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PEMODELAN RADIOBIOLOGI BAGI KESAN RADIOSENSITIVITI 

PARTIKEL NANO EMAS DALAM TEKNIK KONVENSIONAL DAN 

RADIOTERAPI TERMAJU 

 

 ABSTRAK 

 

Keberkesanan strategi teknik radioterapi dengan nanoteknologi menjanjikan 

penyelesaian dalam mengatasi permasalahan yang timbul dalam perawatan radioterapi 

konvensional seperti kelemahan dalam memberi kesan radiasi secara selektif dan 

bersasar terhadap tumor yang bersifat kalis radiasi. Partikel nano emas telah menjadi 

bahan kajian yang pesat untuk bertindak sebagai penggalak kesan radiosensitiviti 

dalam perawatan klinikal radioterapi. Meskipun terdapat banyak kajian yang telah 

dijalankan, kepesatan penggunaan partikel nano emas sebagai pemeka sinaran 

memerlukan pendekatan kajian yang sistematik dan mendalam untuk menilai secara 

menyeluruh kesan radiobiologi terhadap rawatan radioterapi. Dalam penyelidikan ini, 

kesan radiosensitiviti telah dikaji menggunakan pelbagai parameter experimen 

terhadap rawatan radioterapi klinikal menggunakan tenaga radiasi yang berbeza 

megavolt antaranya alur foton, elektron dan juga dos tinggi brakiterapi (bahan Iridium-

192). Selain radioterapi konventional, penggunaan rawatan radioterapi termaju seperti 

alur proton dan kilovolt monoenergi foton ‘synchrotron radiation’ turut dikaji. Analisa 

yang mendalam dengan menggunakan model-model radiobiologi dan cara-cara 

mengkuantifikasinya juga turut diteliti secara spesifik. Pengaruh kesan radiosensitiviti 

oleh partikel nano emas dari segi saiz, kepekatan dan jenis sel yang dirawat, beserta 

pengkajian yang meliputi internalisasi, lokalisasi dan kesan toksiknya terhadap sel 

turut di dikaji secara terperinci. Kebolehgunaan partikel nano emas untuk rawatan 
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radioterapi konvensional terbukti menghasilkan kesan radisensitiviti terutamanya 

dengan dos tinggi brakiterapi, di mana ianya menunjukkan kesan lebih baik 

berbanding radioterapi alur elektron dan foton. Impak radiosensitiviti yang berkesan 

terbukti lebih besar dengan perawatan alur proton dan kilovolt monoenergi foton 

‘synchrotron radiation’ yang bersepadanan dengan ramalan teori. Pengesahan melalui 

model-model radiobiologi bertujuan untuk menghuraikan lekokan kemandirian sel 

bergantung kepada jenis kualiti alur radiasi beserta cara-cara mengkuantifikasinya. 

Berserta dengan itu, setiap model radiobiologi berserta parameter tersendiri turut 

berperanan menjadi petunjuk yang menerangkan mekanisma kejadian yang 

disebabkan oleh kesan radiosensitiviti. Saiz dan kepekatan partikel nano emas turut 

mempengaruhi kesan radiosensitiviti, bergantung juga pada perbezaan jenis sel yang 

dikaji. Sebelum melakukan kajian kesan radiosensitiviti radioterapi, pengunaan 

partikel nano emas yang optima turut diambil kira dari segi kepekatan yang tidak 

toksik dan intenalisasinya terhadap sel. Kesimpulannya, keberkesanan radisensitiviti 

partikel nano emas boleh dicapai dengan menggunakan radioterapi klinikal megavot, 

brakiterapi dan juga radioterapi termaju seperti terapi alur proton dan ‘synchrotron’ 

monoenergi foton radioterapi. Pemilihan secara terperinci model- model radiobiologi, 

mampu memberi pemahaman tentang kesan radiobiologi sel yang teraruh dari partikel 

nano emas dan juga piawaian cara-cara mengkuantifikasi amat penting untuk 

memastikan kesesuaian parameter yang terbaik bagi rawatan klinikal partikel nano 

emas. Cadangan yang jelas dan tertumpu amat penting dalam pengumpulan data 

praklinikal bagi mempercepatkan peralihan kegunaan partikel nano emas ke peringkat 

aplikasi klinikal kepada pesakit. 
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RADIOBIOLOGICAL MODELLING OF GOLD NANOPARTICLES 

RADIOSENSITIZATION EFFECTS IN CONVENTIONAL AND 

ADVANCED RADIOTHERAPY TECHNIQUES 

 

