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ABSTRACT 

Psychrophiles are organisms that grow rapidly below 20°C. In order to overcome 

the inherent challenges in cold, cold-active enzymes with high catalytic efficiency at low 

temperature and heat-labile properties were evolved as one of their adaptive strategies. In 

this study, triose phosphate isomerase {TIM) of psychrophilic bacterium n9, which was 

isolated from sea ice of Antarctic at Casey station, was overexpressed in Escherichia coli 

BL21 (DE3) host under IPTG induction and purified to homogeneity for subsequent 

biochemical characterization. TIM is a dimeric enzyme that consists of two identical 

subunits, each containing about 250 residues. It catalyzes the interconversion of 

dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in glycolysis. n9 TIM 

activities at temperatures range from 20 to 45°C were studied. The optimum temperature 

for n9 TIM activity was found to be in the range of 35 to 40°C. While, thermostability 

study showed n9 TIM was quite thermostable. It remained stable at 40°C after 2 hours 

incubation and was gradually inactivated at 50°C. These suggest n9 TIM might not 

possess psychrophilic features. Other than that, comparative protein sequence analysis 

that was performed on TIM sequences from psychrophilic, mesophilic, thermophilic and 

hyperthermophilic bacteria revealed an amino acid property groups preference in 

psychrophilic and mesophilic TIM as compared to thermophilic and hyperthermophilic 

TIM. The deeper understanding of strategies evolved by TIM enzymes that adapted to 

varied environments provides contributive information for further studies on those 

valuable cold-adapted enzymes. 
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ABSTRAK 

Psikrofil adalah organisma yang tumbuh pesat di bawah suhu 20°C. Untuk 

mengatasi cabaran semula jadi dalam kesejukan, enzim "cold-active" dengan kecekapan 

pemangkinan yang tinggi pada suhu yang rendah dan sifat labil terhadap kepanasan telah 

berkembang sebagai salah satu strategi adaptif mereka. Dalam penyelidikan ini, "triose 

phosphate isomerase" (TIM) dari Antarctic psikrofilik bakteria rc9 yang diasingkan dari 

laut ais di Stesen Casey telah dihasilkan dalam Escherichia coli BL21 (DE3) di bawah 

rangsangan IPTG dan ditulenkan untuk kajian biokimia yang kemudian. TIM adalah 

enzim dimer yang terdiri daripada dua subunit identiti yang mempunyai 250 "residue" 

masing-masing. Ia pemangkin penukaran antara dihydroxyaceton fosfat dan D­

glycealdehyde-3-fosfat pada glikolisis. Aktiviti rc9 TIM pada suhu 20 hingga 45°C telah 

dikaji. Suhu optimum untuk aktiviti rc9 TIM didapati pada suhu 35 hinggan 40°C. 

Sementara itu, kajian thermostabiliti menunjukkan n9 TIM agak thermost~bil. Ia kekal 

stabil pada suhu 40°C selepas eraman yang selama 2 jam dan ia di-nyahaktifkan secara 

perlahan pada suhu 50°C. Ini menunjukkan kemungkinan n9 TIM tidak mempunyai sifat 

psikrofilik. Selain itu, analisis perbezaan rangkaian protein yang dilakukan ke atas 

rangkaian TIM daripada psikrofilik, mesofilik, thermofilik dan hyperthermofilik 

menemui keutamaan kumpulan amino acid dalam TIM psikrofilik dan mesofilik 

berbanding dengan TIM thermofilik dan hyperthermofilik. Pengetahuan tentang strategi 

yang dikembangkan oleh enzim TIM yang dapat menyesuaikan diri dengan persekitaran 

yang berbeza harus didalami bagi menyediakan maklumat yang menyumbang kepada 

kajian lanjutan ke atas enzim "cold-adapted''. 

xu 



CHAPTER! 

INTRODUCTION 

Earth biosphere is the part of the earth, which includes atmosphere, hydrosphere 

and lithosphere, in which living organism are found, and with which they interact to form 

the global ecosystem (Park, 2001). Originally, the concept was applied just to the earth 

surface where obviously occupied by plants and animals. Therefore, biosphere was 

thought as a very thin layer around the earth. However, the actual thickness of the 

biosphere on earth became hard to measure as more organisms live at unexplored 

extreme environment were discovered. These organisms, known as extremophiles, are 

organisms that not only survive but actually require the specific extreme environmental 

condition that beyond the normal acceptable range, which are too harsh for normal life to 

exist, for their survival and growth (Satyanarayana eta!., 2005). 

Extremophiles are classified according to its environmental niche difference. 

Psychrophiles, one type of extremophiles, are organisms that grow rapidly at about 15°C 

or lower, having a maximal temperature for growth at about 20°C, and a minimal 

temperature for growth at ooc or below (Morita, 1975). They are found at permanently 

cold terrestrial environment as well as at aquatic niche, snow, glacier, sea ice, and other 

cold ecosystems, which in facts occupied more than three-quarters of the earth surface. 

