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PENDEKATAN ANALITIK LANDAU-DEVONSHIRE

TENTANG FENOMENA FEROELEKTRIK PUKAL

ABSTRAK

Pada masa kini sifat statik dan dinamik bahan feroelektrik dihuraikan secara
berangka dengan menggunakan model transisi fasa Landau-Devonshire (LD) atau
melalui pelbagai rumus empirik yang telah diperolehi melalui penyesuaian kepada
data eksperimen daripada bahan feroelektrik tertentu seperti barium titanat, triglycine
sulfat dan plumbum titanat. Oleh yang demikian fenomena feroelektrik seperti arus
fana tukar arah, tempoh balikan polarisasi lengkap dan santaian polarisasi dihuraikan
oleh rumus empirik secara asingan tetapi tidak dapat dihuraikan secara bersepadu
berdasarkan satu teori yang umum. Dalam tesis ini, model analitik peralihan fasa LD
yang dihasilkan telah menyumbangkan satu huraian analitik tentang sifat statik dan
dinamik bahan feroelektrik yang tepat. Daripada model analitik LD hubungkaitan
antara kuantiti yang menyifatkan sifat feroelektrik telah diterbitkan serta dibuktikan
sebagai sifat universal feroelektrik pukal darjah kedua dan bukan sifat bahan
feroelektrik tertentu. Berdasarkan hujah-hujah daripada model LD lanjutan yang
. mengambilkira kesan tekanan hidrostatik, didapati bahan feroelektrik yang
mengalami tekanan hidrostatik menunjukkan sifat-sifat seperti bahan feroelektrik
bebas tekanan tetapi pengurangan magnitud dalam kuantiti terlibat iaitu polarisasi
equilibrium dan tempoh balikan polarisasi lengkap telah berlaku. Kesimpulan itu
tidak dapat ditentukan secara empirik tetapi telah dibuktikan dengan kukuh
berdasarkan penaakulan analitik. Dalam bidang penyelidikan ketiga, satu formalisme

tepat telah dibangunkan tentang santaian polarisasi. Kejayaan ini menambahbaik

XX1
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fahaman masa kini fentang santaian polarisasi feroelektrik yang berdasarkan
penyelesaian persamaan [andau-Khalatnikov secara penghampiran. Oleh itu kajian
1 menunjukkan bagaimana arus fana tukar arah yang dijanakan oleh denyutan

elektrik dapat disediakan mengikut kehendak dengan meramalkan tempoh denyutan

dan tempoh antara denyutan.
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ANALYTICAL LANDAU-DEVONSHIRE APPROACH

OF BULK FERROELECTRIC PHENOMENA

ABSTRACT

Currently static and dynamic behaviour of ferroelectric materials are
described either numerically using the Landau-Devonshire (LD) model of phase
transitions or various empirical formulae obtained by fitting experimental data of
specific ferroelectric substances such as barium titanate, triglycine sulfate and lead
titanate. As such ferroelectric phenomena such as switching current transients,
switching time and polarization relaxation are described by separate empirical
formulae but lack a unified description based upon a common theoretical framework.
The analytical LD model of phase transitions developed in this thesis provides a
unified and analytical description of a broad range of static and dynamic behavior of
ferroelectrics exactly. From the analytical LD model the functional relationships
between quantities that characterize ferroelectric behaviour are theoretically derived
and proven as universal properties of second order bulk ferroelectrics and not just to
specific ferroelectric substances. Based upon the extended LD model incorporating
hydrostatic stress effect, theoretical arguments show that ferroelectric materials
subjected to hydrostatic stress exhibit similar trends as stress free ferroelectrics
except for a reduction in the magnitude of the quantities involved such as the
equilibrium polarization and the switching time for complete polarization reversal.
This conclusion cannot be established empirically by merely extending formulae
used for stress free ferroelectrics but is now established rigorously based on

analytical arguments. For the third area of investigation, an exact formulation of
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ferroelectric polarization relaxation is developed. This aspect of the present work
improves current understanding of ferroelectric polarization relaxation which are
based upon the approximate solution of the Landau-Khalatnikov equation.
Consequently this work shows how switching current transients generated by square
wave electric pulses can be tailored by predicting the pulse width and inter pulse

width that are required.
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CHAPTER 1

INTRODUCTION

1.1 Status of research on ferroelectric materials

The study of ferroelectric behaviour of materials began with the discovery of
anomalous dielectric properties in Rochelle salt crystals (Valasek, 1921). Valasek
named the temperature at which the dielectric constant presented a sharp peak as the
Curie temperature. Sawyer and Tower (1930) observed hysteresis loops of electric
polarization caused by an external electric field in Rochelle salt for the first time
experimentally. Subsequently other ferroelectric materials like potassium dihydrogen
phosphate (KDP) and barium titanate (Busch and Scherrer, 1933; Jona and Shirane,
1962) were discovered. In general theoretical and experimental studies on
ferroelectrics have been carried out on three types of ferroelectric structures: single

crystal/ceramic, thin films and superlattices.