ABSTRACT 

Improvement of radiotherapy techniques with nanotechnology is a promising 

strategy to overcome the limitations arises in conventional treatment such as lack of 

eradication selectivity and radioresistance characteristic of targeted tumour. Gold 

nanoparticles (AuNPs) is a subject of growing interest to induce radiosensitization 

effects with potential application in clinical radiotherapy. Despite numerous 

evidences, development and application of AuNPs as radiosensitizer require 

systematic and comprehensive experimental approaches to fully evaluate the 

radiobiological impact in radiotherapy.  In this study, multiparametric investigations 

on the radiosensitization effects were conducted using different energies of clinical 

megavoltage photon, electron, and high-dose rate (HDR) gamma rays from Ir-192 

source. In addition to conventional radiotherapy, advanced techniques using proton 

beam and monoenergetic synchrotron photon beam of kilovoltage energies were also 

employed.  Comprehensive analysis using different radiobiological models and 

quantification methods were specifically examined. Influence of AuNPs size, 

concentration and types of cells on the radiosensitization effects were also elucidated 

including internalization, localization and cytotoxicity of AuNPs. Applicability of 

AuNPs for clinical conventional radiotherapy have been proven where 

radiosensitization effects have been observed especially for HDR brachytherapy that 

show better effects compare to electron and photon beam therapies. Substantially 

bigger impact of AuNPs radiosensitization have been confirmed for proton beam and 
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monoenergetic kilovoltage synchrotron photon beam in concurrently with theoretical 

prediction. Validity of radiobiological models to describe the cell survival curve is 

dependent on the beam quality as well as quantification methods. Radiobiological 

models and their parameters also could be adopted as indicator to explain the 

mechanistic events in the AuNPs’ radiosensitization effects. The AuNPs size and 

concentration are found to influence the radiosensitization effects and different types 

of cells exhibit different radiosensitivity responses. The radiosensitization impacts of 

AuNPs with radiotherapy beams were considered with prior indication on the cellular 

internalization of AuNPs and the non-toxic concentration for optimal AuNPs 

application. As conclusion, effective radiosensitization by AuNPs could be achieved 

for megavoltage clinical radiotherapy, brachytherapy and advanced radiotherapy such 

as proton beam therapy and monoenergetic synchrotron beam radiotherapy. Precise 

radiobiological characterization drawn from radiobiological models may provide 

insight towards radiobiological impacts induced by AuNPs and standardization of 

quantification methods is crucial for highlighting suitable parameters for AuNPs 

clinical application. Clear directive recommendation from comprehensive preclinical 

data provided in this study may expedite the clinical translation of AuNPs for human 

application.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Modern radiotherapy in cancer treatment 

Millions of people globally are dying with life-threatening cancer diseases for 

decades. However, radiation therapy (RT) leads in cancer treatment by delivering 

higher tumour doses while preserving healthy tissues aims for organ preservation, an 

abiding principle of radiotherapy, thus resulting in increasing cancer cures with the 

least morbidity. Radiotherapy aims to encompass all cancer cells with sufficient 

therapeutic doses of radiation that aim on inhibition of cancer cells proliferating 

capacity, eliminate the malignant cells, reduce the risk of recurrence while 

simultaneously sparing surrounding normal tissues and ultimately to improve survival.  

Enormous progress has been made on the development of precision RT 

treatments using linear accelerators that pave towards current advanced technologies. 

All efforts in understanding RT limitations and improved its ability to treat tumours 

have been done through extensive research and development. Advances in 

technologies specialized in radiation devices to improve RT such as dynamic multi-

leaf collimators, automated treatment planning, new imaging modalities, powerful 

software operations and various treatment delivery methods help to achieve the 

conformal radiation dose.  

The improvement of radiotherapy techniques is routing through several 

approaches. Firstly, the standard of prescribed dose and delivery at the target cancer 

region were elevated. Secondly, introduction of the new method beyond the 

conventional radiation techniques such as volumetric modulated arc therapy (VMAT) 

and particles beam therapy. Thirdly, the combination of image-guidance and 

radiotherapy enable dose monitoring delivery at daily treatment. Last and most 
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innovative outlook are exploring the radiobiological initiatives by manipulating the 

nature of cancer cells behavior to become more radiosensitive towards the radiation 

imposed (Joiner et al., 2009). 

Figure 1.1 shows the evolution of the radiotherapy technique from standard 

conventional treatment to conformal radiotherapy and currently the emerging of 

particles beam therapy. A preclinical study on the synchrotron-based treatment is 

currently undergoing and could be available for patients in the near future.   

