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PENDEKATAN ANALITIK LANDAU-DEVONSHIRE 

TENTANG FENOMENA FEROELEKTRIK PUKAL 

ABSTRAK 

Pada masa kini sifat statik dan dinamik bahan feroelektrik dihuraikan secara 

berangka dengan menggunakan model transisi fasa Landau-Devonshire (LD) atau 

melalui pelbagai rumus empirik yang telah diperolehi melalui penyesuaian kepada 

data eksperimen daripada bahan feroelektrik tertentu seperti barium titanat, triglycine 

sulfat dan plumbum titanat. Oleh yang demikian fenomena feroelektrik seperti arus 

fana tukar arah, tempoh balikan po larisasi lengkap dan santaian po larisasi dihuraikan 

oleh rumus empirik secara asingan tetapi tidak dapat dihuraikan secara bersepadu 

berdasarkan satu teori yang umum. Dalam tesis ini, model analitik peralihan fasa LD 

yang dihasilkan telah menyumbangkan satu huraian analitik tentang sifat statik dan 

dinamik bahan feroelektrik yang tepat. Daripada model analitik LD hubungkaitan 

antara kuantiti yang menyifatkan sifat feroelektrik telah diterbitkan serta dibuktikan 

sebagai sifat universal feroelektrik pukal darjah kedua dan bukan sifat bahan 

feroelektrik tertentu. Berdasarkan hujah-hujah daripada model LD lanjutan yang 

. mengambilkira kesan tekanan hidrostatik, didapati bahan feroelektrik yang 

mengalami tekanan hidrostatik menunjukkan sifat-sifat eperti bahan feroelektrik 

be bas tekanan tetapi pengurangan magnitud dalam kuantiti terlibat iaitu po lari asi 

equilibrium dan tempoh balikan polarisasi lengkap telah berlaku. Ke impulan itu 

tidak dapat ditentukan secara empirik tetapi telah dibuktikan dengan kukuh 

berdasarkan penaakulan analitik. Dalam bidang penyelidikan ketiga, satu formali me 

tepat telah dibangunkan tentang santaian polarisasi. Kejayaan ini menambahbaik 
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PENDEKA TAN ANALITIK LANDAU-DEVONSHIRE 

TENTANG FENOMENA FEROELEKTRIK PUKAL 

ABSTRAK 

Pada masa kini sifat statik dan dinamik bahan feroelektrik dihuraikan secara 

berangka dengan menggunakan model transisi fasa Landau-Devonshire (LD) atau 

melalui pelbagai rumus empirik yang telah diperolehi melalui penyesuaian kepada 

data eksperimen daripada bahan feroelektrik tertentu seperti barium titanat, triglycine 

sulfat dan plumbum titanat. Oleh yang demikian fenomena feroelektrik seperti arus 

fana tukar arah, tempoh balikan po larisasi lengkap dan santaian po larisasi dihuraikan 

oleh rumus empirik secara asingan tetapi tidak dapat dihuraikan secara bersepadu 

berdasarkan satu teori yang umum. Dalam tesis ini, model analitik peralihan fasa LD 

yang dihasilkan telah menyumbangkan satu huraian analitik tentang sifat statik dan 

dinamik bahan feroelektrik yang tepat. Daripada model analitik LD hubungkaitan 

antara kuantiti yang menyifatkan sifat feroelektrik telah diterbitkan serta dibuktikan 

sebagai sifat universal feroelektrik pukal darjah kedua dan bukan sifat bahan 

feroelektrik tertentu. Berdasarkan hujah-hujah daripada model LD lanjutan yang 

. mengambilkira kesan tekanan hidrostatik, didapati bahan feroelektrik yang 

mengalami tekanan hidrostatik menunjukkan sifat-sifat seperti bahan feroelektrik 

be bas tekanan tetapi pengurangan magnitud dalam kuantiti terlibat iaitu po lari asi 

equilibrium dan tempoh balikan polarisa i lengkap telah berlaku. Ke impulan itu 

tidak dapat ditentukan secara empirik tetapi telah dibuktikan dengan kukuh 

berdasarkan penaakulan analitik. Dalam bidang penyelidikan ketiga satu formali me 

tepat telah dibangunkan tentang santaian polarisa i. Kejayaan ini menambahbaik 
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fahaman masa kini ten tang . antaian polari. asi feroelektrik yang berd~ arkan 

penyele aian per amaan Landau-Khalatnikov secara penghampiran. Oleh itu kajian 

mi menunjukkan bagaimana aru. fana tukar arah yang dijanakan oleh denyutan 

clektrik dapat disediakan mengikut kehendak dengan meramalkan tempoh denyutan 

dan tempoh an tara denyutan. 
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ANALYTICAL LANDAU-DEVONSHIRE APPROACH 

OF BULK FERROELECTRIC PHENOMENA 

ABSTRACT 

Currently static and dynamic behaviour of ferroelectric materials are 

described either numerically using the Landau-Devonshire (LD) model of phase 

transitions or various empirical formulae obtained by fitting experimental data of 

specific ferroelectric substances such as barium titanate, triglycine sulfate and lead 

titanate. As such ferroelectric phenomena such as switching current transients 

switching time and polarization relaxation are described by separate empirical 

formulae but lack a unified description based upon a common theoretical framework. 