In the case of single crystal/ceramics ferroelectrics (Kanzig, 1957), the effect
on the Curie temperature, dielectric hysteresis loops, spontaneous polarization,
dielectric susceptibility, switching time and switching current caused by various
factors such as the electric field, stress, strain and doping have been studied. Several
theoretical approaches such as the Landau-Devonshire model (Devonshire, 1949;
1951; 1954), lattice dynamics (Cowley, 1964), mean field (Blinc and Zeks, 1974;
Kittel, 1974; Lines and Glass, 1977; Gonzalo, 1991; Gonzalo and Jimenez, 2005),
transverse Ising model (Cottam er al., 1984; Wang er al., 2000) and first principles
(Lichtensteigher er al., 2005) have been developed in order to understand and predict

the behaviour of ferroelectrics. In particular, the Landau-Devonshire model has been



widely used to study the dielectric and dynamic properties caused by applied electric
field, strain (Zembilgotov et al., 2009) and stress (Wang et al., 2002) acting on
ferroelectric structures. The Landau-Devonshire model has also been adapted to
include inhomogeneous effects which play an important role in determining the
ferroelectric behaviour in thin films and superlattices. Initial studies on
understanding ferroelectric behaviour focused on single crystals and ceramics (Busch
and Scherrer, 1933; Jona and Shirane, 1962; Kanzig, 1957). Attention shifted later to
the study of ferroelectric behaviour in thin films where the effects of surface
polarization and thickness on the dielectric and switching properties in thin films
(Cottam et al., 1984; Kretschmer and Binder, 1979; Ong et al., 2001; Tan et al.,
2000; 2001; Scott et al., 1987; Scott and Pouligny, 1988; Baudry and Tournier, 2005;

Okuyama and Ishibashi, 2005) were investigated.

A more recent major development in ferroelectric research involves the
fabrication of superlattices consisting of several layers of different ferroelectric
compounds (Ishibashi and Iwata, 2007; Chew er al., 2000; 2011; Iwata et al., 2007,
Ong et al., 2012%). Many studies have been conducted to manipulate the properties of
superlattices for possible technological applications (Ishibashi and Iwata, 2007).
Collectively many of these studies were spurred by the desire to understand the
underlying physics which influence ferroelectric behaviour in different kinds of
ferroelectric structures (Xu, 1991) like single crystals, thin films, superlattices and
nanocrystals. Concurrently, the increasing applications of ferroelectric materials in
diverse applications such as memory devices (Scott, 2000; Dawber er al., 2005),
transducers (Uchino, 2000), super-capacitors (Yao et al., 2011) and for energy

harvesting have led to a strong interest in tailoring the piezoelectric and switching




properties of ferroelectric materials. These fundamental studies on ferroelectric
structures complemented by the increasing technological applications continue to

drive the theoretical and experimental research being undertaken on ferroelectrics.

Recently, experimental reports on the occurrence of homogeneous
polarization switching (Gaynutdinov er al., 2012; 2013% 2013 Nakajima et al.,
2009) in a copolymer of vinylidene fluoride (VDF) with trifluoroethylene (TrFE) and
ultrathin barium titanate have been published. These reports provide strong evidence
that the Landau-Devonshire model is better suited than the Kolgomorov-Avrami-
Ishibashi (KAI) nucleation model of polarization reversal (Ishibashi and Takagi,
1971; Kolmogorov, 1937; Avrami, 1940) for the description of ferroelectric behavior

in this new type of materials.

As a prelude to the research results reported in this work, a brief summary of
current approaches used to describe switching behaviour and polarization relaxation
in bulk ferroelectrics is provided. In the first approach, empirical formulae are used
in the description of switching behaviour in ferroelectric material. These empirical
formulae have been proposed based upon experimental results of compounds such as
barium titanate (Merz, 1954; Wieder, 1956; Pulvari and Kuebler, 1958"), triglycine
sulfate (Chynoweth, 1960; Wieder, 1964) and lead zirconate-lead titanate solid
solution (Yu er al., 2001). A variety of physical models associated with the empirical
formulae have been formulated to account for the switching process that takes place
during polarization reversal (Merz, 1954; 1956; Fatuzzo and Merz, 1959; Miller and
Weinreich, 1960; Savage and Miller, 1960; Ishibashi and Takagi, 1971; Ishibashi,

2000; Orihara et al., 1994). In the model of polarization switching proposed by Merz




and- Miller-Weinrich |, two stages are involved. During the first stage spike-like
domams reverse polacity inthe forward direction in alignment with the polarity of
the clectne hield, The second stage involves the sideways growth of the existing
domaim walls during the polarization switching process. Ishibashi and Takagi (1971)
retined  the  nucleation  model of  polarization  switching by incorporating  (wo
tportant wdeas; namely the dimensionality factor o completely characterize the type
ol polarization switching by category and probabilistic arguments (Kolmogoroy,
(9370 Aveami, 1939, 1940, 1941) o account for the formation and growth of

domains (Zhdanov, 1965) during polarization reversal.

