,Z, are the control points (values).
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Let (x;, f;),i =1,2,...,n, be a given set of data points, where X, < X, <...< X, . Let

A =Tm=Si i=12,..n-1 @

H

b =%y —%;, i h
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where

0= i ) 3)

To ensure that the rational function (1) is C ' we impose the following interpolatory properties:
s(x;) = £, 5(Xi) = fin
1 1
s¢ )(xi) =d,, s¢ )(xi+l) =d,, “)
This will provide the following manipulations:

Ui=f;" Zi=f;'+l
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V.-=f,-+%, W,-=f,-+1—% ©)
V. w

i i
where s® denotes the first derivative with respect to x, and d ; denotes derivatives value given at the knot X, .
Thus the interpolant s € C'[x,,x,] is
s =5, =29 ©

)

where
P(6) = f,(1-6) +v,V,0(1-6)* +wW,6*1-0) + f,,,6"
0,(0) =(1-6)* +v,0(1~ 6)* +w,0*(1- ) + 6*
The parameters V;’s,W,’s and derivatives d,’s are chosen so that the interpolant (6) preserves monotone,
convex and positive shape. Variation for values of v,’s and w,’s controls (tighten or loosen) the curve in
different pieces of the curve. This behavior is discussed in the following section.

2.1. Shape control analysis
The parameters v, ’s and W, ’s can be used to modify the shape of the curve according to the user. In
Figure 1, the bottom curve of the third piece is a default curve when the weights are equal to two and it has

negative values. When the weight increases the curve is tightened and it becomes linear when they are
approaching to infinity.
30
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Figure 1: The tightening effect of the curve.

The interval shape control behavior can be observed by rewriting §,(X) in equation (6) to the
following simplified form:
s(x) = f;(1-6)+ £,..0
L L0-0)d, ~8,)+0(8, ~ d) +8(1-O)A, (w, ~ v )16~ 6)
0.(9)
When both v, and W, —> 0, it converges to the following linear interpolant:

s(x)=f,(1-6)+ f,,0 .

The shape control analysis is valid only if derivatives values are assumed bounded. A description of appropriate
choices for such derivatives values is made in the following section.

Q)

2.2. Determination of derivatives
In most applications, the derivative parameters {d,} are not given and hence must be determined either

from the given data (x;, f;),i =12,...,n or by some other means. In this paper, the pameters {d,} are

computed from the given data in such a way that the C ! smoothness of the interpolant (6) is maintained. These
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methods are the approximations based on various approaches. For this paper we will discussed two common
methods of determining the derivatives; the arithmetic means and geometric means.

2.2.1. Method 1
Arithmetic mean method is the three-point difference approximation based on arithmetic manipulation. This
method is given by ,

0
d, =4 (hA +h A) if | Bii = Oor A, =0 .
 (h+h.,) otherwise i =2,...,n—1
with end conditions
d, = {0 if A =0 or sgn(d])#sgn(A)) o
d; otherwise
’ ={O y A, =0 or sgn(d,)=sgn(A,.,)
' d; otherwise
(10)
where
d; =A +(A, - A,) hy
h +h,
d; =A,,+(A, - An_z)L
h"—Z + hn—l

These arithmetic mean approximations are suitable for the convex interpolation problem, since they satisfy the
inequality
di <A <.A_ <d, <A..<A,_ <d,. 1n

These method will be considered as the default choice as it is computationally more economical.

2.2.2. Method 2
These are the non-linear approximations based on geometric means;
d 0 if A_=00rA =0 12)
Pi= b by . .
A, hiavh A+ otherwisei=2,...,.n—1
with end conditions
0 if A, =00rA,, =0
dl = (l+ﬂ] (_ﬁ) " ' (13)
A m A, Th otherwise
0 if A =00rA,,,=0
dn = (1+ "n-lJ (_hn—l J th . 14
An—l h_, An,n—z n_, ) oinerwise
where
N _a=fus)
3,1 L nn=-2 — :
(%5 —x;) (%, —%,.5)
The geometric mean approximation is suitable for monotonic data and convex data because its satisfy inequality
0<d <A <d,<..<A_ <d, <A, <..<d, (15)

For given bounded data, the derivatives are bounded. Hence, for bounded values of shape parameters:
v, W;,i=1,2,...,n—1 the interpolant is bounded and unique. We can conclude as the following theorem

Theorem 1: For bounded v,, w;Vi and the derivative approximation given in section 2.2.1 and 2.2.2 there exist

aunique C ! spline solution to the interpolant (6).
For illustration we have the following data extracted from Srafraz (2000,2002) for the curve fitting.
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Table 1: Monotonic data

i 1 2 3 4 5
x. 0 6 10 29.5 30
H
f. 0.01 15 15 25 30
H
Table 2: Convex data
i 1 2 3 4 5
X, 1 2 4 5 10
f 10 2.5 0.625 0.4 0.1
Table 3: Positive data
i 1 2 3 4 5 6 7
x, 0 2 4 10 28 30 32
£ 20.8 8.8 42 0.5 39 6.2 9.6
1
The followings are the fitting curves using the given data.
2
. —
5 1 15 w__& » 5 1 5 »__% »
-10 -10
20 -2
2 -2

Figure 1(a): Default curve with method
1 for monotonic data in Table 1.

