COMPARISON OF RANGE OF MOTION, REACTION TIME, FLEXIBILITY AND BALANCE ABILITY BETWEEN PHYSICALLY ACTIVE AND WHEELCHAIR USER: A SCOPING REVIEW

MUHAMMAD NASHIHIN BIN ZOEL FADLI

UNIVERSITI SAINS MALAYSIA

June 2021

COMPARISON OF RANGE OF MOTION, REACTION TIME, FLEXIBILITY AND BALANCE ABILITY BETWEEN PHYSICALLY ACTIVE AND WHEELCHAIR USER: A SCOPING REVIEW

By

MUHAMMAD NASHIHIN BIN ZOEL FADLI

Dissertation submitted in partial fulfillment of the requirements for the degree of Bachelor of Health Science (Honours) (Exercise and Sports Science)

CERTIFICATE

This is to certify that dissertation entitled

COMPARISON OF RANGE OF MOTION, REACTION TIME, FLEXIBILITY AND BALANCE ABILITY BETWEEN PHYSICALLY ACTIVE AND WHEELCHAIR USER:A SCOPING REVIEW

Is the bonafide record of research work by

MUHAMMAD NASHIHIN BIN ZOEL FADLI

From October 2020 to June 2021

Signature of Supervisor

Name and address of supervisor : Dr Rosniwati Ghafar (PhD)

Lecturer, Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kota Bharu, Kelantan. Tel.: 09-767 7816 Email: rosnikk@usm.my

:26.06.2021

Date

DECLARATION

I hereby declare that this dissertation is the result of my investigation, except where otherwise stated and duly acknowledged. I also declare that it has not been previously or currently submitted as a whole for any other degrees at Universiti Sains Malaysia or other institutions. I grant Universiti Sains Malaysia the right to use the dissertation for teaching,

research and promotional propose.

Signature

017

Muhammad Nashihin Bin Zoel Fadli Date:23.6.2021

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude and praises and thanks to the Almighty God, Allah S.W.T. for His blessing and providing me with strength, patient and good health, throughout my research work to complete the research study successfully. This thesis has become a reality with the support and help of many individuals. I would like to express my sincere thanks to all of them. I would also like to express thanks to my supervisor and co-supervisor, Dr Rosniwati Ghafar and Dr Syamsina Bt Ahmad for their guidance and constant supervision as well as providing necessary information, correction, encouragement and help regarding this research towards the completion of this study. Without them, this project would not run smoothly. Other than that, I also would like to express my thanks to all lecturers and the staff of Exercise and Sport Science, School of Health Sciences, University Sains Malaysia for their attention and concern throughout the completion of this research.

Thankful to my senior and friends, for their continuous help in supporting, encourage and advises to me with along the completion of this study. I am very grateful to have them beside me before all the time to guide me, during and toward the completion of this study. Also not to be missed by all the participants that participate in this study. Their willingness and contribution were appreciated. Very Much appreciated Without all of them, I will not be able to do this research. Last but not least, I would like to express my gratitude towards my family especially my parent for the prayers, encouragement, love, passion and support which helped me in completion of this thesis. I also would like to express my ultimate appreciation to any person which contributes to my final year project whether directly or indirectly. Without everyone that I have mentioned above, I will not have the courage and hope in finishing this study. Thank you.

		page
ACKN	IOWLEDGEMENT	iv
TABL	E OF CONTENT	v
LIST (OF TABLE	vii
LIST (OF FIGURE	
LIST (OF ABBREVIATION	viii
ABST	RAK	ix
ABST	RACT	х
CHAF	PTER1 INTRODUCTION	
1.1 Ba	ckground of Study	1
1.2Pro	blem Statement	2
1.3 Re	search Objective	
1.3.1	General Objective	
1.3.2	Specific Objective	
1.4 Sig	gnificant of Study	3
CHAF	PTER 2 LITERATURE REVIEW	
2.1 Ra	nge of Motion	4
2.2 Re	action Time	
2.3 Fle	exibility	
2.4 Ba	lance	5
2.5 Ph	ysically Active	7
CHAF	PTER 3 METHODOLOGY	
3.1 Da	ta Sources	8
3.2 Re	search Design	9
3.3 Stu	idy Flowchart	
CHAP	TER 4 RESULT	
4.1 Co	omparison data on the range of motion, flexibility and	25
balanc	e ability between the wheelchair user and active individuals	
4.2 Vi	suomotor reaction time difference between patellofemoral pain syndrome	26
and he	althy individuals	
4.3 Tra	aining increases reaction time, range of motion, flexibility and balance ability	30
4.4 Ge	nder Differences do influence flexibility	31

CHAPTER 5 DISCUSSION

5.1 Physically active	individuals have better	range of motion,	reaction time and	flexibility 32
than wheelchair us	sers			

5.2 Wheelchair users can be a physically active

CHAPTER 6 CONCLUSION

6.1 Summary and conclusion	34
6.2 Limitation of this review	
6.3 Recommendation for further studies	35
References	36
APPENDICES	
Appendix 1 :Ethical Approval From Human Resource and Ethics Committee	39

List of table

page

Table 4.1	15 Journals that is reviewed	10
Table 4.2	Average shoulder and elbow joints angle	25
Table 4.3	Training increases range of motion, flexibility and balance	26

Table 4.4Characteristics of included studies with adult and children participation28