The second  approach  to  study  polarization  switching  behaviour  in
ferroelectrie structures is based upon the Landau theory of phase transitions (Landau,
1937" 1937") which was adapted o bulk ferroelectries by Devonshire (1949, 1951,
[954), supported by the Landau-Khalatnikov equation (Landau and Khalatnikov,
1954, Cottam er al., 1984, Ginzburg, 1961, Ishibashi, 1990; Ricinschi er al., 2001;
Luban, 1976; Nagaya and Ishibashi, 1991; Omura er al., 1992 1992"). The Landau-
Khalatnikov equation was originally developed o describe attenuation of sound
propagation in liquid heliam but the equation was later adapted to describe dynamic
processes in bulk and thin film ferroelectrics by Ginzburg (1961), The Landau-
Devonshire model of phase transition is often implemented numerically (o study
switching phenomena in bulk ferroelectries (Ricinschi er al,, 1998), thin films
(Cottam et al., 1984, Wang et al., 2002, Ong et al., 2009; Tan et al., 2000; 2001;
Musleh er al,, 2009) and superlattices (Chew er al., 2000; Iwata et al., 2007, Ong et
al., 2012%. However, an examination of the literature shows that several problems

mvolving  bulk ferroelectries require further research in order to improve our




understanding of bulk ferroelectrics. These problems are elaborated in the next

section.

1.2 Problem statements and research objectives

Currently the quantities and functional relations that characterize static and dynamic
behaviours of bulk ferroelectrics are described by various empirical formulae (Merz,
1954; 1956; Wieder, 1956; 1960; 1964; Pulvari and Kuebler, 1958% 1958b; Fatuzzo
and Merz, 1959; Chynoweth, 1960; Stadler, 1962; Tura and Mitoseriu, 1994). These
empirical formulae have been proposed based on experiments carried out on specific
substances like barium titanate and triglycine sulfate. However, the description of
static and dynamic behaviour in bulk ferroelectrics is often carried out numerically
(Ricinschi er al., 1998) based on the Landau-Devonshire (ILD) model of phase
transition (Landau, 1937% 1937" Devonshire, 1949; 1951; 1954). As such the first
problem posed in this work is to examine whether the LD model can be solved
exactly and use its results to investigate the connection between the LD model to the
empirical formulae that are currently used to describe experimental results involving
bulk ferroelectrics. This research is carried out on second order bulk ferroelectrics
where the mathematical derivations involved in the analytical solution of the LLandau-
Devonshire model of phase transition are solvable. Based on this analytical approach
we are interested to investigate how much of the trends of bulk ferroelectrics that are

represented by empirical formulae can be recovered analytically.

Based on experimental work reported by Hayashi (1971) concerning the
effect of hydrostatic stress on the switching behaviour of triglycine sulfate (TGS) we

are motivated to study whether such trends can be described theoretically. In his




experiment Hayashi has shown that the maximum switching current and reciprocal
switching time of bulk TGS is described by empirical formulae similar to to the case
of barium titanate (Merz, 1954). Therefore in the second problem, we attempt to
study analytically how the application of hydrostatic stress changes the static and

dynamic behaviour of second order bulk ferroelectrics.

For the third problem, the back-switching current caused by polarization
relaxation is revisited to study the full impact of the nonlinear cubic polarization term
P’. For this problem we are interested to extend our exact results beyond the
linearization results currently used. From a broader perspective, this work enables us
to examine the ability of the exact formulae to generate switching current transients
analytically and compare the theoretical trends obtained to the results that are

displayed in experimental switching current transients.

The research reported in this thesis is carried out in order to resolve the
problems that have been identified pertaining to the lack of complete understanding
on the static and dynamic trends of bulk ferroelectrics. The research objectives of

this thesis are as follows;

a. Clarify the relationship between the LLandau-Devonshire (LD) model
of phase transition for second order bulk ferroelectrics with the
empirical formulae that are still used to interpret dynamic behaviour

in ferroelectric material




b. Study whether the trends and functional relations persist in bulk

[erroelectrics that are subjected to hydrostatic stress

C. Compare the exact description of the backswitching current against
the Debye-like formulation (LLandau and Khalatnikov, 1965, Blinc and

Zeks, 1974, Bokov and Ye, 2012) that 1s currently used.