The analytical LD model of phase transitions developed in this thesis provides a 

unified and analytical description of a broad range of static and dynamic behavior of 

ferroelectrics exactly. From the analytical LD model the functional relationships 

between quantities that characterize ferroelectric behaviour are theoretically derived 

and proven as universal properties of second order bulk ferroelectrics and not just to 

specific ferroelectric substances. Based upon the extended LD model incorporating 

hydrostatic stress effect, theoretical arguments show that ferroelectric materials 

subjected to hydrostatic stress exhibit similar trends as stress free ferroelectrics 

except for a reduction in the magnitude of the quantities involved such as the 

equilibrium polarization and the switching time for complete polarization reversal. 

This conclusion cannot be established empirically by merely extending formulae 

used for stress free ferroelectrics but is now establi hed rigorously ba ed on 

analytical arguments. For the third area of investigation an exact formulation of 
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ferroelectric polarization relaxation is developed. This aspect of the present work 

improves current understanding of ferroelectric polarization relaxation which are 

ba ed upon the approximate solution of the Landau-Khalatnikov equation. 

Consequently this work shows how switching current transients generated by square 

wave electric pulses can be tailored by predicting the pulse width and inter pulse 

width that are required. 
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CHAPTER 1 

INTRODUCTION 

1.1 Status of research on ferroelectric materials 

The study of ferroelectric behaviour of materials began with the di covery of 

anomalous dielectric properties in Rochelle salt crystals (Valasek, 1921). Vala ek 

named the temperature at which the dielectric constant presented a sharp peak a() the 

Curie temperature. Sawyer and Tower (1930) observed hysteresis loops of electric 

polarization caused by an external electric field in Rochelle salt for the fir t time 

experimentally. Subsequently other fenoelectric materials like potassium dihydrogen 

phosphate (KDP) and barium titanate (Busch and Schener, 1933; Jona and Shirane, 

1962) were discovered. In general theoretical and experimental studie on 

ferroelectrics have been carried out on three type of ferroelectric structures: single 

crystal/ceramic, thin films and superlattices. 

In the case of single crystal/ceramics ferroelectric (Kanzig, 1957), the effect 

on the Curie temperature, dielectric hysteresis loop. , spontaneou, polarization, 

dielectiic susceptibility, switching time and switching current cau. ed by various 

factors such a() the electric field, stres, , strain and doping have been studied. Several 

theoretical approaches uch as the Landau-Devonshire model (Devon hire, 1949; 

1951; 1954), lattice dynamic (Cowley, 1964), mean field (Eline and Zek 1974; 

Kittel, 1974; Lines and Glas., 1977; Gonzalo, 1991; Gonzalo and Jimenez, 2005), 

transverse Ising model (Cottam et al., 1984; Wang et al., 2000) and fir. t principle, 

(Lichtensteigher et al., 2005) have been developed in order to under tand and predict 

the behaviour of fenoelectric .. In particular, the Landau-Devon. hire model ha. been 
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widely used to study the dielectric and dynamic propertie. cau. ed by applied electric 

field, stram (Zembilgotov et al. , 2009) and stre (Wang et al., 2002) acting on 

fenoelectric structures. The Landau-Devonshire model ha. also heen adapted to 

include inhomogeneous effects which play an important role in determining the 

fenoelectric behaviour in thin films and superlattices. Initial tudie on 

understanding fenoelectric behaviour focused on ingle cry tal and ceramic (Bu ch 

and Schener, 1933 ; Jona and Shirane, 1962; Kanzig, 1957). Attention . hifted later to 

the study of fenoelectric behaviour in thin film where the effect of urface 

polarization and thickne s on the dielectric and witching propertie in thin ftlm 

(Cottam et al. , 1984; Kret~chmer and Binder, 1979; Ong et al., 2001 ; Tan et al. , 

2000; 2001 ; Scott et al., 1987; Scott and Pouligny, 1988; Baudry and Toumier, 2005 ; 

Okuyama and Ishibashi, 2005) were inve tigated. 

A more recent major development in ferroelectric re. earch involve. the 

fabrication of uperlattice con i ting of everal layer of different ferroelectric 

compound (I hiba hi and Iwata, 2007; Chew et al. , 2000; 2011 ; Iwata et al. , 2007; 

Ong et al. , 2012a). Many , tudie. have heen conducted to manipulate the propertie. of 

. uperlattice. for po .. ihle technological application. (I. hihru hi and Iwata, 2007). 

Collectively many of the. e studies were , purred hy the de. ire to under. tand the 

underlying phy ic which influence fenoelectric behaviour in different kind of 

fenoelectric tructure (Xu , 1991) like ingle cry tal , thin film , uperlattice and 

nanocrystal .. ConcmTently, the increa. ing application. of fetToelectric matetial in 

diverse application .. uch a. memory device. ( cott, 2000; Dawher et al. 2005) , 

tran ducer (Uchino, 2000) , uper-capacitor (Ya et al. , 2011) and for nergy 

harve. ting have led to a , trong intere. t in tailoring the pi zoelect:ric and . witching 
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propertie. of ferroelectric materials. These fundamental studie. on ferroelectric 

structures complemented by the increasing technological application continue to 

drive the theoretical and experimental research being undertaken on ferroelectrics. 