 

 

Figure 1.1 The evolution of cancer radiotherapy treatments 
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1.2 Radiobiology in radiotherapy 

The theoretical and experimental radiobiology in radiotherapy offer strategies 

and techniques from the most basic conventional therapy to specific treatment 

directly on the manipulating radiobiological cellular environment. There are three 

different levels on radiotherapy development as shown in Figure 1.2. 

 

Figure 1.2 The different levels of radiotherapy development. Reproduced from 

Joiner et al., 2009. 
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reoxygenation, 

tumour cell 
repopulation and 

mechanism of repair 
of DNA damage.

Treatment strategy :

Development of 
specific new 

approaches in 
radiotherapy. 

Examples: hypoxic 
cell sensitizers, 

targated agents, high-
linear energy transfer 
(LET) radiotherapy, 

accelerated 
radiotherapy and 

hyperfractionation.

Protocols: 

Advice on the choice 
of schedules for 

clinical radiotherapy. 
Example: 

Conversion formulae 
for changes in 

fractionation or dose 
rate, or advice on 

whether to use 
chemotherapy 

concurrently or 
sequentially with 

radiation. Predicting 
the best treatment for 
the individual patient 

(individualized 
radiotherapy)
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1.2.1 Radiation induced cellular damage 

Ionizing radiation causes atomic excitation and ionization of electron from the 

molecules of cells that will induce biological damages and cell death. This effect 

occurs in three phases which the physical phase, chemical phase and biological phase 

as described in the following section. 

1.2.1(a) The time scale of radiation effects 

1.2.1(a)(i) Physical phase 

This phase portrays the mechanisms between charged particles and the atoms 

within the tissue composition.  The light speed of electron takes about 10-18 second to 

pass over the DNA strands and about 10-14 second to go across a mammalian cell. The 

mechanism occurs when the external particles hit the orbital electrons resulting some 

of the electron from atoms being expelled (ionization) and elevating others to higher 

energy levels within an atom or molecule (ex citation ).  The secondary electrons with 

sufficient energies may excite or ionize other atoms near their path. For example, 1 Gy 

of absorbed radiation dose will cause in excess of 105 ionizations within the volume 

of every cell in diameter of 10 um. 

1.2.1(a)(ii) Chemical phase 

The chemical phase illustrates the process of atoms and molecules impaired 

recurred with other cellular components in accelerated chemical interactions. The 

formation of broken chemical bonds results from the processes of ionization and 

excitation direct to the production of ‘free radicals’. These are highly potent with the 

characteristics which were a highly reactive need to the restoration of electronic charge 

equilibrium, which is accomplished within approximately 1 millisecond of radiation 

exposure. The important characteristic of the chemical phase is the competition 

between scavenging reactions, for example with sulphydryl compounds that 
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inactivated the free radicals and fixation reactions that lead to stable chemical changes 

in biologically important molecules. 

1.2.1(a)(iii)  Biological Phase 

The end stage of biological phase determines all the subsequent processes of 

cell death. DNA lesions induced by radiation caused base damage, single-strand breaks 

(SSBs) and double-strand breaks (DSBs) are aforethought to be most lethal. In the case 

of SSBs damage, precision removal damaged base carried out by glycosylases, 

forming damaged base or an abasic sites, which leads to fork collapse and DSB 

formation. 

DSBs are identified by specific protein regulator that works for cell apoptosis 

responses or cell cycle arrest, thus stopping the proliferation of tumour cells with 

damaged DNA and inhibiting tumorigenesis.  The time–scale of the observable effects 

of ionizing radiation may thus extend up to many years after exposure (Begg, Stewart 

& Vens, 2011). Figure 1.3 shows the time-scale of effects of radiation interaction with 

biological materials. 
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Figure 1.3 The time-scale of effects of radiation interaction with biological 

materials. 

 

1.2.1(b) DNA damage mechanism 

Clusters of energy deposition events (ionization and excitations) occur at the 

track of secondary electrons resulting in multiple closely-spaced lesions (multiply 

damaged sites) within a range of 20 nm. This process has been recognized as important 

for cell killing and in regard to the ability of cells to repair such lesions. 

Irradiation generates damage in various patterns of lesions in DNA molecules 

such as strand rupture either single or double strand breaks, base alteration, sugars 

destruction and cross-links involving nuclear proteins such as histones and non-

histones form of dimers. Altogether the number of DNA lesions produced by 

irradiation is about 100 distinct patterns. Alteration induced in the DNA of a cell by a 

dose of 1-2 Gy is approximately: modified base by the formation of radical 
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hydroperoxide > 1000; single strand breaks (SSB) ~1000; double-strand breaks (DSB) 

~40 (Wouters & Begg, 2009).  