1.3 Research methodology

In order to study the relationship between the empirical formulae of ferroelectric
static and dynamic behavior with the analytical formulations obtained from the
[Landau-Devonshire model of phase transition, the Landau-Devonshire model is
converted into a solvable form. Two key mathematical procedures are applied. The
diclectric equation of state 1s solved exactly for equilibrium polarization which 1s
central to the study of static behavior of bulk ferroelectrics. Subsequently the
[Landau-Khalatnikov equation is solved exactly for switching time under different
clectric field and temperature. Through computations using the exact formula for
switching time, we can study the dynamic behavior of ferroelectric materials under

different electric fields and temperatures.

Then the work is extended to study the effect of hydrostatic stress on the
static and dynamic behavior of bulk ferroelectrics theoretically. From this aspect of
the research work, differences and similarities in ferroelectric behaviour between

materials under stress and stress free materials are analyzed and discussed.



With regards to the back-switching problem in polarization relaxation of bulk
ferroelectrics, this work highlights the difference between the trends obtained with
the exact formulae for back-switching current from the linearized approximate
formulae in use currently. Then we show the ability of the exact formulae to
reproduce (rends that have been reported in experimental switching current

fransients.

Throughout this thesis computations for the switching time, reciprocal
switching time, product rule and equilibrium polarization based on the analytical
formulae derived in this work are carried out using the programming language
MAPLE (Betounes and Redfern, 2002). However, plots for the corresponding graphs

of each quantity are then implemented using Microsoft EXCEL (Gottfried, 2003).

1.4  Outline of each chapter

In Chapter One the research objectives of this thesis and the methodology used are
described. This 1s followed in Chapter Two by a brief survey of experimental and
theoretical studies on properties of bulk ferroelectric materials that has been carried
out over the past fifty years. In particular, the survey encompasses the following
areas. They include experimental measurements of switching current, empirical
formulae to describe switching behaviour, nucleation models of domain wall motion,
order-disorder and displacive ferroelectrics, ILandau-Devonshire model of
ferroelectric phase transition, soft mode model of ferroelectric phase transition and
technological applications of ferroelectric structures. In Chapter Three, analytical

formulae of switching time, switching current and equilibrium polarization are




derived. These formulae are compared with the corresponding empirical formulae
reported from experimental work. Trends on static and dynamic behaviour of bulk
ferroelectrics under different temperature and electric field are also discussed. Then
in Chapter Four the ILandau-Devonshire model is extended by the inclusion of
hydrostatic stress effect. The importance of the results between ferroelectrics
experiencing hydrostatic stress with stress free ferroelectrics are discussed. In
Chapter Five, the full impact of the nonlinear polarization term to ferroelectric
polarization relaxation is studied analytically. The exact results derived are compared
with the results obtained from the linearized approaches currently reported in the
literature. The discussion in Chapter Five reexamines switching current transients
caused by unipolar and bipolar square wave electric fields analytically. In Chapter
Six conclusions obtained in this study together with the limitations of the analytical
[Landau-Devonshire model of ferroelectric phase transition are discussed. Future

extensions which may be investigated are also highlighted.




CHAPTER 2

SURVEY OF FERROELECTRIC STUDIES

2.1 Introduction

In this chapter a brief review of theoretical studies is discussed especially those
aspects which can be explained by the Landau-Devonshire model. As such this
review is not exhaustive but instead will mainly focus and highlight those areas of
interest to the research carried out in this work. Those areas of interest include the
phenomenological Landau-Devonshire model (Landau, 1937% 1937b; Devonshire,
1949; 1951; 1954; Gonzalo, 2005), soft mode theory of crystal stability (Cochran,
1959; 1960; Woods er al., 1959) and empirical models of polarization switching. The
review of the phenomenological LLandau-Devonshire model (Blinc and Zeks, 1974;
Fatuzzo and Merz, 1967, Mitsui er al., 1976) is important as it provides the
theoretical basis for analytical solution (Loh e al., 2013% 2013b; 2014; Ishibashi
1992) of the LLandau-Devonshire model of phase transition of bulk ferroelectrics that
is carried out in Chapter Three and Chapter Four. Then the main ideas of the soft
mode theory (Cochran, 1959; 1960; Woods et al., 1959) are outlined to show the
microscopic picture of phase transition in displacive ferroelectrics. This is followed
by a review of various empirical models (Tura and Mitoseriu, 1994; Merz, 1954;
1956; Wieder, 1956; 1960; 1964; Pulvari and Kuebler, 1958 1958"; Fatuzzo and
Merz, 1959; Chynoweth 1960; Stadler, 1962) of polarization switching such as the
Kolmogorov-Avrami-Ishibashi model (Ishibashi and Takagi, 1971) that uses crystal
growth ideas (Kolmogorov, 1937; Avrami, 1939; 1940; 1941) to account for
polarization switching. In the final section, technological applications that make use