List of figure

Figure 3.1 Prisma Flow

List of Abbreviations

WHO	=	World Health Organization
ROM	=	Range of Motion
PA	=	Physical Activity
RE	=	Resistance Exercise
BADL	=	Basic Activity daily Living
IADL	=	Instrumental Activity Daily Living
MWC	=	Manual Wheelchair
RCT	=	Randomise Control trial
SD	=	Standard Deviation
WCU	=	Disable
NWCU	=	Able-body

PERBEZAAN JULAT PERGERAKKAN,MASA TINDAK BALAS,FLEXIBILITI DAN KESEIMBANGAN ANTARA ORANG AKTIF DAN PENGGUNA KERUSI RODA:KAJIAN SKOP

ABSTRAK

Tujuan penyelidikan ini adalah untuk mencari perbezaan data pengguna kerusi roda dan orang aktiv fizikal.Sebanyak 15 jurnal dari tahun 2010-2021 telah dipilih dari jumlah 444 pilihan asal. Dari situ didapati perbezaan bahawa orang aktif fizikal mempunyai julat pergerakkan, reaksi masa dan flexibiliti yang lebih baik berbanding pegguna kerusi roda. Namun telah dibuktikan bahawa dengan latihan, pengguna kerusi roda juga dapat memperoleh peningkatan dari segi julat pergerakkan, masa tindak balas, flexibiliti dan keseimbanggan. Data bagi pegguna kerusi roda kami terhad kepada mereka yang tidak mempunyai penyakit. Pengguna kerusi roda sihat badan dan tidak mempunyai penyakit, Kami mengharapkan lebih banyak jurnal dan kajian dibuat berkenaan pengguna kerusi roda yang sihat. Dengan data ini, kita dapat memberi panduan untuk penambahbaikan pergerakan mereka yang akan membuatkan kehidupan mereka lebih aktif.

COMPARISON OF RANGE OF MOTION, REACTION TIME, FLEXIBILITY AND BALANCE ABILITY BETWEEN PHYSICALLY ACTIVE AND WHEELCHAIR USER:A SCOPING REVIEW ABSTRAK

The purpose of this study is to find the comparison in data between the wheelchair user and physically active. Several 15 journals were chosen from year 2010-2021 from the initial number 442. From this research, we find that physically active people have a better range of motion, reaction time and flexibility compared to wheelchair users. It is also proven that with training, the wheelchair users can increase their range of motion, flexibility and balance ability. The exclusion criteria for this review are those with diseases will be excluded. We hope in future, much more journals and research will be conducted on wheelchair users. With the data, we can guide them to improve their movement and produce a more active lifestyle.

CHAPTER 1 INTRODUCTION

1.1Background of the Study

An active lifestyle is the best lifestyle to practice. Physical activity is any body movement that works your muscles and requires more energy than resting. Walking, running, dancing, swimming, yoga, and gardening are a few examples of physical activity A lot of health benefits can be found in the past research. Most of the previous research concentrates on healthy lifestyle for healthy individuals. A healthy lifestyle has both short-term and long-term health benefits. Long term, eating a balanced diet, taking regular exercise and maintaining a healthy weight can add years to our life and reduce the risk of certain diseases including cancer, diabetes, cardiovascular disease, osteoporosis and obesity. In the short term it can also make us feel and look our best, give us more energy and help us maintain a healthy weight. WHO defines physical activity as any bodily movement produced by skeletal muscles that require energy expenditure including activities undertaken while working, playing, carrying out household chores, travelling, and engaging in recreational pursuits. The term "physical activity" should not be confused with "exercise", which is a subcategory of physical activity that is planned, structured, repetitive, and aims to improve or maintain one or more components of physical fitness. Beyond exercise, any other physical activity that is done during leisure time, for transport to get to and from places, or as part of a person's work, has a health benefit. Further, both moderate- and vigorous-intensity physical activity improve health

Many health-related components can be monitored to show that the individuals practice a healthy lifestyle. These components including engagement in a physical activity, eating healthier food and sleeping habits. (M.J.Lamonte 2002). Quality of active lifestyle can also be monitored in terms of the range of motion, reaction time, flexibility and standing ability. These also will be monitored in this study to compare the components between the wheelchair user and physically active individuals. Limited research can be found about a person with special needs especially a wheelchair user. Most of the previous research mostly concentrated on

wheelchair technology to ease the usage of the wheelchair especially automatic wheelchair or powered wheelchair. A few researched by the Architecture department mostly concentrated on providing access to wheelchair users in public places (Jefferds AN 2016). There are not many studies that had been done on this topic(meaning on comparison data between wheelchair users and physically active people). As explained above from WHO, the term physical activity is not to be confused with exercise, so in this research context physically active people meaning people that are doing exercises. I believe with the data that will be gather soon, it is important to know are there any differences in data. When we know why and how, enhancement could be made in order to improve the quality of life for both wheelchair users, resulting in poor cardiometabolic profiles (high BMI, increased body fat percentage and abnormal lipid and glucose concentrations). So with the data, we are able to identify the subtopic and ways to help wheelchair users to start an active lifestyle or even maintaining an active lifestyle in an organize manner, so that the maximum positive effects could be achieve.

1.2Problem Statement

A lot of previous studies concentrate on normal and healthy people in various research fields limited study was done on special needs population. So this study would concentrate on wheelchair users which are healthy or minimal pain, not the disease type. To understand more and compare of data between them and active individuals.

1.3 Research Objectives

1.3.1 General Objective

To review the data of the range of motion, reaction time, flexibility and balance ability between the wheelchair user and healthy individuals.

