HYDROGEN PURIFICATION FROM SYNGAS BY PSA USING MICROPOROUS MEDIA

ILI KHAIRUNNISA BINTI SHAMSUDIN

UNIVERSITI SAINS MALAYSIA

2020

HYDROGEN PURIFICATION FROM SYNGAS BY PSA USING MICROPOROUS MEDIA

by

ILI KHAIRUNNISA BINTI SHAMSUDIN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

August 2020

ACKNOWLEDGEMENT

Alhamdulillah, I would like to express my highest gratitude to Allah S.W.T. for blessing me with strengths to finally accomplish my studies. To my parents, Mr. Shamsudin bin Nordin and Mrs. Siti Fatimah binti Yahaya, my dearest husband Mr. Noriman bin Kamarudin, my beloved son Khalif Ayden bin Noriman and all my family members, thank you for giving me strength, patience, support, indulgence and blessing throughout my PhD journey.

I sincerely would like to convey my appreciation to my main supervisor, Professor Dr. Mohd. Roslee Bin Othman for his constant guidance, patience and trust towards the completion of this research. Also, a note of thank you to my co-supervisor, Professor Jinsoo Kim of Kyung Hee University and Dr. Iylia binti Idris for endless support. A special appreciation to the Dean of School of Chemical Engineering, USM, Professor Ir. Dr. Zainal Ahmad and Deputy Dean of Research, Professor Dr. Mohd. Azmier Ahmad for generous support and attention. To all technician and staff of School of Chemical Engineering, thank you very much for your co-operation.

Thanks to all my post graduates friends especially Mr. Muhammad Azan bin Tamar Jaya, Mr. Aman bin Abdullah and Miss Muthmirah binti Ibrahim for their advices and moral support during experimental stage and writing of this dissertation. To those who are directly or indirectly involved in this research, your contribution shall not be forgotten. Again, thank you very much. I would also like to acknowledge support from the Universiti Sains Malaysia through Bridging and Research University (RUI) grants, MyBrain Phd scholarship and FRGS-GSP from MOHE for supporting my research work.

Ili Khairunnisa binti Shamsudin

(August, 2020)

TABLE OF CONTENTS

Page

	e
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF PLATES	xix
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxiii
ABSTRAK	xxvi
ABSTRACT	xxviii

CHAPTER ONE – INTRODUCTION

1.1	Concern on anthropogenic carbon dioxide release	1
1.2	Synthesis gas (syngas)	5
1.3	Technologies for H ₂ purification from CO ₂	7
1.4	Pressure Swing Adsorption (PSA) unit for H ₂ purification	13
1.5	Problem statement	15
1.6	Research objectives	17
1.7	Research scope	18
1.8	Organization of the thesis	19

CHAPTER TWO – LITERATURE REVIEW

Adsorbents in PSA	
Carbon-based adsorbent	25
2.2.1 Activated carbon (AC) as adsorbent	26
2.2.2 Carbon molecular sieve (CMS) as adsorbent	30
Modified organic framework (MOF)	33
2.3.1 Zeolitic imidazolate frameworks-7 (ZIF-7) as adsorbent	35
2.3.2 A metal–organic framework (UiO-66) as adsorbent	37
Adsorption equilibrium isotherms, kinetics and breakthroughs	43
Novel PSA-based process	55
Fundamentals of PSA	56
Modification to the 'Skarstrom' cycle	60
Performance parameters definition	61
	 Carbon-based adsorbent 2.2.1 Activated carbon (AC) as adsorbent 2.2.2 Carbon molecular sieve (CMS) as adsorbent Modified organic framework (MOF) 2.3.1 Zeolitic imidazolate frameworks-7 (ZIF-7) as adsorbent 2.3.2 A metal–organic framework (UiO-66) as adsorbent Adsorption equilibrium isotherms, kinetics and breakthroughs Novel PSA-based process Fundamentals of PSA Modification to the 'Skarstrom' cycle