of the properties of ferroelectrics (Dawber et al., 2005; Uchino, 2000; Yao er al.,
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20115 Song, 2005; Schubring et al., 1967; Rohrer, 1973; Nakagawa, 1979; Payne,
1989; Dey et al., 1988; Volz et al., 1984; Hippel, 1950; Viola et al., 2012; Wang and
Song, 2006; Qin et al., 2008; Mistral et al., 2010) are reviewed in order to
understand how these properties are exploited for industrial and commercial

purposes.

2.2 Ferroelectric property of bulk materials

2.2.1 Characteristics of bulk ferroelectrics

Crystals can be classified according to point group symmetry (Kittel, 1974; Nye,
1957). Out of the 32 classes of point group symmetry, crystals belonging to 10 of
these point groups can be pyroelectric. In pyroelectric crystals, a finite spontaneous
polarization is present in the crystal in the absence of an electric field. When
temperature change occurs the pyroelectric crystals generate current caused by
changes in polarization. In contrast, for ordinary crystals polarization is induced
when an electric field is applied. However, the polarization in the crystal reduces to

zero when the electric field is removed.

Ferroelectrics form a subclass of crystals within the class of pyroelectrics.

Ferroelectrics possess a transition temperature 7. at which the structural phase of the

crystal changes between the paraelectric and ferroelectric phases of the crystal. At

temperatures above the transition temperature 7 >7_, the crystal is in the

paraelectric phase where its spontaneous polarization is zero. Conversely, at

temperatures below the transition temperature 7' <7, the crystal exists in the

ferroelectric phase with a non zero spontaneous polarization. Ferroelectrics have a

unique property whereby the polarity of its spontaneous polarization can be reversed

11




by the application of an electric field in the opposite direction (Lines and Glass,

1977, Fatuzzo and Merz, 1967; Mitsui et al., 1976).

One of the possible origins of non zero spontaneous polarization in the
ferroelectric phase of crystals 1s the structural atomic displacements of charged ions
that occur as the temperature falls below the transition temperature 7°.. A crystal
consists of Bravais unit cells where positvely and negatively charged ions are
arranged regularly in lattices. In the paraelectric phase, the centre of all the positively
charged ions coincides with the centre of the negatively charged ions so the crystal
does not have a spontaneous polarization. However in the ferroelectric phase where
temperatures fall below the transition temperature 7., the unit cell undergoes
structural phase changes. This results in changes of the lattice spacing between
positively charged ions and negatively charged ions. As a result, the formation of
electric dipoles within each unit cell causes non zero spontaneous polarization to

arise in crystals in the ferroelectric phase.

2.2.2 Displacive and order-disorder ferroelectrics

Ferroelectric crystals can be classified into two main classes either displacive or
order-disorder ferroelectrics. In the displacive class of ferroelectrics, a whole sub-
lattice of ions of one type of charge is displaced relative to another sub-lattice of ions
of the opposite charge during the transition to the ferroelectric phase. Displacive
ferroelectrics can be found among ionic crystals with the perovskite and ilmenite
structures. Using barium titanate as an example we illustrate the production of
spontaneous polarization by a typical displacive ferroelectric due to the structural

phase changes experienced in the ferroelectric phase as shown by Fig. 2.1. In the




paraelectric phase barium titanate has a cubic structure. Ba** ions are located in the
O . - .
cube corners. O ions are located at the face centres. T** ions are located at the body

centre.

(a) (b)

Figure 2.1: (a) Positions of Ba’*, Ti**, O ions in the unit cell of barium titanate in
the paraelectric phase (b) Structural distortion of unit cell of barium titanate in
ferroelectric phase causing non zero spontaneous polarization (adapted from Kittel,
1974).

Below the transition temperature, the Ba’* and T*" ions are displaced upwards
slightly relative to the O” ions. This slight deformation of the relative positions
between the positively charged ions and the negatively charged ions in the unit cell
causes a dipole moment to form. The combined effect of the dipole moment in all
unit cells of the crystal leads to the formation of non-zero spontaneous polarization
for barium titanate in the ferroelectric tetragonal phase. Neutron diffraction
measurements (Frazer er al., 1955) on single crystal barium titanate confirmed the

occurrence of the displacive mechanism described above as the cause for the

formation of non-zero spontaneous polarization in the ferroelectric tetragonal phase.
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(a)

(b)

Figure 2.2: Crystal structure of potassium dihydrogen phosphate (KDP) is shown in
(a) (adapted from West, 1930). Positions of phosphorus and oxygen atoms in POy
tetrahedron are shown in (b) (adapted from Mitsui er al., 1976).