Recently, experimental reports on the occurrence of homogeneou 

polarization switching (Gaynutdinov et al., 2012; 2013a; 2013b; akajima et al., 

2009) in a copolymer of vinylidene fluoride (VDF) with trifluoroethylene (TrFE) and 

ultrathin barium titanate have been publi hed. The e report provide trong evidence 

that the Landau-Devonshire model is better uited than the Kolgomorov-A vrami­

Ishihashi (KAI) nucleation model of polarization rever. al (lshiha. hi and Takagi, 

1971; Kolmogorov, 1937; A vrami, 1940) for the de. cription of ferroelectric behavior 

in this new type of materials. 

As a prelude to there. earch re. ulu reported in thi. work, a brief , ummary of 

current approache used to de cribe witching behaviour and polarization relaxation 

in bulk ferroelectric i provided. In the first approach, empirical formulae are u ed 

in the de. cription of , witching behaviour in ferroelectric material. The. e empirical 

formulae have been proposed ha. ed upon experimental re, ulu of compound. , uch ru 

barium titanate (Merz, 1954; Wieder, 1956; Pulvari and Kuehler, 1958b), triglycine 

ulfate (Chynoweth, 1960; Wieder, 1964) and lead zirconate-lead titanate olid 

olution (Yu et al., 2001). A variety of phy ical mod 1 as ociated with the empirical 

formulae have been formulated to account for the , witching proce, , that take. place 

during polarization rever. al (M rz, 1954; 1956; Fatuzzo and Merz, 1959; Miller and 

Weinreich, 1960; avage and Miller, 1960; I hiba hi and Takagi, 1971; I hibashi, 

2000; Orihara et al. , 1994). In th model of polruization , witching pr p , ed by Merz 
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undcrstandmg of hulk fcnoclcctrics . Thes prohlcm. are elahorated m the n xt 

section. 

1.2 Problem statements and research objectives 

Cuncntly the quantitie and functional relation that charactetize tatic and dynamic 

bchavtours of bulk fcnoelectric are de cribed by variou empirical formulae (Merz, 

1954, 1956; Wieder, 1956; 1960; 1964; Pulvari and Kuehler, 1958a; 1958b; Fatut:zo 

and Merz, 1959; Chynoweth, 1960; tadl r, 1962; Tura and Mit eriu, 1994). The e 

empirical formulae have been propo. ed ba ed on xperimen carried out n pecific 

suh. tance. like hatium titanate and trig1ycine . ulfate. Ilow ver, the d . cription of 

static and dynamic hehaviour in hulk fenoelectric. i. oft n carried out num rically 

(Ricin chi et al. , 1998) based on the Landau-Devon hire (LD) m del f pha e 

tran ition (Landau, 1937a; 1937b; Dev n hire, 1949; 1951 ; 1954). A uch the fir t 

prohlem posed in thi. work i. to examine wheth r th LD mod 1 can h . o1ved 

exactly and u e it re ults to inve Ligate the c nnecti n betw n th LD m del t th 

tnpirical formulae that ar curr ntly u d t d crib xp rim ntal re ul m 1ving 

hulk t noelectrics. Thi. r . eru·ch i. canied out on . cond ord r hulk f no 1 ctri . 

where the mathematical derivation. involv d in th analytical . lution of th Landau­

Devonshire mod 1 of pha, tran. iti n ru·e . olvabl . Ba. d on thi, analytical approach 

we ru·e inter ted t inve Ligate h w much f th tr nd f bulk f rr that ru· 

repre ent d by empirical formulae can b r c v r d analyti ally. 

Ba. ed on exp tim ntal work r port d hy Haya, hi (1971) on nung th 

ff ct of hydro tatic tre n th wit hing b haviour f triglycinc ulfatc ( )w 

ru·e motivated to , tudy wh th r , u h tr nd. an h d . crih d th or ti ally. In hi. 
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experiment Hayashi has shown that the maximum . witching current and reciprocal 

switching ttme of bulk TGS i de cribed by empirical formulae imilar to to the ca e 

of hruium titanate (Merz, 1954). Therefore in the second problem, we attempt to 

study analytically how the application of hydrostatic . tre. . changes the . tatic and 

dynamic behaviour of second order bulk ferroelectrics. 

For the third problem, the hack-switching current cau. ed by polarization 

relaxation is revisited to study the full impact of the nonlinear cubic polarization term 

P 3
• For this problem we are intere ted to extend our exact re ults beyond the 

linearization results currently used. From a broader per. pective, thi. work enable. u. 

to examine the ability of the exact formulae to generate . witching current tran. ienu 

analytically and compare the theoretical trend obtained to the re ult that are 

displayed in experimental . witching cunent tran. ient~ . 

The research reported in thi the is i carried out in order to re olve the 

problem that have been identified pertaining to the lack of complete under tanding 

on the tatic and dynamic trend of bulk ferroelectric . The re earch objective of 

this the. i. are a. follow. ; 

a. Clarify the relation hip between the Landau-Devon hire (LD) model 

of pha e tran iti n for econd order bulk ferr electric with the 

empirical fmmulae that are still u. ed to interpret dynamic h haviour 

in ferroelectric material 

6 



h. Study wl th r til' lr nd.' · nd fun 'ltonal r lations p rs1s1 m hulk 

{(no( lc ·tn ·s that m· ' suhje ' I d to hydroslali siJ ss 

c. ( 'ompm· th a 'I d scnpt1on of th ha ·kswtt hin un nt a )ainsl 

til D hy lik formulation (Landau and Khalalniko , 1965 Hlin and 

Z ks , 1974 Hoko and Y , 20 12) that is ' LilT ntly us d. 