Figure 1(b): Default curve with method

2 for monotonic data in Table 1.
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Figure 2(a): Default curve with method
1 for convex data in Table 2.

Figure 2(b): Default curve with method
2 for convex data in Table 2.
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Figure 3(a): Default curve with method
1 for positive data in Table 3.

Figure 3(b): Default curve with method

2 for positive data in Table 3.
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3. Spline interpolation
In order to achieve the shape preserving interpolant the shape parameters V;’s and W;;s can be

modified by trial-and-error basis, in the regions of the spline where shape violations are found. This is not a
quick and efficient way to manipulate curves for shape preserving.. A more effective and useful is the automatic
generation of shape preserving curve. This requires computation of suitable shape parameters and derivatives at
the knots. To proceed with this strategy, we discussed some mathematical treatment for three types of shape
preserving; monotone, convex and positive splines
3.1. Monotone spline interpolation.

For simplicity of presentation, we assume monotonic increasing set of data so that

LS, 2..5f, (16)

or equivalently

A, 20, i=12,.,n-1 17
For a monotonic data interpolant s(x), it is then necessary that the derivative parameters should be such that

d, 20 i=12,..,n (18)
Now, s(x) is monotonic increasing if and only if

sP(x)=0 (19)

forall x € [x,,x,]. For x €[x,,x,,,] the first derivative after some simplification is

6
[Z A_i,tgj_l (1 - 9)6_j]
s® (x)= J=1 (20)

[2,(0))

Al,i =d,,

where

A2,i =2w,(A, - idt+1) +d,,
w

i
A3,l =3A, +2w,(4, -Ldi+l)+vlwi(Ai _—l'di _Ldm)’
W, Vi f
1 1 1
A, =30 +2v,(A —-—d)+vw,(A -—d, —-—d,,),
v, v, W,

H H

+12

AS,i =2, (Ai —idi) + di
Vv,

H
4, =d,,,

Since the denominator in (20), is positive, therefore the sufficient condition for monotnicity on [x,,X,,, ] are
4,20, j=12,.6 @)

where d, dan d,, | are assumed positive. If A ; > 0 then the following are sufficient conditions to satisfy (21):

A -Ld >0
V;
1

A ——d, 20
W,

A, —idi —Ldi+1 20 (22)
v; Wi

which gives

v, = rd, ) w, = 49 23)

A, A
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where 7, and ¢, are some positive quantities satisfying

-1 1
—+—<1 24
Loq
This, together with (23) leads to the following sufficient conditions for the freedom over the choice of ¥, and g,
d, d.
r21+ 2L g, 21+—. (25)
d; i+l
We choose 7; and g, as follows:
d, d,
nEle g g =1+—. 26)

i 1+1
This choice satisfies (24) and it provides visually pleasant result. It should be noted that if A, =0, then it is

necessary to set d, = d,,; =0 and thus

s(x)=f, = fiu 27)
is a constant on [x, » X, +1]. For the case where the data is monotonic but not strictly monotonic (i.e. when some
A, =0), it would be necessary to divide the data strictly into monotonic parts.

The above discussion can be summarized as:
Theorem 2: Given conditions (18) on the derivatives, (23) and (26) are the sufficient conditions for interpolant
(6) to be monotonic increasing.

3.2. Convex spline interpolation
By assuming a strictly convex set of data then

A <A, <..<A, . (28)
For a convex interpolant s(x), it is necessary that the derivative parameters to be

d <A <.A_ <d <A,..<A, _ <d, (29)
Now s(x) is convex if and only if

sPx)=0 (30)

forallx € [x;,x,]. For x € [x;,X,,,], the first and second derivatives are respectively given by
5
[ 4,6711-0)]
o) =1
5T (x) =
[Q,())

>

and
[Z Bj,tej_l (1 - e)s—j]
sP(x) = :
k1O, (x)]

Aj’,. and B i are the expression involving d,. ’s, A;’s, v,’s dan W, ’s. Since the denominator for positive

, (3D

Vv, , W, is positive, then the sufficient conditions for convexity on [xt 2 X; +1] are
Bj’, 20, j=12,..8, 32)
After some simplifications, we have