In the order-disorder class of ferroelectrics, it is the rearrangement of protons
asymmetrically along the hydrogen bonds that cause non-zero spontaneous

polarization to occur in the ferroelectric phase of the crystal. Examples of order-

disorder ferroelectric crystals are potassium dihydrogen phosphate (KDP) and

14




triglycine sulfate (TGS). We use KDP to explain the mechanism by which non zero
spontaneous polarization is created in the ferroelectric phase with the aid of Fig. 2.2.
The KDP crystal comprises two interpenetrating sublattices of PO, tetrahedrons and
K" ions. The P°* and K" ions are arranged alternately in different layers as shown in
Fig. 2.2(a), perpendicular to the polar c-axis of KDP. In the paraelectric phase, the
two protons have equal probability of being located around the two upper oxygen
ions labeled (3) and (4) or the lower oxygen ions labeled (1) and (2) of the PO,
tetrahedrons as shown in Fig. 2.2(b) so spontaneous polarization is zero. As
temperature falls below the transition temperature 7, the two protons can be found
closer to the lower oxygen ions labeled (1) and (2) as shown in Fig. 2.2(b) or the
upper oxygen ions labeled (3) and (4) of the PO, tetrahedrons as shown in Fig.
2.2(b). For the first case, this causes the P>* ion to shift upwards slightly and the K*
ion to shift slightly downwards. As a result a dipole moment giving rise to non zero
spontaneous polarization along the c-axis i1s formed. Alternatively in the second case,
the two protons spend more time around the upper oxygen ions to cause spontaneous
polarization to act in the opposite direction to the c-axis. Neutron diffraction
experiments showed the distribution of the protons about the centre of the hydrogen
bond (O-H-O) in the paraelectric phase (Bacon and Pease, 1955). Below the
transition temperature 7. = 123°K, the protons were distributed asymmetrically either
nearer the upper oxygen ions or the lower oxygen ion. The measurements of the
relative positions of the protons were in agreement with the prediction of Slater’s

(1941) theory of order-disorder ferroelectrics.
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2.3 Thermodynamic theory of phase transition

I'his section provides a summary of the main concepts pertaining to Ehrenfest’s
criterion on the order of phase transition and thermodynamic functions that are used

to characterize the state of bulk ferroelectrics.

2.3.1 Ehrenfest criterion of first or second order ferroelectric phase transition

Thermodynamics can be used to describe the structural phase transition of a bulk
ferroelectric from the paraelectric to the ferroelectric phase. When the crystal reaches
its transition temperature (Tisza, 1951; Callen, 1960; Mitsui et al., 1976), the crystal
undergoes first or second order structural phase transition depending on how
thermodynamic changes occur according to the Ehrenfest criterion. Ehrenfest
criterion states that for an n-th order phase transition to occur the (n-1)-th derivative
of the Gibbs free energy must be continuous while the n-th derivative of the Gibbs
free energy is discontinuous at the transition temperature (Callen, 1960; Mitsui et al.,
1976). When the temperature of a crystal is above the transition temperature, the
crystal exists in the paraelectric phase. For crystals which undergo first order
ferroelectric structural phase transition, the Gibbs free energy varies continuously as
the temperature approaches the transition temperature but the entropy, volume and
polarization change abruptly (Mitsui ef al., 1976). In contrast when crystals undergo
second order ferroelectric structural phase transition then the entropy, volume and
polarization change continuously at the transition temperature but their specific heat,
thermal dilatational coefficient and pyroelectric coefficient change abruptly (Mitsui

et al. 1976).
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2.3.2 Thermodynamic functions

The basic changes in the properties of ferroelectric material are governed by the first
two laws of thermodynamics (Devonshire, 1954; Lines and Glass, 1977; Mitsui et
al., 1976). Since changes in polarization, strain and entropy in ferroelectric structures
are reversible processes, the change in the internal energy U can be represented by

the following equation,

6 . 3
dU =TdS + Y. X .dx, + Y E.dP, (2.1)

=1 =1

where the variables involved are temperature 7, entropy S, stress X, strain x’, electric
field E and polarization P. From Eq. (2.1) it is then possible to determine the
temperature, stress and electric field of the ferroelectric by partial derivative as

defined below (Mitsui et al., 1976),

T [a_u] (2.22)
aS x" P
oU
X ‘:(a_v) (2.2b)
Xi)sp
oU
b= (2.2¢0)
[BP,- ]S,x'