I. 3 Research 1nethodology 

In ord 'r to study th r lationshtp h tw n th mptri al fon11u I· of f ' ITO '1 · tri ' 

stati' and dynamic hcha 101 wtth th analyti ·al formulations obtain d fn m th 

Landau Devonslur mod l of phas' transi tion, th Landau-I onshir mod '1 is 

con rted into a . ol abl" form . Two k y math mati ·al pro dur s ar' appli ' d. Th 

di '1 tri 'quation of stat' is sol d ' a ·tly for quilihrium polari~:ati m whi h is 

central to th ' study of stali ' b ha tor of bulk f tTO l ' ' lri 'S. ' ub JU ' nlly th 

Landau-Khalatniko quation is sol d ' a ·tly for swil 'hing tim under diff r nt 

'1' ' lri ri ld and t 'mp ratur . Through ·ompul 'llions using th' a ' I fonnula for 

swi t ·hing tim , w' an study th d nami h ha ior of f"rro l tri mat riaL' und r 

diff'r nt ' l 'Clri fi ' Ids and t mp 'ratur 'S . 

Th n th work is 1 nd d 1 ) ·tud th 'ff 1 of h droslali s tr s,' on th 

slat.i and dynami ' h 'ha ior or hulk r ITO 1 ' lri s lh or li all . I ~ rom this a. p' t of 

ar ' h work dHf r ' 11 s and similm·iti 'S in r 'ITO ' l'ctri ' h 'ha iour h twe 'n 

mat rials und r str ss ·md sir ss fr'' lll ' \1 rials ·u· an·1l 1. d and dis ·ussed . 
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With regards to the hack-switching problem in polarization relaxation of hulk 

rerroelectrics, this work highlight the difference between the trend obtained with 

the exact formulae for hack-switching cunent from the linearized approximate 

formulae in usc currently. Then we , how the ability of the exact formulae to 

reproduce trend that have been reported in expetimental witching current 

transients. 

Throughout this the i computation for the witching time, reciprocal 

switching time, product rule and equiliblium p larization based n the analytical 

formulae derived in this work are cruTied out u, ing the programming language 

MAPLb (Betounes and Redfern, 2002). Ilowev r, plot for the corre. p nding graph. 

of each quantity are then implemented u ing Micro oft X L (G ttflied, 2003). 

1.4 Outline of each chapter 

In Chapter One th re eru·ch bj ctive f thi the i and the m th d 1 gy u d are 

de. crihed. Thi. i. followed in hapt r wo by a hrief , urv y of xp rim ntal and 

th oretical , tudie. on prop rti , of bulk feno 1 cui mat tial that ha. h n atTied 

out ov r the pa. t fifty yeru·,. In pru·ticulru·, th , urvey ncompa., , the following 

areas. They includ exp rim ntal mea ur m n f witching cun nt mpirical 

formula t de crib witching b ha i ur, nucleati f domain wall m ti n, 

order-di. ord r and di. pla iv ferro 1 ctric., Landau-D v n. hir mod 1 f 

ferroelectric pha. u·an, ition, , oft mod mod 1 of fen lectri pha. tran. iti n and 

techn 1 gical applicati n f f rr electric tru tur . In hapt r Thr analyti al 

formula f , wit hing tim , wit hing current and equilibrium p larizati n ru· 



derived. The. e formulae are compared with the corresponding empirical formulae 

reported from experimental work. Trends on tatic and dynamic behaviour of bulk 

ferroelectric. under different temperature and electric field are also di. cu .. ed. Then 

m Chapter Four the Landau-Devon. hire model i. extended by the inclu. ion of 

hydrostatic tress effect. The importance of the re ults between ferroelectrics 

experiencing hydrostatic stre with tre s free ferroelectrics are di cu ed. In 

Chapter Five, the full impact of the nonlinear polarization term to ferroelectric 

polarization relaxation i studied analytically. The exact re ults derived are compared 

with the results obtained from the linearized approache currently reported in the 

literature. The di. cussion in Chapter Five reexamine .. witching current tran. ient 

caused by unipolar and bipolar . quare wave electric fields analytically. In Chapter 

Six conclu ions obtained in thi tudy together with the limitation of the analytical 

Landau-Devon hire model of ferroelectric pha e tran ition are di cu ed. Future 

extensions which may be inve. tigated are also highlighted. 
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CHAPTER2 

SURVEY OF FERROELECTRIC STUDIES 

2.1 Introduction 

In this chapter a brief review of theoretical tudie i di cus ed e pecially tho e 

aspects which can be explained by the Landau-Devon hire model. A uch thi 

review i. not exhaustive but in. tead will mainly focu. and highlight tho. e areru of 

interest to the research carried out in thi work. Tho e area of intere t include the 

phenomenological Landau-Devonshire model (Landau, 1937a; 1937b; Devon hire, 

1949; 1951; 1954; Gonzalo, 2005), soft mode theory of cry. tal , tability (Cochran, 