1.3.2Specific Objectives

1)To review the data on the range of motion of the upper limb for wheelchair users and healthy individuals.

2)To review the data on reaction time for the wheelchair user and physically active individuals3)To review data on flexibility between the wheelchair user and physically active individuals.

4) To review data on balance ability between wheelchair users and physically active individuals.

1.4 Significant of the Study

A limited study was done on the effect of low physical activity on wheelchair users. Movement limitation faced by wheelchair users will affect their ability and daily activities to achieve recommended daily physical activity. This study tries to compare the difference in data of a range of motion, reaction time, flexibility and standing ability compared to the physically active individuals. The health status and effect of using a wheelchair can be assessed, the information from this study can be used to help wheelchair user to improve their lifestyle in which area they are lacking. The information also can be used to understand more about capability of the human body that can be applied to the new wheelchair use

CHAPTER 2 LITERATURE REVIEW

2.1 Range of motion

Measurements of the motion of joints are an accepted clinical technique for evaluating a disability; but normative data or baseline data for the disabled are sparse. The best-known source for average ranges of joint motion is the handbook of The American Academy of Orthopaedic Surgeons. Data analysis in the repeated study was undertaken as outlined by Valevicius et al. and Lavoie et al. (2018) (Gritsenko, Valeriya, Russel, 2016). Movements are the product of interactions between neural control signals and the musculoskeletal dynamics that depend on limb anatomy

2.2 Reaction time

The reaction time of an organism is a measure of how rapidly it can respond to a certain stimuli. Reaction time has been extensively researched since its practical ramifications can be significant; for example, a slower than average reaction time when driving might have disastrous consequences. Age, gender, physical fitness, exhaustion, distraction, alcohol, personality type, and whether the stimulus is auditory or visual have all been proven to alter reaction times. A stimulus is converted into an electrochemical signal by sensory neurons, which then travels the length of the sensory neuron(s), then through a neuron or neurons in the central nervous system, and finally through the length of the motor neuron (s). Examples are diving to save a rebound ball for a goalkeeper or lifting our hands when told so (left or right).

2.3 Flexibility

Physical fitness requires a high level of flexibility. The capacity to move a joint across its complete range of motion (ROM) with ease is referred to as flexibility. Flexibility varies by joint. This means that joint flexibility is not always connected to joint flexibility in other joints. For example, a person's shoulders may have a tremendous range of motion, but her hips may be restricted. Gymnasts and hurdlers, for example, clearly require an extraordinary range of motion to compete in their competitive disciplines, but high flexibility makes everyday movements easier for everyone. Although flexibility is frequently promoted as a preventive factor against injury, empirical data to support this claim is limited. With data from several different papers, we could use it to make better improvement for wheelchair users in future.

2.4 Balance

Posture and balance control are fundamental in daily life to safely accomplish any type of movement and motor task that involves the displacement of body segments or the entire body. Balance is the process of maintaining the body's centre of gravity (CoG) vertically over the base of the support, and it relies on rapid and continuous feedback from visual, vestibular and somatosensory structures for the subsequent execution of smooth and coordinated neuromuscular actions (Winter, 1995; Zatsiorsky and Duarte, 1999). Efficient postural balance not only reduces the risk of body imbalance, fall, or subsequent injuries, but also contributes to the optimization of motor performance in several athletic disciplines (Hrysomallis, 2007)

Prospective studies indicate that 30–60% of community-dwelling older adults fall each year (Berg, Alessio, Mills, and Tong, 1997; Campbell et al, 1990; Luukinen, Koski, Hiltunen, and Kivela, 1994; Maki, Holliday, and Topper, 1994; Tinetti, Speechley, and Ginter, 1988); and falls are the leading cause of injury-related morbidity and mortality in this population (Webbased Injury Statistics Query and Reporting System, 2008). Moreover, the number of falls

among residents of aged care facilities is reported to be three times greater than communitydwelling older adults in the literature (Hewitt et al, 2014). The fall incidence was found to be 33.9% in a recent prospective study for older adults living in nursing homes in Turkey (Apaydın Kaya et al, 2012). Balance and gait impairments were stated as the most important risk factors for falls in older adults (Cho and An, 2014). As falls are the most common cause of non-fatal injuries and fall-related injuries can result in mobility limitation, loss of confidence, and declines in physical activity and community participation in older adults, interventions that address identified risk factors appear to be the most beneficial in preventing falls and reducing the health care burden (Granacher, Gollhofer, and Strass, 2006; Sherrington et al, 2008). Exercise programs show promise among effective fall prevention strategies (Kannus et al, 2005; Noohu, Dey, and Hussain, 2013; Rendon et al, 2012; Rubenstein, 2006; World Health Organization, 2007), and the preventive effect of balance training is accepted as an integral part of the management of older adults with fall risk or fall history (Kannus et al, 2005; Noohu, Dey, and Hussain, 2013; Rendon et al, 2012; Rubenstein, 2006). Conventional balance exercises are one of the most preferred exercise options for improving balance safely and decisively in the geriatric population. Conventional exercise programs that provide appropriate challenges to balance with appropriate dose were declared to be effective in improving balance and preventing falls (Sherrington et al, 2011).