CHAPTER 3 – MATERIALS AND METHODS

3.1	Chemi	Chemicals and Materials 6.		
3.2	Equipment used in preparation of adsorbents 6			
3.3	Prepar	Preparation of adsorbents 71		
	3.3.1	Carbon-based adsorbents: Palm kernel shell activated carbon (PKS-	71	
		AC)		
	3.3.2	Carbon-based adsorbents: Carbon molecular sieve (CMS)	73	
	3.3.3	Modified organic framework (MOF) adsorbents: ZIF-7	74	

	3.3.4	Modified organic framework (MOF) adsorbents: UiO-66	76
	3.3.5	Summary of adsorbents used in the study	78
3.4	Analy	tical equipment used for characterization studies of adsorbents	79
	3.4.1	Thermogravimetric analysis (TGA)	79
	3.4.2	X-ray diffraction (XRD) analysis	80
	3.4.3	Fourier transformed infrared (FTIR) analysis	80
	3.4.4	Scanning electron microscope (SEM) and energy dispersive x-ray	81
		(EDX) analysis.	
	3.4.5	Particle size analyzer	81
	3.4.6	BET surface analysis and pore characteristics	82
	3.4.7	Pulse chemisorption of carbon dioxide (CO ₂ -PC) and temperature	82
		programmed desorption of carbon dioxide (CO ₂ -TPD)	
3.5	Adsor	ption column design	83
3.6	5 Transient breakthrough studies		84
	3.6.1	Breakthrough-column experimental set-up	85
	3.6.2	Gas analysis	86
	3.6.3	Breakthrough Study Parameter	86
		3.6.3 (a) Effect of Adsorbent Type	86
		3.6.3 (b) Effect of breakthrough pressure	87
3.7	Gas ac	dsorption and separation studies	87
	3.7.1	Pressure swing adsorption (PSA) test rig set-up	88
	3.7.2	Operation of gas adsorption and separation test rig	90

3.7.3	Adsorbents performance	97
3.7.4	Pressure Swing Adsorption Parameters	98
	3.7.4 (a) Effect of adsorbent type	98
	3.7.4 (b) Effect of adsorption pressure	98
	3.7.4 (c) Effect of adsorption time and blowdown time	98
	3.7.4 (d) Optimization (maximization) of experiment variables	98
	3.7.4 (e) Material balance of PSA unit	99
	3.7.4 (f) Energy consumption of PSA unit	100

CHAPTER 4 – RESULTS AND DISCUSSIONS

4.1	Chara	cterization and analysis of sorbents	101
	4.1.1	Thermal stability	101
	4.1.2	Structure and phases presents	107
	4.1.3	Functional group analysis	111
	4.1.4	Surface morphologies and qualification of elemental compositions.	115
	4.1.5	Particle size analysis	123
	4.1.6	Adsorbent pore characters	128
	4.1.7	CO ₂ adsorption/desorption measurements	132
4.2	Transi	ent breakthrough studies	137
	4.2.1	Breakthrough Study Parameter	142
		4.2.1 (a) Effect of Adsorbent Type	143
		4.2.1 (b) Effect of breakthrough pressure	144
4.3	Adsor	ption isotherm	145