The indirect effect of strand break plays a prevalent role in cell killing, the most 

frequent DNA lesion for in vitro study with the highest radiochemical yield. Single-

strand break (SSB) produced a large portion of hydroperoxide radicals. Following 

breakage of the phosphodiester bond, the two strands separate. 

Other experimental data show that low dose radiation produced early 

radiosensitivity DSB, which is a critical indicator for cell killing. While for higher 

doses, cell deaths are a consequence of unrepaired or mis-repaired DSB. Tremendous 

effect is observed with high LET irradiation, resulting in the formation of complex 

DSB lesions. Figure 1.4 shows the DNA damages mechanism of single and double 

strand break. 

 

 

 

Figure 1.4 DNA damages mechanism of single and double strand breaks. 
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1.2.2 Radiation cell survival and damage 

The success of radiotherapy depends on the ability to cause damage to the 

tumour’s cells. Quantification of the damage can be done by using the different 

biological technique. However, clonogenic assay and cell survival curves are the basis 

for understanding radiation cell survival and damages. 

 

1.2.2(a) Cell survival curves 

The first cell survival curve used for quantitative evaluation of radiobiological 

was practised by Puck and Markus, 1956. Then in 2006, Nicolaas et al. had published 

the protocol for clonogenic assay as the assessment for in-vitro techniques, based on 

the ability of the cell considered to be survived then gives rise to a colony formation. 

The colonies containing more than 50 cells were counted and depicted in graphically 

by cell survival curve (Tubiana et al., 1990). Radiation sensitivity evaluation using this 

protocol of different adherent cell type had become the gold standard for radiation 

doses response.  

The outcome of colonies formation will be presented in the so-called survival 

curve, which is consists of survival fraction versus dose. The common pattern shows 

the proportion of surviving cells (Sf) decreases as the dose (D) increases. The curve 

was plotted in semi-logarithmic coordinates (log Sf as a function of D). This type of 

plot emphasizes very small values of S at high doses but may sometimes less 

appreciate survival after low doses. Thus, it is crucial to manipulate curves response 

by presenting in mathematical functions. These are based on the hypothetical 

mechanisms of cell lethality or acute damages, which are always emphasized by 

radiobiological modelling (Tubiana et al., 1990). Figure 1.5 shows the survival curve 

of HeLa cells proliferation versus dose (Puck and Marcus, 1956). The survival curve 
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for single cells of the HeLa cells line depicted the formation of the shoulder of the 

curve is unequivocal and constitutes evidence for a multiple hit killing mechanism. 

 

Figure 1.5 Survival curve of HeLa cells proliferation versus dose (Puck and 

Marcus, 1956). 

 

1.3 Radiobiological model 

Radiobiological modelling is used for quantitative radiation biology that will 

explain both dose-response and time-dose relationships. 

1.3.1 Application of the LQ model 

Radiobiological models primarily LQ model has been implemented over more 

than a decade in clinical radiotherapy. The quantitative mathematical model has been 

adequately simulated the shape of cell-survival curves for mammalian cells and was 

applied to assess the optimum clinical outcome from conventional therapy to 

sophisticated therapeutic approaches.  

LQ model has been classified as the most common fitted radiobiological model 

to the survival dose curve. The LQ model describes the relationship between total 

isoeffective dose and the dose per fraction in fractionated radiotherapy. This model 
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forms the robust quantitative environment for considering the balance between acute 

and late reactions (and effect on the tumour) as dose per fraction and total dose 

changed. This is one of the most important developments in radiobiology application 

to radiotherapy. In the present time, it is strongly recommended that LQ model should 

always be used, with correctly chosen α/β ratio, to describe isoeffect dose relationships 

at least over the range of doses per fraction between 1 and 5 Gy. The α/β ratio describes 

the shape of the fractionation response: a low (0.5-6 Gy) is usually characteristic of 

late-responding normal tissues and indicates a rapid increase of total dose, with 

decreasing dose per fraction and a survival curve for the putative target cells that are 

significantly curved. While for high ratio (7-20 Gy) represents the condition of the 

early–responding normal tissues and rapidly-proliferating carcinomas; it indicates a 

less curved cell-survival response for putative target cells.  The LQ model is an 

appropriate way to be used in clinical calculations and comparisons or in the change 

in total dose for an altered dose per fraction either old or new treatments. For late 

reactions, it is usually unnecessary to modify total dose in response to a change in 

overall time, but for early reactions (and for tumour response) a correction for overall 

treatment time should be included. Although the effect of time on biological effect is 

complex, the simple linear correction has been shown to be of some values. 
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1.3.1(a) The validity of the LQ model 

The question regarding the validity of the LQ approach can only be addressed 

on an endpoint-by-endpoint basis. The LQ model has been applied to datasets from 

quite a few clinical studies, and there has in many cases been good agreement between 

the predicted and observed study outcome. This gives some confidence in using the 

model to estimate the effects of changed dose fractionation in a situation where there 

are clinical parameter estimates.  