It has become almost routine practice to incorporate balance exercises into training programs for athletes from different sports, fall prevention programs for the elderly and rehabilitation programs. The objectives and benefits seem obvious, e.g., performance improvement and injury prevention as commonly cited goals (Hrysomallis 2011; Kümmel et al., 2016; Lesinski et al., 2015). However, the type of training that is most efficient remains unclear, and the frequency, intensity and duration of exercise that would be most beneficial have not yet been determined. One of the purposes of this review was to compare the methods used and findings of balance measurement, and to check which is the most efficient.

2.5 Physically active

To get the most benefits in our life, we are suggested to follow an active lifestyle. Evaluation of the best practice also compared to the active lifestyle. In this study, the health-related assessment of wheelchair users was compared to the active individuals, to compare the effect of the wheelchair activities to the standard activities. Room for improvement will be identified to benefit wheelchair users.

CHAPTER 3 METHODOLOGY

3.1. Data sources

Ebscohost, Scopus, Proquest, and Science Direct were used to conduct an electronic search for related studies. This is because the content are appropriate with the research question of this scoping review In a nutshell, the chosen studies were hand-searched using the same selection criteria outline below. In addition, to gain more information, cross-referencing on similar studies was done. Articles from February 2012-2021 were used to review, and there are not no attempts were tried to contact the author.

Preferred Reporting Items for Scoping Reviews and Meta-Analyses (PRISMA) criteria were used to search .During the search, the following keywords were used : #Comparison of range of motion, #reaction time,# flexibility #balance ability (physically active)(wheelchair user). Studies were screened on the data on physically active and wheelchair users. Those data were used in the report. PRISMA flow was created using a set of pre-determined steps, which include identification, screening, and eligibility. The databases yielded 444 possible articles during the initial search. After deleting duplicates, 442 publications were evaluated against the selection criteria based on their titles and abstracts. A total of 427 publications were omitted from the study because they did not look into wheelchair users, a physically active and healthy wheelchair user. After spending time evaluating which is the best articles, only 15 articles were chosen for this study.

To decide whether complete texts were required for additional analysis, the titles and abstracts of retrieved publications were examined using the criteria stated. The following criteria were used to evaluate each full-text manuscript: (1) study objectives, (2) study characteristics (study design, participants, age, and sample size), and (3) intervention content (intervention types),4) the duration of the intervention or the type of exercise that was tried, the targeted outcome/s, and the 5) major findings. Because of the nature of this systematic

8

review, the findings from those studies were not pooled, reanalyzed, or altered. Results from each paper is extracted for this scoping review.

3.2 Research Design

Scoping review

3.3 Study Flowchart

Figure 3.1 Prisma Flow

CHAPTER 4 RESULT

The list of the journal selected for this review was listed in Table 4.1. The method of measurements, main findings and comments based on the review were listed in the table.

No	Authors and	Study	Outcome Measures	Main finding	Comment
	year	target/target			
1	(Oladia	population	In from domains the		
1.	(Cintia	Individuals aged	In four domains, the	I nere were no	All the subjects
	Aparecida	60 and up who	IPAQ questionnaire	direct impacts of	are healthy and
	Garcia	lived in urban	evaluates moderate-	physical activity	
	Meneguci;	areas and were	vigorous physical	and sedentary	not many
	Meneguci,	registered in the	activity (MVPA)	behaviour on	impacts(although
	Joilson; Jeff	Family Health	(occupation,	impairment	there are) were
	er Eidi	Strategy, a	transportation,	in basic activities	,
	Sasaki; Trib	programme that	housework, and leisure	of daily living	recorded.
	ess,	attempts to	time). The sum of total	(BADL).Instrume	
	Sheilla; Jair	reform primary	moderate activity	ntal activities of	
	Sindra and	healthcare in the	(including walking) plus	daily	
	Virtuoso	country	two times the number of	living(IADL)	
	Júnior. Jan	according to the	minutes of vigorous	disability (= -	
	2021)	precepts of the	activity was used to	0.037) and	
	Physical	Brazilian	create a total physical	aerobic endurance	
	activity,	Unified Health	activity score. The	(= 0.012)	
	sedentary	System, were	duration of physical	mediated an	
	behaviour	included in the	activity was measured in	indirect effect of	
	and	study	minutes/week as the time	physical activity.	
	functionalit	population. The	spent in moderate to	Sedentary	
	y in older	following were	vigorous intensity	behaviour	
	adults: A	the exclusion	activities.	exhibited an	
	cross-	criteria: being		indirect influence	

sectional	bedridden,	that was mediated
path	hospitalised, or	by aerobic
analysis	a long-term	resistance (=
	institution	0.028) and lower
	resident; having	limb flexibility (=
	severe visual	0.020).
	and hearing	
	acuity that	
	makes	
	communication	
	with the	
	interviewer	
	difficult; being	
	wheelchair	
	dependent;	
	having	
	musculoskeletal	
	or neurological	
	diseases that	
	prevent physical	
	function	
	measurements;	
	failing to get a	
	total of 13	
	points in the	
	Mini-Mental	
	State	
	Examination	
	(MMSE); and	
	not agreeing to	
	participate in the	
	study by signing	