1959; 1960; Woods et al., 1959) and empirical models of polarization , witching. The 

review of the phenomenological Landau-Devon hire model (Eline and Zek , 1974; 

Fatuzzo and Merz, 1967; Mitsui et al., 1976) i important a it provide the 

theoretical basis for analytical , olution (Loh et al., 2013a; 2013b; 2014; L hiba. hi 

1992) of the Landau-Devon hire model of phase tran ition of bulk ferroelectric that 

is can·ied out in Chapter Three and hapter Four. Then the main idea of the oft 

mode theory (Cochran, 1959; 1960; Wood. et al. , 1959) are outlined to , how the 

microscopic picture of pha, e tran. ition in displacive ferroelectric,. Thi. i. followed 

by a review of variou. empirical modeL (Tura and Mito. eriu , 1994; Merz, 1954; 

1956; Wieder, 1956; 1960; 1964; Pulvari and Kuebler, 1958a; 195 b; Fatuzzo and 

Merz, 1959; Chynoweth 1960; tadler, 1962) of p larization witching uch a the 

Kolmogorov-Avrami-Lhiba. hi model (Ishiba. hi and Takagi, 1971) that u. e. cry. tal 

growth idea. (Kolmogorov, 1937; Avrami, 1939; 1940; 1941) to account for 

polarization witching. In the final ecti n, techn 1 gical applicati n that make u e 

of the propertie. of ferroelectric. (Dawber et al., 2005 ; Uchino, 2000; Yao et al. , 
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2011; Song, 2005; Schubring et al., 1967; Rohrer, 1973 ; akagawa, 1979; Payne, 

1989; Dey et al., 1988; Volz et al. , 1984; Hippel , 1950; Viola et al., 2012; Wang and 

Song, 2006; Qin et al., 2008; Mi. tral et al. , 2010) are reviewed in order to 

understand how the. e properties are exploited for indu. trial and commercial 

purpose . 

2.2 Ferroelectric property of bulk materials 

2.2.1 Characteristics of bulk ferroelectrics 

Crystals can be classified according to point group ymmetry (Kittel, 1974; Nye, 

1957). Out of the 32 classes of point group symmetry, cry, tal, belonging to 10 of 

these point groups can be pyroelectric. In pyroelectric cry, tal. , a finite , pontaneou. 

polarization i present in the cry tal in the ab ence of an electric field . When 

temperature change occurs the pyroelecttic cry tal generate current cau ed by 

changes in polarization. In contra. t, for ordinary cry. tal, polarization i. induced 

when an electric field i applied . However, the polarization in the cry tal reduce to 

zero when the electTic field i removed. 

Fenoelectric. form a , ubcla. , of cry. tal, within the clru , of pyroelectric .. 

FerroelectTic po e a tran ition temperature Tc at which the ttuctural pha e of the 

cry. tal changes between the paraelectric and ferroelectric phru e. of the cry. tal. At 

temperature above the tt·an ition temperature T > Tc, the cry tal i in the 

paraelecttic phase where iu , pontaneou. p larizati n i. zero. C nver. ely, at 

temperature below the tran iti n temperature T < Tc the cry tal xi t in th 

ferroelecuic pha, with a non zero , pontaneou. p lruization. FetTO lectric. have a 

unique pr petty whereby the polarity of it , pontaneou, p lruization can b rever. ed 

11 



hy the application of an electric field in the opposite direction (Line. and Gla<;., 

1977 FatuLLO and Merz, 1967; Mit ui et al., 1976). 

One of the possible ong1n. of non zero . pontaneou. polarization in the 

ferroelectric phase of crystal i the tructural atomic di placemen of charged ion 

that occur as the temperature falL below the tran. ition temperature Tc . A cry. tal 

consist of Bravai unit cell where po itvely and negatively charged ion are 

arranged regularly in lattices. In the paraelectric phase, the centre of all the po itively 

charged ions coincides with the centre of the negatively charged ion .. o the cry. tal 

doe not have a pontaneou polarization. However in the ferroelectric phase where 

temperatures fall below the tran. ition temperature T c, the unit cell undergoe. 

tructural phase change . Thi re ult in change of the lattice pacing between 

po itively charged ion and negatively charged i n . A a re ult, the f rmation of 

electric dipoles within each unit cell cau. e. non zero . p ntaneou. p lruization to 

ari. e in cry. taL in the fenoelect:ric pha. e. 

2.2.2 Displacive and order-disorder ferroelectrics 

Ferroelectric cry. taL can he clru . ifi d into two main clru . e. either di. placive or 

order-di order ferr elecuic . In the di placive cia f f IT lectric , a wh ub-

lattice f ion of one type f charge i di placed r lative t an ther ub-lattic f i n 

of the opposit charge during th t:ran. iti n to th f IT 1 ct:Iic pha. . Di. placiv 

ferroel ctric can be f und am ng i nic cry tal with th per v kit and ilmenite 

. tructure. . . ing bru·ium titanate a. an exampl w illu. trat th producti n of 

pontan ou p Iru·ization by a typical di placiv f IT 1 ctric du t th tructural 

pha chang perienc d in the fen lectric ph e h wn by Fig. 2.1. In th 

12 



paraelectric phase barium titanate ha. a cubic structure. Ba2
+ ions are located in the 

cube corners. 0 2
- ions are located at the face centre . r+ ion are located at the body 

centre. 