Data has supported that the implementation of the LQ model is reliable for dose 

or dose per fraction ranges from about 1 Gy to 5 Gy. However, as the dose range of 

the radiotherapy widens, the classical LQ model becomes less and less accurate 

(Brahme, 2011). According to Andisheh, et al., (2013) LQ model is not suitable in the 

high-dose region where it underestimates the surviving fraction in the high dose range. 

Its parameters are essential but to describe the more complex treatment, a realistic 

model is more desirable. Limitation of the LQ model in clinical radiotherapy could be 

listed as follow:  

1. LQ model does not accurately explain the observed (in-vivo) clinical data 

2. LQ model was derived largely from in-vitro study and does neglect the side 

effect irradiation on the neighbouring normal tissues. 

3. LQ model does not consider the effect towards radioresistant cells which is 

also known as cancer stem cells response. (Kirkpatrick et al. 2008). 
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1.4 Problem statement and rationale of the study 

Ideally, the behavior shown by AuNPs as biocompatible radiosensitizer had 

been proven by many studies. The highly productive of photoelectric interaction 

between AuNPs and x-ray especially at kilovoltage energy caused simultaneously 

increasing of secondary radiation beneficial to induce cell death significantly. 

However, the nature of kilovoltage x-ray beam was very strongly attenuated by soft 

tissues in which treatment limited only for superficial tumours. Therefore, 

megavoltage radiation used in clinical radiotherapy will be more promising as it has 

superior penetration that allows for greater dose uniformity and reduced the dose 

delivered to surrounding healthy tissues. The application of AuNPs with megavoltage 

radiotherapy could produce radiosensitization or dose enhancement as better as 

kilovoltage x-ray beam (McMahon et al. 2011, Liu et al., 2018). Radiosensitization 

effects have also been explored for advanced radiotherapy modalities using proton and 

synchrotron-based therapy (Cho et al., 2016, Enferadi et al., 2017). However, the data 

reported are still limited and identification on further parameters for quantifying 

AuNPs radiosensitization effects is extremely important for clinical stage.  

 Therefore, the novelty of this study is to determine the radiosensitization 

effects by AuNPs for different radiotherapy modalities:  megavoltage photon beam, 

electron beam and high-dose rate (HDR) gamma rays f rom Ir-192 source available in 

HUSM (convebtional radiotherapy). For advanced radiotherapy, we had achanced to 

investigate proton beam and monoenergetic synchrotron photon beam of kilovoltage 

energies from our international research collaboration team. The radiosensitization 

response is simultaneously manifested with various radiobiological model and 

quantification methods. Such efforts had never been done from other reserachers in 

full detail, thus the results obtained from this thesis will contribute to a more 
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comprehensive data in unravelling the mechanisms that influence the tissue’s 

radiobiological response and cells’ reaction systems treated with AuNPs as 

radiosensitizer across multiple radiotherapy beams. This is extremely important when 

considering the wide range of various radiotherapy beams combined with AuNPs 

treatments; as such huge data range will encompass a great understanding of the 

complexity and specificity of identifying the ideal treatment selection and formulation 

when optimizing the radiation dose given for clinical translations.  

 

1.5 General objective  

To characterize the radiosensitization effects by gold nanoparticles (AuNPs) 

for advanced radiotherapy using multiple radiobiological models. 

 

1.6 Specific objectives 

1. To investigate the cytotoxicity, cellular uptake and intercellular localization of 

AuNPs.  

2. To quantify the radiosensitization effects by AuNPs for photon beam, electron 

beam and HDR brachytherapy as well as proton beam and monoenergetic synchrotron 

beam. 

3. To analyze the validity of different radiobiological models and quantification 

methods in characterizing the radiosensitization effects by AuNPs. 

4. To evaluate parameters that influence the radiosensitization effects by AuNPs 

such as cell types, beam energy, nanoparticles size and concentration.  
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1.7 Thesis outlines 

The thesis is divided into two parts. Part 1 is the study on conventional clinical 

radiotherapy which as follow photon beam, electron beam and HDR brachytherapy. 