Since the ferroelectric state of a material can be specified in terms of
independent variables chosen from the following pairs of variables (7, §), (X, x’) and
(E, P) this allows the ferroelectric changes in the material to be described by any one

of the seven thermodynamic functions (Devonshire, 1954) stated below,
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Helmholtz free energy F = U-TS (2.3a)

Enthalpy H=U-X;x,—E;P; (2.3b)
Elastic enthalpy Hi=U-X:x4 (2.3¢)
Electric enthalpy H,=U-E;P; (2.3d)
Gibbs free energy G=F-X;xi—E;P; (2.3e)
Elastic Gibbs function Gi=F-X;x (2.3f)
Electric Gibbs function G,=F —E; P; (2.3g)

The importance and utility of these seven thermodynamic functions in the
description of ferroelectric behaviour has been shown by Eq. (2.2a), Eq. (2.2b) and
Eq. (2.2¢); by taking partial derivatives of any one of these seven thermodynamic
functions, changes to quantities involved in ferroelectric behaviour of a material can
be determined. As another example it will be shown in Chapter Four, that the
equation of state of a bulk ferroelectric subjected to hydrostatic stress and an electric

field is obtained from the Gibbs free energy represented by Eq. (2.3e).

24  Landau-Devonshire formulation of phase transitions

The Landau theory (Landau, 1937% 1937 Ginzburg, 1961; Gufan and Torgashev,
1980) has been widely applied to describe phase transitions occurring in different
systems such as ferroelectrics (Devonshire, 1949; 1951; 1954), ferromagnets
(Dimmock, 1963), superconductors (Ginzburg and Landau, 1950), ferroelastics
(Toledano and Toledano, 1987) and multiferroics. The review presented in this
section will focus on the role of the LLandau theory in the characterization of bulk
ferroelectrics. Ferroelectric structures such as bulk ferroelectrics can exist in either

paraelectric or ferroelectric phase depending on whether its temperature 7 is greater
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or less than its transition temperature 7. At each phase the properties of the bulk
ferroelectric can be determined from the Gibbs free energy density. Landau’s (1937%
1937") original formulation of phase transition was later extended by Devonshire
(1949; 1951; 1954) to describe structural phase transition of bulk barium titanate
[rom paraelectric cubic to ferroelectric tetragonal phase under stress free and zero
electric field. The Gibbs free energy of barium titanate a member of the perovskite
family which 1s a multi-axial ferroelectric can be represented as a summation

(Devonshire 1949; 1951; 1954) in powers of polarization,

G =24(pi+ P3+ P+ S (pt+ Pi+ PA)

- 9‘2‘~ (P P2+ P3P+ P P7)+ S (P + PS+ PY)
)

+ 22 [Pt (i + Pi)+ PA(P + P2+ i (PE+ P

123
%

-

Pi P} P3 2.4)

The dielectric stiffness constant ¢ is temperature dependent and represented

a=al-T.) (2.5)

where a is the inverse Curie constant and 7', is the transition temperature between
the paraelectric and ferroelectric phases. Further discussion on the role of 77, is
provided in Chapter Three. The higher order dielectric stiffness constants written in

Voigt notation are g1, @25 Giirs Gz and @3 .
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p; (i =1, 2, 3) represent the polarizations which act along the x-, y- and z-
axes respectively. In this formula the polarization P is chosen as the order parameter
of the Gibbs free energy density. The Gibbs free energy has to represent barium
titanate in both polar and non polar phases. Since barium titanate has a
centrosymmetric non polar phase, the coefficients associated with odd power
polarization terms must be zero (Lines and Glass, 1977). The form of the Gibbs free
energy represented by Eq. (2.4) is sufficient to study the behaviour of bulk
ferroelectrics undergoing first or second order phase transition. In Eq. (2.4) terms up
to the 4" power of polarization P are retained when describing second order phase
transition (Landau 1937% l937b; Wieder 1955; Fatuzzo and Merz, 1967; Toledano
and Toledano, 1987; Ricinschi er al., 1998; Chandra and Littlewood, 2007).
However, for the description of first order phase transition in bulk ferroelectrics
(Devonshire, 1949; 1951; 1954; Merz, 1953; Toledano and Toledano, 1987; Chandra

and Littlewood, 2007), terms up to the 6™ order of P are required.