		the informed			
		consent form.			
2.	(Giesbrecht,	The mHealth	. The participants were	Overall, the study	This is a training
	Edward	intervention and	community-dwelling	procedure	session for them
	M; Miller	control groups	MWC users aged 55 and	allowed for a	
	and William	were compared	up who had been using	safe, efficient,	to use their
	C,Oct 5,	using a 2 2	their MWC for less than	and acceptable	wheelchair with
	2017)	factorial design	two years and propelled	administration of	lots of benefits
	А	randomised	it with two hands.	the Intervention.	
	randomized	controlled trial	Process, resource,	Recruitment of	that could help
	control trial	(RCT), with	management, and	participants	them in future.
	feasibility	increased	treatment criteria	proved difficult,	
	evaluation	wheeling time	feasibility outcomes were	especially gaining	
	of a	as a second	collected	access to those	
	mHealth	factor. The		who would	
	intervention	participants		benefit. For the	
	for	were		administration of	
	wheelchair	community-		the intervention,	
	skill	dwelling		resource issue	
	training	Manual		requests were	
	among	Wheelchair(M		acceptable.	
	middle-aged	WC) users aged		The findings	
	and older	55 and up who		indicate that a	
	adults	had been using		full-scale RCT	
		their MWC for		evaluating the	
		less than two		clinical impact of	
		years and		the Enhancing	
		propelled it with		Participation in	
		two hands.		the Community	
		Process,		by Improving	
		resource,		Wheelchair Skills	
		management,		(EPIC Wheels)	
		and treatment		intervention is	

criteria	warranted,	
feasibility	assuming that	
outcomes were	recruitment issues	
collected.	are addressed	
	through	
	collaborative	
	partnerships and	
	active recruitment	
	strategies.	
	Eighteen people	
	were hired, with a	
	94 per cent	
	retention rate. The	
	first and second	
	in-person training	
	sessions had a	
	mean (SD)	
	duration of 90.1	
	20.5 and 62.1 5.5	
	minutes,	
	respectively. Over	
	four weeks, 78	
	per cent of the	
	treatment group	
	completed the	
	required amount	
	of home training	
	(300 minutes) and	
	56 percent	
	completed the	
	desired training	
	threshold (i.e.,	
	600 min).	

3.	(Ilie,	The study	. The subjects were	The goal of this	Swimmers have
	Mihai; Adel	looked at seven	assessed for static and	study was to	good ability of
	a, Prioteasa	people (three	dynamic balance while	determine the	
	and Ana-	men and four	receiving real-time visual	level of balance	balance, this is
	Maria,	women) who	feedback by looking at	ability in	due to their
	2017):	were	the notebook's display.	swimmers	training which
	Aspects of	approached as	Each test lasts 30	through case	
	balance	case studies,	seconds, while the	studies that	makes them have
	ability in	high-	subject has to stay as	measured static	good balance.
	Swimming	performance	balanced as possible; to	and dynamic	
		swimmers, and	move the body mass	balance as a	
		National	from left to right, front	sensory reaction	
		Championship	and back.	to visual cues.	
		medalists. The		The results were	
		research was		interpreted using	
		conducted at the		data provided by	
		Human		the platform	
		Performance		software, which	
		Research		was expressed in	
		Center, and		four different	
		employed the		ways	
		Sensamove		(front,back,left	
		Balance		and right)	
		Miniboard		correspond to the	
		platform as a		frontal and	
		testing tool		sagittal Planes,	
				respectively.	
				The best results	
				were found in the	
				front-to-back	
				dynamic	
				balancing	
				measurement,	

				with three of the	
				participants	
				obtaining	
				percentages of	
				over 90%.	
4	(Neic	13 papers were	The target demographic	RE treatments	With resistance
	Šarabon and	included for this	comprised people of all	were found to	exercise, there are
	Žiga	meta-analysis	ages and genders. As a	significantly	effects on balance
	Kozinc	inclu unurysis	result, children and	improve balance	ability
	.2020)		adolescents (18 years	skills in adult and	
	Effects of		old), adults (18–65 years	older adult	
	Resistance		old), and elderly persons	participants in this	
	Exercise on		(65 years old) were taken	comprehensive	
	Balance		into account. Participants	study. This	
	Ability:		with neurological (e.g.,	discovery has	
	Systematic		Parkinson's disease,	significant	
	Review and		multiple sclerosis) or	practical	
	Meta-		musculoskeletal	ramifications, as	
	Analysis of		problems were excluded	RE might be used	
	Randomize		from studies (e.g.,	to improve	
	d		osteoarthritis, choric	muscular strength	
	Controlled		pain).	and power while	
	Trials			also improving	
				balance.	
5	(Valerio	The study	The goal of this study	Inexperienced	It needs time to
	Bonavolont	included thirty-	was to see how six	middle-aged	increase in
	à, Francesca	one experienced	months of ballroom	people, six-month	reaction time,
	Greco,	middle-aged	dancing (three times per	ballroom dance	reaction time
	Umberto	people. At T6,	week) affected physical	practice had	comes with
	Sabatini	24 people (age:	fitness and reaction time	positive effects on	training and it
	,Francisco	59.4 11.6 years,	(RT) in 24 experienced	response speed	needs months, it
	J. Saavedra	11 females, 13	middle-aged people (age:	but no effects on	cant happen in a
	,Francesco	males) were	59.4 11.6 years).	PF. Furthermore,	short time.
	Fischetti,Ca	tested, and 18		the RT	
	rlo	persons were		improvement was	
	Baldari [,] Lau	reviewed at T10.		sustained four	
	ra Guidetti	All of the		months later. As a	
	,Maria	participants		result, a dancing	
	Grazia	came from		practice could be a	
	Vaccaro	Catanzaro's		beneficial	
	and Gian	"Free Dance"		technique for	
	Pietro	Dance School.		ageing well. More	