The study was conducted at Hospital Universiti Sains Malaysia, Health Campus, 

Kubang Kerian, Kelantan. 

  Part II consists of the study conducted using specialized beam of the proton 

beam and monochromatic synchrotron photon beam. The study on proton beam was 

conducted at Hyogo Ion Beam Medical Center in Hyogo, Japan from the period of 

2016-2018. The study using monochromatic synchrotron beam was conducted at 

Australian Synchrotron in Clayton Melbourne Australia in which the beam time was 

acquired in December 2015.  

 The chapters of the thesis:  

Chapter 1:  The introduction describes the modern radiotherapy approaches, the 

specification on radiobiological effects and the innovation of nanomedicine 

applications. The objectives of study are also emphasized.  

 

Chapter 2: The literature review of the study details on gold nanoparticles application 

with radiotherapy, the mechanism of the interactions and the pre-clinical test of 

previous study. 

 

Chapter 3: The methodology of the study was initially specified on cell culture 

maintenance, gold nanoparticles preparation, cellular localization, uptake and 

cytotoxicity assay protocol. The cell irradiations setup, radiation dosimetry and 

clonogenic assay were illustrated. Radiobiological models applied for cell survival 

curve and quantification methods of radiosensitization effects were then described.   
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Chapter 4: The description of the results begins with gold nanoparticles uptake, 

localization and cytotoxicity. The cell survival analysis using different radiobiological 

models were then presented. Linear Quadratic (LQ), Multi-Target (MT), Repairable 

Conditionally Repair (RCR), Pade’ Linear Quadratic (PLQ), Repair (RM), Kavanagh 

and Newman (KN) and Two Components (2C) Models are validated. The survival 

curve of different beam was compared and analysed. Radiosensitization impact were 

quantified using different methods (DEF, SER, RER, REF). The radiosensitization 

effects due to AuNPs size, concentration and cell types are also examined. 

 

Chapter 5: The findings of gold nanoparticles uptake, localization and cytotoxicity 

was discussed. The detailed-on the radiosensitization impact for conventional 

radiotherapy are explained. The influence of AuNPs sizes, concentrations and different 

cells response were justified.  

 

Chapter 6: Introduction and literature on proton beam therapy was briefly described. 

The cell survival experimental work for proton beam was illustrated. The study was 

also supported by additional measurement of reactive oxygen species (ROS) due to 

AuNPs interaction with proton beam. All those findings were discussed in detail 

accordingly. 

 

Chapter 7: A brief introduction on synchrotron radiation production and its 

applications is described. Literature review on previous challenge in overcome dose 

limitation and optimization in radiotherapy were also discussed. In this study, the 

experimental methods were explained, and results were analyzed using similar 

radiobiological models approaches. The quantification of radiosensitization effects has 
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also been evaluated. The experimental data were also supported by theoretical dose 

enhancement calculation. All the corresponding results were discussed.  

 

Chapter 8: The conclusion of the study was reported by each main chapter, 

respectively. Limitations and future recommendations were also discussed briefly. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Nanomedicine in radiotherapy 

Nanomedicine is an active research area that holds great future to intercede 

with cancer treatment at the molecular level and deliver effective doses to targeted 

cancer cells with improved selectivity and lessened toxicities towards neighbour 

normal tissues. The core of nanomedicine is the development of nanoparticles, 

materials that hold unique distinctions such as nanoscale size, high surface-to-volume 

ratio and suitable physicochemical characteristics. Nanoparticles have wide range of 

types are able to act as a multifunctional agent that incorporates with the specific 

binding of drugs to targets in cancer cells or the tumour microenvironment, 

simultaneous visualization of tumours using innovative imaging techniques, prolonged 

drug-circulation times, controlled drug-release kinetics, and superior dose scheduling 

for improved patient compliance. In an example, the carbon nanotubes have future 

usefulness in cancer thermal ablation therapy, because of their electrical and thermal 

conductivity. However, their properties such as length and diameter might cause 

inflammatory and toxic effects (Markman et al., 2013). 

Novel metal nanoparticles in particular gold nanoparticles are also capable as 

a therapeutic agent, imaging contrast media and nanocarrier of such proteins, DNA or 

RNA. The gold core is considered to be non-toxic and the therapeutic payload can be 

forced to be released from the conjugate due to their photo-physical properties 

(Webster et al., 2013). In radiotherapy, nanoparticles possess properties as a 

radiosensitizer to enhance radiation dose to the target by increasing the probability of 

radiation interaction and production of the secondary electron that will cause DNA 

damage. Examples of nanoparticles based radiosensitizer that has the potential to be 
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applied in radiotherapy are metallic nanoparticles (Au, Bi, Pt, Gd), superparamagnetic 

iron oxide nanoparticles, quantum dots and various hybrid nanoparticles.  