The conditions for the stability of a ferroelectric phase of the bulk
ferroelectric are the Gibbs free energy must be minimized with respect to
polarization,

oG
J P

=0 (2.6)

and the Jacobean of the Gibbs free energy must be positive definite,

0°G

——1>0 257
PP, Sl
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Hg. (2.6) is also known as the dielectric equation of state. The ferroelectric phase at
vhich these two conditions are satisfied is the stable phase of the bulk ferroelectric

with the minimum Gibbs free energy G, -

For barium titanate in single crystal or bulk form, the four different sets of
solution of the dielectric equation of state given by Eq. (2.6) completely describes the
following structural phase transitions between the cubic phase to the tetragonal,

orthorhombic or rhombohedral ferroelectric phases.
In the cubic phase, the polarization of the bulk ferroelectric is,
F=F=F=0 (2.8)
with the Gibbs free energy function

G=0 (2.9)

For bulk ferroelectric in the tetragonal phase there is one polar axis (chosen to lie
along the z-axis). The spontaneous polarization of the bulk ferroelectric acts along

the polar axis with a magnitude given by,

2 :—aui\/aﬂ—d'alam Q2 10)

Jds
2am

The Gibbs free energy of the bulk ferroelectric in the tetragonal phase under zero

electric field and stress free condition is,

1 1

[SR
G=5a11’3 +ZanP;+gamP;’ (2.11)




In the orthorhombic phase, the polarization component along the y axis is
zero (P, =0). Then the spontaneous polarization of the bulk ferroelectric acts in a
direction diagonally across a surface of the bulk ferroelectric with components
parallel to the two polar axes (x and z axes) respectively. The magnitude of each of

the polarization component is given by,

v
I
~
N
[

—(a11+a12)i \/(all-f-alz)z—4a1(a111+3(1112) (2.12)
2(0n11+30012)

The Gibbs free energy of the bulk ferroelectric in the orthorhombic phase is given

by,
el 4 i 6
G:a1P3+;(a11+a12)P3+§'(a111+3a112)P3 (2.13)

In the rhombohedral phase the spontaneous polarization acts along the direction of
the body diagonal with each of its three components acting along the three polar axes

(x, y and z). The magnitude of each polarization component is given by,

P} =P;=P;

E? ‘(an + 2(112)'—t \/(al 1+2a12f—4a1(a111+6au:+am)
2((1111+661112+ (11:3)

(2.14)

The Gibbs free energy of the bulk ferroelectric in the rhombohedral phase is given by

3 3 1
G= 50(1 P%'*Z(Om"'2a12)P§+E(a111+6a112+a123)Pg (2.15)
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In order to investigate the static and dynamic properties of multi-axial bulk
ferroelectrics under the effect of external stress X, the Gibbs free energy G, 1S

modified as follows (Jona and Shirane, 1962; Amin ef al., 1985; Haun ef al., 1987)
G, =G+G,+G,_, (2.16)

where G is the Gibbs free energy represented by Eq. (2.4) in a stress free bulk
ferroelectric. (G, is the elastic energy due to stress and (G, 1s the electrostriction
energy due to coupling between polarization and stress. The elastic energy G, due

to stress 1s given by,

l o] ) 9l
Ga= —ESH(Xf'* X2tx)

1 ) 2 2
— (X1 X2+ X2 X5+ X3X1)'5544(X2+X§+X5) (2.17)

where s, are the elastic compliance constants measured at constant polarization and
X, (i =1,..,6) are the stress components written in Voigt notation. X, X,, X3 are
the normal stress components acting along the x-, y- and z- axes respectively whereas

X4, X5, X are the shear stress components.

The electrostriction energy G, is given by,

Guw=-0,. (X, P}+ X, P2+ X3 P3)
~0,[x.(P2+ P2+ X, (P3+ P+ x5 (P} + P3)]

~0..(XeP: P+ X5 P Ps+ X6 P P2) o

where Q,,, Q,, and Q,, are the electrostrictive coefficients.




By using (G, in the Landau theory of phase transitions, the electric field E,

train x” and entropy § are conjugate variables to the variables polarization P, stress

X and temperature T respectively.

The electric field E;, strain x'ij and entropy S of the bulk ferroelectric are

derived from the Gibbs free energy (G, as first order partial derivatives (Mitsui et al.,

1976; Amin et al., 1985; Haun et al., 1987),

' [BGX)' (2.19)
aPi By
{Jp— %
X = [ax,-,- l‘E (2.20)
5 =[2G
50 2.21)

Then the dielectric stiffness q; , elastic compliance s; and piezoelectric coefficients
b; are obtained as second order partial derivatives of the Gibbs free energy G,

according to the following equations (Mitsui et al., 1976; Amin et al., 1985; Haun et

al., 1987),
e (2.22)
4 JdPOP; v
2
S 119500 2.23)
aX,jan o

e el
= 3pax; | (2.24)
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