	Emerenzian			research is needed	
	i			to look into the	
	,2021)Effec			effects of different	
	ts of			types of dances on	
	Ballroom			PF and RT results.	
	Dance on				
	Physical				
	Fitness and				
	Reaction				
	Time in				
	Experienced				
	Middle-				
	Aged				
	Adults of				
	Both				
	Genders				
6	: (Anh Luu,	The Reaction	In duplicate, Reaction	The responses of	Training people
	Avory	Times of	Timess to visual (colour	all individuals	have better
	Winans,	healthy 18 to	cue test, ruler drop test),	were remarkably	reaction time
	Rema	22-year-old	auditory (sound cue test),	consistent. The	compared to
	Suniga &	college football	and tactile stimuli (probe	mean RT of esport	untrained people.
	Vicki A.	athletes, esports	grabbing test) were	competitors	
	Motz,2021)	competitors, and	recorded. ANOVA and	(269.83 23.46 ms)	
	Reaction	a control group	post hoc t-tests were used	was significantly	
	Times for	(n = 12 for each)	to compare individual	lower than the	
	Esport	group) were	test RTs and derived	control group	
	Competitors	studied in this	composite RTs between	(290.83 36.50 ms)	
	and	study.	groups.	in the colour cue	
	Traditional			test (Fig. 1A),	
	Physical			showing faster	
	Athletes are			RTs. However,	
	Faster than			the RT of sport	
	Noncompeti			athletes (276.50	
	tive Peers			28.02 ms) did not	
				differ	
				significantly from	
				that of football	
				players. In the	
1				ruler drop test	
1				(Fig. 1B), esport	
1				athletes (174.58	
1				26.14 ms) and	
				tootball players	

				(186.94 20.30 ms)	
				had considerably	
				faster reaction	
				times than the	
				control group	
				(223.47 31.11	
				ms); nevertheless,	
				football and	
				esport were not	
				significantly	
				different.	
7	(SalmanNaz	The current	Patients with PFPS had	This may provide	Note that this
	ary-	study included	slower upper extremity	insight into	study has results
	Moghadam	25 PFPS	reaction time (P=0.047,	cerebral	for healthy
	, Esmaeel	patients (20	Effect size (ES)=0.39)	mechanisms of	individuals and
	Savved	women and 5	and plantar flexion	neuromuscular	patellofemoral
	HadiSavved	men, mean age	reaction time	control and injury	pain syndrome,
	Hosseinian,	29.28 years, SD	(symptomatic side)	prevention by	and my study is on
	Afsaneh	5.59) and 25	(P0.001, ES=0.77) than	considering	wheelchair users,
	Zeinalzadeh	healthy controls	healthy controls,	neurocognitive	but it clearly states
	, Samira	(19 women, 6	according to the results	reaction time,	that healthy
	Karimpour	men, mean age	of a one-way multiple	adding to current	individuals have
	Negahban.	29.32 years, SD	analysis of variance.	research	better reaction
	2021)	5.30). Upper	Although the problematic	attempting to	time for the upper
	Visuomotor	extremity	knee extension reaction	connect	extremity. There
	reaction	response time,	time was slower than the	neurocognitive	are differences in
	time	upper extremity	corresponding healthy	reaction time with	data for people
	difference	error rate, knee	limb, the difference was	cortical	with
	patellofemo	extension	not statistically	mechanisms	patellofemoral
	ral pain	reaction time in	significant.	monitoring the	pain syndrome
	syndrome	both involved		motor programme	and healthy
	and healthy	and uninvolved		in patients with	individuals.
	individuals:	legs, and plantar		musculoskeletal	
	Cross-	flexion reaction		disorders.	
	sectional	time in both		The upper	
	study	involved and		extremity	
		uninvolved legs		visuomotor	
		were the		reaction time of	
		dependent		PFPS patients was	
		variables.		slower than that of	
				healthy controls.	
				This observation	
				is particularly	

				intriguing because PFPS patients were previously classified as having peripheral dysfunction. According to the findings of this study, the PFPS can be classified as peripheral and central impairments.	
8	(M.Ghasemi & N Arjmand, 2021)Spinal segment ranges of motion, movement coordinatio n, and three- dimensional kinematics during occupationa l activities in normal- weight and obese individuals	The study included nine healthy young normal-weight (23.6 1.1 years, 178.1 5.7 cm, 75.9 7.1 kg, and BMI = 23.9 1.3 kg/m2) and nine age/height matched obese (26.9 3.9 years, 176.6 4.0 cm, 110.1 10.6 kg, and BMI = 35.3 2.6 kg/m2) male volunteers with no recent back/knee/hip pain ($p > 0.05$ for differences in age and height but p 0.0001 for their Body Mass Index (BMI)	The goal of this study was to measure/compare trunk, lumbar, and pelvis primary RoM in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions, and three-dimensional spine kinematics in healthy normal-weight and obese individuals during twelve symmetric/asymmetric static load-handling activities.	In most cases, variations between the two groups in segmental complete RoM in different planes/directions were found to be less than 5° (10%), with no statistical significance.	There are differences in spinal segments and range of motion (ROM), but not that much between obese and normal people.
9	Keiichi Moromizato , Ryosuke Kimra,	On Okinawa Island in Japan, 78 healthy	Ranges of motion (ROMs) at limb and trunk joints of young	Body structures influence ROMs, as evidenced by	Women generally have better range