Cold environments restrict growth of organisms. Hence, the ability of these organisms to 

survive and proliferate at low temperatures indicates a vast array of cold adaptations of 

them, which enables their colonization in these extreme environments. 
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Low temperatures slow down biochemical reaction rates catalyzed by enzymes, 

thus, it strongly inhibits the life at cold environments. To counteract the negative effect of 

cold on the activity of an enzyme, some enzymes of psychrophiles have evolved 

sufficient activities and efficiencies to support the growth of cold-tolerant organisms at 

low temperatures. Those enzymes are known as psychrophilic enzymes or cold-active 

enzymes, which are enzymes that have high catalytic efficiency at low temperatures, and 

are inactivated at moderate temperature (D'Amico et al., 2006, Gerday eta!., 2000). 

In recent years, increased attention has been focused on psychrophilic enzymes. 

These enzymes are suggested to display high catalytic activities at low temperatures by 

having improved flexibility at active site and more rigidity at other protein regions that 

are not involved in the catalysis, as compared to their mesophilic counterparts. Due to 

these attractive properties, psychrophilic enzymes offer considerable potential for 

fundamental research and biotechnological application. Their application in the detergent 

and food industries, and for the production of fine chemicals are significant ( Gerday et 

a!., 2000). Industrial application of cold-active enzymes has greatly increased because of 

their active catalytic activity at extreme conditions. Besides that, they have energy saving 

advantage and consecutive economic benefits originate from their specific properties 

(Hoyoux eta!., 2004). 

Triose phosphate isomerase (TIM) is a dimeric enzyme formed by two identical 

subunits each consisting of about 250 residues. It is a central enzyme in the glycolytic 

pathway. Beginning from glucose, glycolytic pathway is catalyzed by the sequential 
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action of ten enzymes, in which, TIM enzyme catalyzes the interconversion of 

dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate (Figure 1 ). 

Glycolysis is one of the most universal metabolic pathways found in all living 

organisms. It is the initial process of many carbohydrate catabolism pathways, which 

include the most usual glucose metabolism and also metabolism of fructose, galactose, 

and other carbohydrates. It mainly serves two principal functions, which are generating 

energy and providing intermediates for other metabolic pathways. Glycolysis provides 

majority of the organism's energy requirement. Hence, TIM is an important enzyme in 

the energy-harvesting reaction which sustains the life of organism. 

TIM enzyme has a tertiary a/~ barrel structure. Each TIM monomer structure has 

eight a-helices alternating with eight ~-strands along the polypeptide chain. The ~a units 

fold up in a regular way, such that the ~-strands are hydrogen-bonded to each other and 

form an interior, solvent-excluded, eight-stranded ~-barrel, which surrounded by the eight 

, a-helices on the outside (Alvarez et al., 1998, Maes et al., 1999). 

In this research, TIM enzyme of bacterium n9, an Antarctic psychrophile that was 

isolated from sea ice of Antarctic at Casey Station, was purified and characterized. The 

gene from the psychrophilic bacterium has been isolated and cloned into a pET14b 

plasmid. Overexpression and purification of TIM were carried out. Enzymatic assays 

were performed to analyze its biochemical characteristics. This study served to gather 

information on the enzyme produced by a psychrophilic bacterium. The understanding of 
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the properties of enzyme from psychrophilic bacterium is commonly used to gain further 

insights of the adaptive strategies of cold-active enzymes. By having a deeper 

understanding of their evolved strategies in cold-adaptation, their application in industrial 

and biotechnological uses can be enhanced. 
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CHAPTER2 

OBJECTIVES OF RESEARCH 

The main objectives of this study include: 

1. To overexpress TIM enzyme of bacterium n9 as His-tag fusion protein in 

Escherichia coli BL21 (DE 3). 

2. To purify TIM enzyme of bacterium n9 to homogeneity. 

3. To determine the optimum temperature for n9 TIM activity. 

4. To study the thermal stability of n9 TIM at different temperatures. 
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CHAPTER3 

LITERATURE REVIEW 

3.1 Life in the cold 

Life under low temperatures was reported as early as at 1887 by Forster, who 

isolated microorganisms from fish that could grow well at ooc (Zecchinon et al., 2001). 

Since then, numerous organisms particularly prokaryote but also eukaryote, have been 

found successfully colonized permanently cold environments. 

Temperature limits the growth of organism. Living at cold environments requires 

organisms to overcome the barriers, which include: reduced enzyme activity; decreased 

membrane fluidity; altered transport of nutrients and waste products; decreased rates of 

transcription, translation and cell division; protein cold-denaturation; inappropriate 

protein folding; and intracellular ice formation, that inherent to low temperatures 

(D'Amico et al., 2006). Hence, thrives of psychrophilic organisms at cold environments 

somehow imply the evolution of these organisms at the level of their membranes, 

constitutive proteins and enzymes, which enables them to adapt to low temperatures. 