Metallic nanoparticles composite a packed of metal particles which are 

functionalized as scatter medium when interact with high energy radiation 

(megavoltage) to produce secondary radiation. The secondary radiation directly 

localized into tumours cells in large amount at a short distance. This mechanism gives 

therapeutic radiation in tumours area at the same time despair neighbour of healthy 

tissues. The concept of using high Z materials incorporated in cells was initially 

investigated using iodine which presented higher efficiency for secondary radiation 

production (Matsudaira et al., 1980). This study was also supported by a separate study 

using gold films that indicated multifold and significant dose enhancement effect upon 

irradiation (Regulla et al., 1998).  Dose enhancement effects induced by high Z 

materials are believed to be more efficient by resizing the gold or others types of metal 

into nanoparticles.  

Several types of metallic nanoparticles have been introduced as radiosensitizer 

show similar significant dose enhancement effects when tested both in-vitro and in-

vivo. Metallic nanoparticles such as gadolinium, iron oxide, titanium and silver 

nanoparticles provide similar outcome of dose enhancement or radiosensitization 

effects (Tokumitsu et al., 2000; Xu et al., 2009; Khoei et al., 2014, Nakayama et al., 

2016 ). Superparamagnetic iron oxide nanoparticles for examples withhold special 

properties of highly biocompatible while collaterally induced cytotoxic effects when 

interact with radiation (Klein et al., 2013). In some cases, these nanoparticles are also 

combined with chemotherapeutic agents or nanocomposite metal based like 

(Fe2O4/Ag) for increased efficiency (Huang et al., 2012) (Zhao et al., 2012).  
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Other than metal-based nanoparticles, the non-metal nanoparticles also exhibit 

potential to acts as radiosensitizer. Klein et al. (2012) have investigated the ultrasmall 

uncapped and aminosilanized oxidized silicon nanoparticles to treat breast cancer cells 

with X-rays. Quantum dots which made of semiconductor (CaF, LaF, ZnS or ZnO) 

have been developed as photosensitizer capable in producing radicals upon absorption 

of visible light. This type of light however gives less penetration and suitable 

specifically for superficial cancer treatments (Shao et al., 2011).  

Nanomedicine in general occupied various applications in radiotherapy. 

Summary most of all classification of nanomedicine applied in elevating radiation 

efficiency is presented in Figure 1.6.  

 

 

Figure 2.1 Nanomedicine in radiotherapy 

Surviving Targeting 
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2.2 Application of Gold Nanoparticles (AuNPs) in radiotherapy 

The development of potential high Z materials as radiosensitizers in recent 

years becomes more interesting. The basic principle of primary radiation collide with 

high Z elements deposited secondary radiation locally surrounding targeted cancer 

area may improve radiotherapy efficiency in treating malignant diseases. Pioneer 

studies have proven the presence of iodine in mammalian cells in culture indeed 

induced radiosensitization or dose enhancement effects that enhance cell killing when 

combined with radiation. Subsequent studies with other types high Z matters had been 

reported such as gold (Au), silver (Ag), hafnium oxide, platinum (Pt), gadolinium, iron 

oxide (Fe3O4) and quantum dots (QDs). The most promising high Z elements which is 

gold, tuned into nanoparticles scale given efficiency distribution throughout the 

specific target. Gold nanoparticles (AuNPs) features of synthetic versatility, capable 

for size, shape and surface characteristics modification. 

Regulla et al. (2000) were first verified the dose enhancement effects using 

monolayer culture of C3H/10T1/2 mouse embryo fibroblasts irradiated with 48 keV 

X-ray on gold foil. This is followed by seminal work by Hainfeld et al. (2010) on nano-

small sized 1.9 nm AuNPs that were injected into the mice bearing SCCV11 squamous 

cell carcinomas. The results show improvement in the survival days by the increment 

from 53 days (-gold) to 76 days (+gold). The promising results of AuNPs are due to 

the higher mass attenuation coefficient of AuNPs in which at 100 keV of photon 

energy, gold could provide 2.7 times better sensitivity per unit weight than iodine and 

gadolinium. This indication picturized the existence of AuNPs in the targeted tumour 

may cause the dose enhancement effects in radiotherapy (Goswami et al., 2017). 