	Hitoshi	participants (42	people were examined in	comparisons	of motion (ROM)
	Fukae,Kyok	males and 36	this study to better	between males	compare to men.
	0	females) were	understand the	and females,	
	Y amaguchi	recruited. The	covariation patterns of	dominant and	
	Ishida 2016	passive range of	diverse joint motions and	non-dominant	
)Whole-	motion (ROM)	to identify factors that	sides, and	
	body	of the left and	influence ROM variation.	antagonistic	
	patterns of	right side limbs,		motions. The first	
	the range of	as well as the		principal	
	joint motion	trunk, was		component (PC1)	
	in young	assessed at		in principal	
	masculine	different joints		component	
	type and	across the body		analysis (PCA) on	
	feminine	(31		the ROM data	
	type	measurements).		represented the	
				sex difference,	
				and a similar	
				covariation	
				pattern showed in	
				the analysis	
				within each sex.	
10	(Mateus,	Institutionalized	Both interventions were	Pain intensity	There was an
	Ana,;	older persons (n	given twice a week for a	(F1,24 = 8.95, P)	immediate
	Rebelo,	= 26) were	total of eight weeks.	=.006), balance	beneficial and
	Jessica,	randomly	Pain, gait velocity,	(F1,24 = 10.29, P)	significant
	Silva &	assigned to	balance, flexibility, and	=.004), and gait	influence on pain
	Anabela G,	either a	TUG were all measured	velocity (F1,24 =	intensity, static
	2020)	multimodal	before and after the	5.51, P =.028) all	balance, and gait
	Effects of a	exercise	intervention.	had a significant	speed after the
	Multimodal	programme with		main effect of	intervention, but
	Exercise	neural gliding or		time, showing that	no effect on
	Program	a multimodal		both therapies had	Timed Up and
	Plus Neural	exercise		a favourable	Go(TUG) or
	Gliding on	programme		influence. There	lower limb
	Postural	alone.		were no other	flexibility.
	Control,			significant effects	
	Pain, and			(TUG and	
	Flexibility			flexibility; P	
	of			>.05).	
	Institutional				
	ized Older				
	Adults: A				

	Randomize				
	d, Parallel,				
	and Double-				
	Blind Study				
11	(Grinko,	Eighty-one	In sports groups	Such physical	Several students
	V, Kudelko,	fourth grade	(sectional courses) of	qualities as	were taken to do
	V, Yefremo	students (\overline{X} age	table tennis, a formative	flexibility have	aerobic exercise
	vA,	$= 9.23 \pm 0.62;$	educational experiment	become	and then test the
	& Klokova	39 girls; 54.3%	was done to determine	qualitative for	students do they
	S, 2020)	African	the impact of	students after	have an increase
	Effect of	American,	cardiovascular exercise	statistical	in flexibility or
	aerobic	30.9% Non-	on students' flexibility.	processing and	not.
	direction on	Hispanic White,	Participants were split	comparison of the	
	the	14.8% other)	into two groups for the	resulting data with	
	flexibility	participated in	pedagogical experiment:	data from earlier	
	of students.	this study from	control and experimental.	studies. Authors	
	dynamics	2014–2015		of works are only	
	and			restricted in their	
	forecasting,			research by the	
				impact of aerobic	
				activities on	
				overall health.	
				Meaning it has an	
				impact on	
10				flexibility.	
12	(Ryan N.	Twenty-one	Before the start of their	17 (81%) of	Most of them
	Steven P	athletes (age = $22.1.2$ G	respective seasons,	adapted athletes	scored fewer than
	Broglio,	22.1 3.0 years)	athletes undertook	reported more	10 symptoms.
	Karla K.	from a	baseline Immediate Post-	symptoms than	These people are
	Francioni &	collegiate	Concussion Assessment	normative	wheelchair
	Jacob J.	adapted athletics	(ImpACT) and the	reference values,	atmetes.
	Sosnoii, 2020)Explo	programme at	(IIIIFACI) and the Wheelcheir Error	and 20 (95%)	
	ring	one school.	Scoring System (WESS)	below average on	
	Baseline		Total symptoms	ot loost one	
	Concussion-		symptom severity	neurocognitive	
	Assessment		ratings and baseline	composite score	
	Performanc		symptom factors were	The WESS had a	
	e in Adapted		the symptom reporting	mean error rate of	
	Wheelchair		variables (eg. vestibular-	3 14 2 9 with 81	
	Sport		somatic sleep arousal	per cent of	
	Athletes		cognitive-sensory and	participants	
			affective).	making at least	
				indiana at ioust	