(a) (b) 

Figure 2.1: (a) Positions of Ba2
+, Ti4

+, 0 2
- ion. in the unit cell of barium titanate in 

the paraelectric phase (b) Structural dL tortion of unit cell of barium titanate in 
ferroelectric phase causing non zero pontaneou polarization (adapted from Kittel, 
1974). 

Below the transition temperature, the Ba2+ and r+ ion. are di. placed upward. 

slightly relative to the 0 2
- ion .. Thi. .light deformation of the relative po. ition. 

between the positively charged ions and the negatively charged ion. in the unit cell 

cau e a dipole moment to form. The combined effect of the dipole moment in all 

unit cell of the cry tal lead to the formation of n n-zer pontaneou polarization 

for barium titanate in the fenoelectric tetragonal pha. e. eut:ron diffraction 

mea()uremenu (Frazer et al., 1955) on . ingle cry. tal barium titanat confirmed the 

occurrence of the di placive m chani m de cribed above as the cau e f r th 

formation of non-zero . pontaneou. polarization in the fenoelectric tetragonal phru e. 

13 
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1 

(b) 

Figure 2.2: Cry tal tructure of pota ium dihydrogen ph phate (KDP) i hown in 
(a) (adapted from We t, 1930). Po ition of pho ph ru and oxygen atom in P04 
tetrahedron are hown in (b) (adapted from Mitsui et al. , 1976). 

In the order-di. order cia .. of fenoelectric., it i. th r arrangement of proton. 

asymmetrically along the hydrogen bond that cau non-zer pentane u 

polarization to occur in th ferroelectric phase of the cry tal. Example f rder-

di. order ferroelectric cry. taL ar p ta .. ium dihydrog n pho. phate (KDP) and 
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triglycine sulfate (TGS). We u, e KDP to explain the mechani. m by which non zero 

spontaneous polarization is created in the ferroelectric pha e with the aid of Fig. 2.2. 

The KDP crystal comprises two interpenetrating , ublattice. of P04 tetrahedrons and 

K+ ton, The p5+ and K+ ion. are ananged alternately in different layer. ru , hown in 

Fig. 2.2(a), perpendicular to the polar c-axis of KDP. In the paraelectric pha e, the 

two protons have equal probability of being located around the two upper oxygen 

tons labeled (3) and (4) or the lower oxygen ion. labeled (1) and (2) of the P04 

tetrahedrons as hown in Fig. 2.2(b) so pontaneou polarization i zero. As 

temperature falls below the transition temperature Tc, the two proton can be found 

closer to the lower oxygen ions labeled (1) and (2) a. , hown in Fig. 2.2(b) or the 

upper oxygen ions labeled (3) and (4) of the P04 tetrahedrons a, , hown in Fig. 

2.2(b). For the first ca e, this cau e the p5+ ion to hift upward lightly and the K+ 

ion to shift slightly downward . A a re ult a dipole moment giving ri e to non zero 

spontaneous polarization along the c-axi, i formed. Alternatively in the second cru e, 

the two proton pend more time around the upper oxygen ion to cau e pontaneou 

polarization to act in the oppo ite direction to the c-axi . Neutron diffraction 

experiment , bowed the di, tribution of the proton, about the centre of the hydrogen 

bond (0-H-0) in the paraelectric pha, e (Bacon and Pea, e, 1955). Below the 

transition temperature Tc = 123°K, the proton, were di, tributed a, ymmetrically either 

nearer the upper oxygen ion or the lower oxygen i n. The mea urement of the 

relative p ition of the prot n were in agreement with the prediction f later' 

( 1941) theory of order -di, order ferroelectric, . 
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2.3 Thermodynamic theory of phase transition 

This section provide. a . ummary of the main concepu pe11aining to hrenfe. L 

criterion on the order of phase tran. ition and thermodynamic function. that are u. ed 

to characterize the state of bulk fenoelectrics . 

2.3.1 Ehrenfest criterion of first or second order ferroelectric phase transition 

Thermodynamics can be used to de cribe the t:ructural pha e tran iti n f a bulk 

ferroelectric from the paraelectric t the ferroelectric pha e. When the cry tal reache 

its t:ran. ition temperature (Ti. za, 1951 ; Callen, 1960; Mit ui et al., 1976), the cry. tal 

undergoe. fir. t or second order . t:ructural pha. e tran. ition depending on how 

the1modynamic changes occur ace rding to the hrenfe t criterion. hrenfe t 

criterion tate that for an n-th order phase tran ilion to ccur the (n-1)-th d rivative 

of the Gibb. free energy mu. t be continuou. while the n-th derivativ of the Gibb. 

free energy i di continuou at the tran ition temperature ( allen, 1960; Mit ui et al. , 

1976). When the temperature of a cry tal i abov the t:ran ilion temp ratur the 

cry. tal exi. 11 in the parael ctric pha. . For cry. tal. which undergo fir. t order 

ferroelectric , t:ructural pha. e tran. ilion, the Gibb. fre en rgy varie. continuou. ly a. 