B, =2{(w, —v)A, +v, (A, —-d))-(d,,, —d,)},

BS,i =2{(w, —v)A, +w,(d,,, —A,)- (d,—4d)}. (33)
If A, —d; >0 and d,,; — A, > 0 then the following conditions will be sufficient to satisfy (33)

Vi =W,

vi(Ai —di)_(d'ﬂ _di) 20,

i
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Wi (di+1 - Ai) - (di+1 _di) 20. (34)
Since
d,y — 4, + A -4, > max(dm —d, , ds _di)_ (35)
A-d, d,-N A -d; d, -Ai
The choice of weight parameters
V=W, = max(di+1 -d, d,,—4d, ) (36)

Ai _di ’ di+1 -4,
will be considered for the practical implementation of default curve design. The weights can be further modified
by adding some positive values to (36).

If A,—d, =0 or d,, ~A, =0, then it is necessary to set d, =d,,, = A,. The interpolant then
will be linear in that region, i.e.,

s()=(1-60)f, +& ... 37
If A; =0, then it is necessary to set d, =d,,; = 0 and thus

S) =1, =Fin 8
is a constant on [x;,x,,]. For the case, where the data are convex but not strictly convex, the data has to be

divided into strictly convex parts. If we set d, = d,. 1 =0 whenever A, =0, then the resulting interpolant

will be C° at break points.

The above discussion can be summarized as:

Theorem 3: Given conditions (11) on the derivative parameters and the convex data, the constraints (36) are the
sufficient conditions for the interpolant (6) to be convex.

3.3. Positive spline interpolation
Let assume positive set of data (x;, f;),(%,, /3 )5, (%, f,) for

X <X, <..<X,, 39
and

£L>0,1,>0,.,f,>0. (40)
Since v;, w; > 0 implies that (,(6)> 0, then the interpolant (6) will be positive if the cubic polynomial
P,(0) is positive. Hence the problem reduces to determination suitable values of V;, W, so that the polynomial

P, (0) ispositive. Thusto ensure that P,(6) > 0 then

V,>0,W,>0. @1)
Which gives
v, >m,w,>M, 42)
where
m; = max{O,_—h"‘i , M, = max{O,—hLd"ﬂ-} . 43)
i "

The above discussion can be summarized as:
Teorem 4: For a strictly positive data, the rational cubic interpolant (6) preserves positivity if and only if (43) is
satisfied. :

The weights can be futher modified to incorporate both shape preserving and shape control features.

Thus one can give parameters #, dan g,

r.q; 21 44
such that

v, =(+m)r,, w; =(1+M,)q;. (45)
As default curve we set 7,,q; =1, and

v, =w, =1+ max(m;,M,). (46)

Figures 5 and 6 illustrate the default and shape preserving spline.
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Figure 5(a): Default curve with
method 1 for monotonic data in
Table 1.

Figure 5(b): Default curve with
method 1 for convex data in Table
2.

Figure 5(c): Default curve with
method 1 for positive data in Table
3.
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Figure 6(a): The shape preserving
spline for the monotone data. .

Figure 6(b): The shape preserving

spline for the convex data..

Figure 6(c): The shape preserving
spline for positive data

4. Shape preserving spline for mosquito data set
For further illustration the mosquito data set is used, (Ahmad, 2004). Shape preserving methods that

has been described will be applied and also the method of ‘trial and error’.
Week, 1991, x; Rainfall Egg Aedes
1 3.3 835 147
2 0.5 1122 75
3 0.0 331 85
4 11.6 379 335
5 2.2 124 38

Table 4: Mosquito data

The following figures illustrate visually the data in Table 4.
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Figure 7(a): The default rational cubic spline for the

Rainfall data.

Figure 7b): The
Rainfall data .

shape preservmg spline for the
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Figure 8(a): The default rational cubic spline for the
Egg data .

Figure 8(b): The shape preserving spline for the Egg
data.
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Figure 10(a): The default rational cubic spline for the
Aedes data .

Figure 10(b): The shape preserving spline for the
Aedes data.

The following figure illustrates visually the rainfall data and Aedes data.
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comparison the data values for Aedes is scaled down.

Fig. 12. Shape presering splines for data taken from the first week of January until Mei 1989. To make
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5. Conclusion

The rational spline scheme has been implemented successfully and it demonstrates a nice visually
pleasant results. The user can automatically get the curves using the techniques of shape preserving. In some
cases the user can manipulate the curve manually by ‘trial and error ¢ method in regions of unreasonable shape.
By visualizing the data a better interpretation about the phenomena can be made. For example in Figure 12, a
simple conclusion can be made, that is the number of aedes increases about two weeks after the rainfall. Then a
certain action can be made to overcome the problem of aedes.
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