				one mistake.	
				There were no	
				gender differences	
				in symptoms,	
				cognition testing,	
				or balance	
				measurements.	
13	,	This is a cross-	The stabilometric	HGS is linked to	Handgrip strength
	(Agnieszka	sectional study	platform CQ Stab 2P was	mobility, lower-	does effect
	Wiśniowska	conducted in	used to collect	limb strength, and	muscular strength.
	-Szurlej, et	southeastern	sociodemographic data	dynamic balance	Cognitive
	al.,2019)	Poland's care	and perform assessments	in both men and	impairment does
	Association	homes. The	of muscular strength,	women. Early	weaken hand grip
	between	study included	mobility, flexibility, and	diagnosis, made	strength.
	Handgrip	209 older	postural balance.	possible by simple	
	Strength,	persons aged 65		technologies, will	
	Mobility,	to 85 after		aid in the design	
	Leg	examining the		of suitable	
	Strength,	inclusion		interventions in	
	Flexibility,	criteria. The		long-term care	
	and Postural	stabilometric		institutions,	
	Balance in	platform CQ		reducing	
	Older	Stab 2P was		disability and	
	Adults	used to collect		mortality.	
	under Long-	sociodemograph			
	Term Care	ic data and			
	Facilities	perform			
	T definites	assessments of			
		muscular			
		strength,			
		mobility,			
		flexibility, and			
		postural			
		balance.			
		Eleven subjects,	This study used a	Eleven patients	Able-bodied
14	(Paul Starrs,	two males and	multiple measures cohort	were evaluated	perform better
	Chohan	nine females,	design to compare	(WCU = 7,	than non-able
	David	with an average	healthy individuals to	NWCU = 4) and	bodied.
	Fewtrell,	age of 9.2 years	impaired individuals.	were all included	
	Jim	(5–15years) and		in the outcome	
	Richards	an average		measure analysis.	
	and James	height of 1.3 m		However, due to	
	Selfe,2012)	(1.2 m–1.5 m)		technical	

Biomechani	were recruited,	difficulties, only	
cal	seven in the	eight participants	
differences	WCU group and	(WCU = 4,	
between	four in the	NWCU = 4) were	
and	NWCU.	used for	
inexperienc	(disabled WCU	biomechanical	
ed	and able-bodied	analysis.	
wheelchair	NWCU) A set	The NWCU were	
users during	of standard	slightly younger	
sport.	questions	on average than	
	including	the WCU, with an	
	'Would you use	average age of 9.4	
	your wheelchair	years compared to	
	to participate in	8.75 years for the	
	sport?' were	WCU. The WCU	
	asked to	and NWCU have	
	determine which	similar average	
	category each of	heights of 1.3 m	
	the subjects was	and 1.36 m.	
	placed into.	The subjects had	
	Other questions	been attending the	
	were asked such	Cheetahs for an	
	as 'How long	average of 8.5	
	have you	months for the	
	attended the	WCU and 6.8	
	Cheetahs?',	months for the	
	'What is your	NWCU on their	
	disability?' and	testing day.	
	'How often	In the agility test,	
	daily would you	the WCU	
	use your	completed 4.14	
	wheelchair?'	turns on average	
		in the 30 second	
		time period, but	
		the NWCU	
		accomplished six	
		turns in the same	
		time (P = 0.059).	
		In the sprint test,	
		the WCU took	
		11.70 seconds on	
		average to finish	
		the 10 metres,	

				compared to 7.66	
				seconds for the	
				NWCII (P -	
				(1 = 0.200)	
				0.299).	
	(Karla	30 people (18	To assess ROM, digital	Females with	Women have
15	K,Wessels,J	men, 12 women)	goniometer was used.	more range of	better flexibility
	ennifer L.	who relied on	The following joint	motion than males	compare to men.
	Brown,	designed manual	motions were assessed	may be more	1
	Kyle	wheelchairs as	bilaterally on the active	propo to injury	
	T,Sebersole,	their major mode	and passive ROMs of the		
	Jacob	of transportation.	participants' shoulders:	Females have a	
	J,Sosnoff,	All of the	flexion, extension,	higher frequency	
	2013)	participants were	abduction, adduction,	of anterior crucate	
	Sex,Should	wheelchair	internal rotation, and	ligament injuries	
	er Pain and	athletes who	external rotation. A	due to increased	
	range of	competed	visual analogue scale is	lavity and range of	
	motion in	regularly. They	used to assess shoulder		
	manual	were 18 to 35	pain. Shoulder pain was	motion. Females	
	wheelchair	years old, with a	reported by 47 per cent	may be more	
	users	mean age of	of the subjects.	susceptible to	
		The everage		accidents because	
		amount of time		of their increased	
		spent in a		ioint lavity	
		wheelchair every		December of the	
		day was 13.6		Because of the	
		\pm 4.14 hours, and		ROM and injury	
		the average length		differences	
		of time spent in a		between men and	
		wheelchair was		women. there may	
		11.57 The average		be a need for sev-	
		amount of time		anasifia shouldan	
		spent in a		specific shoulder	
		day was 13.6		pain therapy and	
		+4.14 hours and		prevention.	
		the average length			
		of time spent in a			
		wheelchair was			
		11.57 5.89 years.			
		Based on self-			
		reports of			
		shoulder pain,			
		participants were			
		separated into two			
		groups (pain and			
		no pain). Participante wore			
		a sked if they were			
		experiencing			
		shoulder			
		discomfort right			
		now, and then			

they were asked	
to complete a	
visual analogue	
scale (VAS) for	
current shoulder	
pain in each	
shoulder 5.89	
vears Based on	
self-reports of	
shoulder pain	
participants were	
separated into two	
groups (pain and	
no pain)	
Participants were	
asked if they were	
experiencing	
shoulder	
discomfort right	
now and then	
they were asked	
to complete a	
visual analogue	
scale (VAS) for	
the current	
shoulder . There	
were 14	
participants in the	
pain group (9	
men, 5 females),	
and 16	
participants in the	
no pain group (9	
males, 7 females)	
pain in each	
shoulder.	

Table 4.1 summarize the data on both healthy individual and wheelchair user. Most data above is on healthy individuals. As we know with time and training, those skills (range of motion, flexibility and balance ability) could be increase and improve. Data are stating that healthy individuals exhibit a better range of motion, flexibility and balance compare to those who are not healthy individuals.