the temperatur approache. the t:ran. ition t mp rature but th ent:r py volume and 

polarization change abruptly (Mit ui et al., 1976). In c ntra t when cry tal und rg 

ec nd order ferr lectric tructural pha e t:ran iti n th n th entr py v lume and 

p larization chang continuou. ly at the tran. ition t mp rature but th ir , pecific h at, 

thermal dilatational co ffici nt and pyro 1 ctric co ffici nt chang abruptly (Mit ui 

et al. 1976). 
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2.3.2 Thermodynamic functions 

The basic changes in the propertie of ferroelectric material are governed by the frr t 

two laws of thermodynamics (Devon. hire, 1954; Line. and Glass, 1977; Miu ui et 

al , 1976). Since changes in polarization, strain and entropy in ferroelectric . tructure. 

are reversible proces e , the change in the internal energy U can be repre ented by 

the following equation, 

6 ' 3 
dU = TdS + L,X;dx; + L,E; d~ 

i=l t=l 
(2.1) 

where the variable involved are temperature T, entropy S, tre X, train x', electric 

field E and polarization P. From Eq. (2.1) it i then po ible to determine the 

temperature, stress and electric field of the ferroelectric by partial derivative ru 

defined below (Mitsui et al., 1976), 

T _(au J (2.2a) 
as x'.P 

X ·=-(au J 
t ax\ ,P 

(2.2b) 

(au) Et= --
a Pi S,x' 

(2.2c) 

1nce the ferroelectric . tate of a material can b . pecified in term. of 

independent variables cho. en from the following pair. of variable. (T, ), (X, x') and 

(E, P) thi allow the ferroelectric change in the material to b de cribed by any ne 

of the even therm dynamic functi n (Devon hir , 1954) tated bel w, 
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Helmholtz free energy F = U-TS (2.3a) 

Enthalpy H = U - X ; x';- E , P, (2.3b) 

Elastic enthalpy H 1 = U- X ;x '; (2.3c) 

Electric enthalpy H 2=U -E;P; (2.3d) 

Gibbs free energy G = F-X ;x';-E,P ; (2.3e) 

Ela<;tic Gibbs function Gl =F-X;x'; (2.3f) 

Electric Gibbs function G 2=F-E;P ; (2.3g) 

The importance and utility of these seven thermodynamic function. in the 

description of ferroelectric behaviour ha been hown by Eq. (2.2a), Eq. (2.2b) and 

Eq. (2 .2c) ; by taking partial derivative. of any one of these seven thermodynamic 

functions, change. to quantities involved in ferroelectric behaviour of a material can 

be determined. A another example it will be hown in Chapter F ur, that the 

equation of tate of a bulk ferroelect.tic ubjected to hydro tatic tre and an electric 

field is obtained from the Gibb. free energy represented by Eq. (2 .3e). 

2.4 Landau-Devonshire formulation of phase transitions 

The Landau theory (Landau , 1937a; 1937b; Ginzburg, 1961 ; Gufan and Torga. hev, 

1980) ha. been widely applied to de, cribe pha, e tran, ition. occuning in different 

y tern uch as ferroelectric (Devon hire, 1949· 1951 ; 1954), ferromagne 

(Dimmock, 1963), uperconductor (Ginzburg and Landau, 1950), f rro la tic 

(Toledano and Toledano, 1987) and multiferroic .. The review pre. ent d in thi. 

section will focu s on the role of the Landau theory in the characterizati n of bulk 

ferroelectric .. Ferroelectric , tructure. , uch ru bulk f noel ctric. can exi. t in either 

paraelectlic or fen electric pha e dep nding on wh ther it temperatur T i greater 
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or less than its tJ ansition temperature 7~. At each phase the properties of the bulk 

ferroelectric can he determined from the Gihhs free n rgy d n. ity. Landau's ( 1937 a; 

1937b) original fonnulat10n of phase transition was later extended by Devon hire 

(1949, 1951, 1954) to describe tructural phase transition o bulk barium titanate 

from paraelectric cubic to ferroelectric tetragonal pha. under . t.re.. free and L ro 

electric field. The Gihh. free energy of barium titanate a member of th p rov. kite 

family which is a multi-axial fenoelectric can be repre ented a. a ·ummation 

(Devonshire 1949; 1951 ; 1954) in powers of polarization, 

+ ~2 (pf P~ + P~ Pi+ Pi pf}+ a~11 (p~ + P~ + P~ ) 

+ a~12 [Pi (P~ + Pi)+ Pi (Pf+ Pi)+ pj (pf+ P~)] 

(2.4) 

The di 1 ct.ric . tiffn s. on. tant a 1 1. temp ratur d p nd nt and r pre. nt d 

by 

(2.5) 

wh r a i. th inv r. e uri con. tant and T c i. the tran. ilion t mp ratur hetw en 

the paraele tri and f rroelectric ph a . Purth r di cu ion on th rol f T c i 

provid d in hapt r Three. Th high r ord r dicl ctric . tiffn .. on. tanu writt n in 

Voigt notation ar a 11 , a 12 , a 111 , a 112 , and a 121 . 
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Pi (i = 1, 2, 3) repre ent the polarization which act along the x- , y- and z-

axes respectively. In this formula the polarization Pi. cho, en a, the order parameter 

of the Gibbs free energy den, ity. The Gibb, free energy hru to represent barium 

titanate in both polar and non polar phases. ince barium titanate ha a 

centrosymmetric non polar pha, e, the coefficient() a. sociated with odd power 

polarization terms mu, t be zero (Line, and Glas,, 1977). The form of the Gibb. free 

energy represented by Eq. (2.4) i ufficient to tudy the behaviour of bulk 

ferroelectrics undergoing first or second order pha e tran ition. In Eq. (2.4) term up 

to the 4th power of polarization P are retained when describing second order pha. e 

tran ition (Landau 1937a; 1937b; Wieder 1955; Fatuzzo and Merz, 1967; Toledano 

and Toledano, 1987; Ricin chi et al., 1998 ; Chandra and Littlewood, 2007). 