Improvised gold nanoparticles i.e: AuNP-dual peptide has been investigated to show 

that at 4 Gy, dose enhancement factor (DEF) up to 3.2 had been produced (Nicol et al., 
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2017).  AuNPs in combination with radiation also delayed the tumour growth around 

10.2 days instead of 3.4 day with irradiation alone (Nicol et al., 2018). 

Other promising study using multifunction AuNPs-formulation (Chitosan-

capped-AuNPs-Doxorubicin) with MCF-7 cells irradiated using 6 MV photon beam 

exhibited potent radiosensitization effects up to 2 fold compared to irradiation only 

(Fathy et al. 2018). Another latest investigation reported that 20 nm of AuNPs-PEG- 

anti-human epidermal growth factor receptor type 2 (HER2) antibody showed a 

significant dose enhancement at only 3 Gy of radiation dose (Hatoyama et al., 2019). 

Shreds of evidence clearly potrayed the potential of the AuNPs application as 

radiosensitizer on top of others different promising usage of AuNPs in many areas.  

 

2.2.1 Characteristic and properties of AuNPs 

Gold nanoparticles have been reported to show potential as radiosensitizers for 

radiotherapy. This mainly due to its special characteristic and properties in Table 2.1. 

Table 2.1 The characteristic and properties of AuNPs 

Characteristics  High-Z atomic number (Z=79), an ideal material for 

radiosensitization reactions when combining with 

radiotherapy (Hainfeld & Slatkin, 2008). 

 Gold being very inert, it is highly biocompatible which issues 

need to be considered as in vivo inflammatory effect would 

be resulted (Shukla et al., 2005). 

 Nanoparticles surface ratio able to enhance the effect of the 

radiation over a large area of tumour thus eliminating the 

need of the nanoparticles to be delivered to all the cells of the 

tumour tissues (Jain et al., 2007).  
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Properties  Nanoparticles are known to have low systemic clearance as 

compared to low molecular contrast agents such as iodine 

allowing the photosensitizing material enough time to get 

absorbed into the tumour tissue (Longmire et al., 2008).  

 Nanoparticles are known to be well absorbed into the 

systemic circulation, better permeation into the tumour tissue. 

This along with lower clearance rate results in the enhanced 

permeation and retention (EPR) effect (Iyer et al., 2006). 

 Better attaching target with antibodies or other targeting 

moieties, given a good specifically delivered to the tumour 

cells location (Hainfeld et al., 2008).  

 The feasible nano shape based on delivery requirements of 

the tumours tissues (such as its size and location) so as to 

achieve optimum delivery and effects (Chithrani et al., 2010).  

 Improving specific tissue pharmacokinetics, cause them easy 

to image and quantify by using optimum dose level for best 

result (Xia et al., 2016). 
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2.2.2 Radiosensitization Effects by AuNPs 

2.2.2(a) Theoretical dose enhancement by high Z materials 

A non-Monte Carlo method also known as a systematic analysis of mass 

attenuation coefficient in different energies of photon had been simulated by Corde et 

al. (2004) for dose enhancement produced by iodine. This theoretical model-based 

calculation was also been used by Rahman et al. (2009) on AuNPs. The theoretically 

expected dose enhancement ratio or factor was calculated from the variation of the 

mass energy-absorption coefficient of the target due to the presence of high Z matter 

such as AuNPs. The dose enhancement factor (DEF) calculation is shown in the 

Equation 2.1: 

 

 𝐷𝐸𝐹 =
(

𝜇𝑒𝑛
𝜌

)
𝐸

𝑤𝑎𝑡𝑒𝑟+ 𝐴𝑢

(
𝜇𝑒𝑛

𝜌
)

𝐸

𝑤𝑎𝑡𝑒𝑟  =  
 𝑤𝐴𝑢(

𝜇𝑒𝑛
𝜌

)
𝐸

𝐴𝑢
+ (1− 𝑤𝐴𝑢)(

𝜇𝑒𝑛
𝜌

)
𝐸

𝑤𝑎𝑡𝑒𝑟

(
𝜇𝑒𝑛

𝜌
)

𝐸

𝑤𝑎𝑡𝑒𝑟   (2.1) 

 

The mass-energy absorption coefficient for the considered compound were 

simulated with monochromatic x-rays beam (energy: E) and in the fraction by weight 

of Au in the mixture. Figure 2.1 shows the theoretical DEF for several Au aqueous 

mixtures. 
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Figure 2.2       Energy dependence of the theoretical of DEF for several Au aqueous 

mixtures (from bottom to top, the mass proportion of Au in water, wAu 

range from 0.01 to 1. 

 

  