In order to sustain the growth in these extreme conditions, psychrophiles have 

been found to develop various adaptive strategies from the molecular level to that of the 

whole organism. Those adaptations include: the regulation of membrane fluidity; the 

synthesis of specialized molecules known as cold-shock proteins, cryoprotectors and 

antifreeze molecules; the regulation of ion channels permeability; microtubules 
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polymerization, seasonal dormancy, and importantly, the modification of enzyme kinetics 

(Georlette eta!., 2004). 

3.2 Characteristics of cold-active enzymes 

One of the main challenge to survive at low temperature is the exponentially 

decrease in the rate of biochemical reactions with any decrease in temperature. Therefore, 

to make the organism compatible with life in cold, enzymes that capable of catalyze the 

biochemical reactions occurring within an organism are an essential target for the cold 

adaptation. Synthesis of cold-active enzymes was found to be one of the strategies 

developed by psychrophilic organisms. Those psychrophilic enzymes are the main 

physiological adaptation at the enzyme level (Feller and Gerday, 2003). They have higher 

catalytic activity at low temperatures, and thus, enable psychrophiles to maintain 

appropriate rate for enzyme-catalyzed reactions that are involved in essential biochemical 

processes. 

Temperature profiles of enzymes from psychrophilic and their mesophilic 

counterparts were first determined by Morita (Morita, 1975). To date, extensive studies 

on the thermodependence of psychrophilic enzymes activities had revealed that these 

cold-active enzymes were adapted to have their higher catalytic activities at temperatures 

lower than their mesophilic and thermophilic counterparts (Brenchley, 1996). Study of 

the lactate dehydrogenase from Vibrio marinus by Mitchell and coworkers (1985) 

showed that psychrophilic lactate dehydrogenase had an optimum activity at 1 0 to 15oC, 

which was different from that described for their mesophilic counterparts. In another 

8 



work, researchers reported that alkaline metalloprotease from psychrophilic 

Pseudomonas sp. was three times more active at 20°C than its mesophilic counterpart 

(Chessa eta/., 2000). The shift of psychrophilic enzyme activity to a lower temperature 

range renders psychrophiles to cope with the reduction of chemical reaction rate induced 

by low temperatures. 

Besides that, comparison of temperature dependence activity of psychrophilic 

enzymes with their mesophilic homologues have showed that their high efficacy at low 

temperatures often up to an order of magnitude higher than those observed for their 

mesophilic homologues (Feller and Gerday, 2003, Georlette eta/., 2004). This interesting 

phenomenon was shown in a study of cellulase CelG from Antarctic bacterium 

Pseudoalteromonas haloplanktis (Garsoux et a/., 2004). The study revealed that 

psychrophilic cellulase is at least 15 times more active at 4°C than its mesophilic 

counterparts. 

Another main property of cold-active enzymes which have been characterized is 

their heat lability. This feature was commonly observed in studies, for example, in the 

study of isocitrate lyase from Colwellia maris. The psychrophilic isocitrate lyase has 

been shown to rapidly inactivate at the temperatures above 30°C (Watanabe eta/., 2001). 

In another study of psychrophilic alanine racemase, the enzyme showed heat sensitivity. 

The enzyme activity was lost quickly after incubation over 35°C for I hour, while 

mesophilic and thermophilic enzymes showed stability up to 55°C and 75°C respectively, 

under the same conditions (Okubo et al., 1999). 
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The higher catalytic activity at low temperatures and low stability of cold-adapted 

enzymes as compared to their mesophilic and thermophilic counterparts were proposed as 

a result of increased structural flexibility (Lonhienne et al., 2000). This hypothesis was 

verified as studies have proved that cold-adapted enzymes have higher flexibility in the 

catalytic important areas of the structure as compared to their mesophilic homologues 

(Georlette et al., 2004, Olufsen et al., 2005). Apart from that, the occurrence of structural 

flexibility and rigidity responsible for high efficacy of cold-active enzymes is also 

supported by analysis of the activation parameters (Lonhienne et a!., 2000). 

3.3 Kinetic adaptation 

Cold-adapted enzymes were characterized as enzymes with enhanced catalytic 

efficiency kcaiKm. The analysis of the differences between activation parameters of 

psychrophilic enzymes with those of their mesophilic counterparts indicates that the high 

kcat of cold-active enzymes at low temperatures is due to a significant decrease of the 

activation enthalpy L.\H# (D'Amico eta!., 2002). The low activation enthalpy results in 

less temperature dependence of psychrophilic enzyme activity than the mesophilic 

enzymes, and it was considered as the main kinetic adaptive character to low 

temperatures. 

The decrease in activation enthalpy is achieved structurally by a decrease in the 

number of enthalpy-driven interactions that have to be broken during catalysis. As these 

interactions are contributing to the conformation of the active site, reduced number of 
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