However, for the description of fir. t order pha()e tran. ition in bulk ferroelectric. 

(Devonshire, 1949; 1951; 1954; Merz, 1953; Toledano and Toledano, 1987; Chandra 

and Littlewood, 2007), term up to the 6th order of Pare required. 

The conditions for the stability of a ferroelectric pha. e of the bulk 

ferroelectric are the Gibb free energy mu t be minimized with re pect to 

polarization, 

(2.6) 

and the Jacobean f the Gibb free energy mu t be po itive definite, 

(2.7) 
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Eq. (2.6) is also known a. the dielectric equation of state. The ferroelectric pha. e at 

which these two condition are ati fied i the table pha e of the bulk ferroelectric 

with the minimum Gihh. free energy G rnin . 

For barium titanate in single cry. tal or bulk form, the four different , eu of 

solution of the dielectric equation of , tate given by Eq. (2.6) completely de. crihe, the 

following structural phase tran ition between the cubic pha e to the tetragonal, 

orthorhombic or rhombohedral ferroelectric phases. 

In the cubic pha e, the polarization of the bulk ferroelectric i , 

(2.8) 

with the Gibb free energy function 

G=O (2.9) 

For bulk ferroelectric in the tetragonal pha e there i one polar axi ( cho en to lie 

along the z-axi, ). The , pontaneou, polarization of the hulk ferroelectric act along 

the polar axi with a magnitude given by, 

(2.10) 

The Gibbs free energy of the bulk fenoelectric in the tetragonal pha, e under zero 

electric field and stre., free condition i. , 

(2.11) 
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In the orthorhombic pha e, the polarization component along the y ax1 

~ero ( P2 = 0 ). Then the . pontaneou. polarization of the hulk ferroelectric acu in a 

direction dtagonally aero a urface of the bulk ferroelectric with componen 

parallel to the two polar axe (x and ~ axe ) re pectively. The magnitude of each of 

the polarization component i. given hy, 

(2.12) 

The Gibb free energy of the bulk ferroelectric in the orthorhombic phase i gtven 

hy, 

(2.13) 

In the rhombohedral pha e the pontaneou polarization act along the direction of 

the body diagonal with each of it three component acting along the three polar axe 

(x, y and z). The magnitude of each polarization component i. given hy, 

-(au+ 2a12)± ~(a11+2a12f- 4al (au I+ 6au~ + a123) 
= 

2(aul + 6a112 + aL3) 
(2.14) 

The Gibb free energy f the bulk ferr electric in the rh mb hedral pha e i given by 

(2.15) 
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In order to inve. tigate the . tatic and dynamic propertie. of multi-axial bulk 

fc1 roelectrics under the effect of external . tress X, the Gibbs free energy G x i. 

modified a<; follows (Jona and Shirane, 1962; Amin et al., 1985; Haun et al., 1987) 

where G is the Gibb free energy repre ented by Eq. (2.4) in a tre free bulk 

ferroelectric. Ge1 is the elastic energy due to . tress and Gesr i. the electro. triction 

energy due to coupling between polarization and . tre. s. The ela. tic energy Gez due 

to stress i. given by, 

- 1 ( 2 2 2) G e/ - -
2 

S11 X 1 + X 2 + X 3 

(2.17) 

where Sij are the elastic compliance con tant mea ured at con tant polarizati n and 

X ; (i = 1, .. ,6) are the stre. s component. written in Voigt notation. X 1 , X 2 , X 3 are 

the normal tre component acting along the x-, - and z- axe re pectively wherea 

X 4 , X 5 , X 6 are the . hear . tre .. components. 

The electro. triction energy Gesr i. given by, 

G esr = - Q 11 (x 1 P~ + X 2 P~ + X 3 P~) 

(2.1 ) 

where Q
11

, Q
12 

and Q44 are the elect:r trictive coefficients. 
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By using Gx in the Landau theory of pha e tran itions, the electric field E, 

. train x' and entropy S are conjugate variables to the variable. polarization P, stres. 

X and temperature Trespectively. 

The electric field E;, strain x'u and entropy S of the hulk ferroelectric are 

derived from the Gibb free energy Gx a fir t order partial derivative (Mit ui et al. , 

1976; Amin et al., 1985 ; Haun et al. , 1987), 

(dGx l 
E;= dP; ,X 

(2.19) 

(dGx l 
x'u = a X ij ,E 

(2.20) 

S =(dGx) 
dT X ,E (2.21) 

Then the dielectric tiffne au, elastic compliance su and piezoelectric coefficient 

bu are obtained as second order partial derivative. of the Gihh. free energy Gx 

according to the following equation. (Miu ui et al. , 1976; Amin et al. , 1985 ; Haun et 

al., 1987), 

(2.22) 

(2.23) 

(2.24) 
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