4.4	Adsorp	ption kinetio	cs and mechanism	148
4.5	Gas ad	sorption an	d separation performance studies of adsorbents via PSA	158
	unit			
	4.5.1	Binary gas	s separation studies of carbon compound based adsorbents:	158
		Palm kern	el shell activated carbon (PKS-AC)	
		4.5.1 (a)	Effect of initial pressure of inlet feed gas	158
		4.5.1 (b)	Effect of adsorption time	160
		4.5.1 (c)	Effect of blowdown time	162
	4.5.2	Binary gas	s separation studies of carbon compound based adsorbents:	164
		Carbon me	olecular sieve (CMS)	
		4.5.2 (a)	Effect of initial pressure of inlet feed gas	164
		4.5.2 (b)	Effect of adsorption time	166
		4.5.2 (c)	Effect of blowdown time	168
	4.5.3	Binary gas	s separation studies of modified organic framework (MOF)	170
		adsorbents	s: ZIF-7	
		4.5.3 (a)	Effect of initial pressure of inlet feed gas	170
		4.5.3 (b)	Effect of adsorption time	172
		4.5.3 (c)	Effect of blowdown time	174
	4.5.4	Binary gas	s separation studies of modified organic framework (MOF)	176
		adsorbents	s: UiO-66	
		4.5.4 (a)	Effect of initial pressure of inlet feed gas	176
		4.5.4 (b)	Effect of adsorption time	178
		4.5.4 (c)	Effect of blowdown time	180

4.6	Process optimization using OFAT methodology	182
4.7	PSA result summary	185
4.8	Material balance of PSA	186
4.9	Energy consumption of PSA	188

CHAPTER FIVE – CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	193
5.2	Recommendations	196

REFERENCES 197

APPENDICES

Appendix A:

	A.1 Photograph of prepared sol apparatus
	A.2 Photograph of pressure swing adsorption (PSA) unit
Appendix B:	
	B.1: Calibration of gas concentration using gas chromatographer (GC)
	data
	B.2: Material balance of PSA

B.3: Energy consumption of PSA unit

B.4: Work done of PSA unit

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 1.1	Syngas composition from coal gasification.	5
Table 1.2	Separation techniques for purification of H_2 and CO_2 removal.	12
Table 2.1	Characteristics of solid adsorbents	27
Table 2.2	List of properties in development of carbon adsorbents	40
Table 2.3	List of properties in development of MOF adsorbents	42
Table 2.4	Adsorption isotherm models.	44
Table 2.5	Adsorption kinetic models.	49
Table 2.6	Indicator parameters of a PSA	62
Table 3.1	List of chemicals and raw materials	65
Table 3.2	List of equipment.	67
Table 3.3	List of items used for the breakthrough study.	69
Table 3.4	List of items used for the vacuum pressure swing adsorption.	70
Table 3.5	List of adsorbent prepared in this study.	78
Table 3.6	Certified properties of CMS	78
Table 3.7	Adsorption column parameters	84
Table 3.8	GC operational conditions	86
Table 3.9	Operational parameters of PSA experiment	99
Table 4.1	TG-analysis of weight losses for adsorbents.	102

Table 4.2	Analysis of crystalline phase for adsorbents.	107
Table 4.3	Analysis of particle size distribution for adsorbents.	124
Table 4.4	Porous structure of adsorbents.	128
Table 4.6	The CO ₂ adsorption breakthrough and exhaustion time for adsorbents.	142
Table 4.7	Parameters of Langmuir and Freundlich models designed for adsorbents.	146
Table 4.8	Kinetic models parameters for adsorbents.	149
Table 4.9	Intra-particle diffusion model parameters for adsorbents.	157
Table 4.10	Parameters study of PSA performances on carbon-based adsorbents.	183
Table 4.11	Parameters study of PSA performances on MOF-adsorbents.	184
Table 4.12	Optimized 2-fixed bed PSA unit performance.	185

LIST OF FIGURES

Page

Figure 1.1	Global greenhouse gas emission	2
Figure 1.2	Global energy demand and carbon emission.	3
Figure 1.3	Process flow of H ₂ production from coal gasification.	6
Figure 2.1	Pore structure of activated carbon (AC)	29
Figure 2.2	Pore structure of carbon molecular sieves (CMS)	31
Figure 2.3	Structure of ZIF-7	36
Figure 2.4	Structure of UiO-66	38
Figure 2.5:	Six different types of adsorption isotherms according to BDDT	46
Figure 2.6	General structure of porous adsorbent with particle diffusion	48
Figure 2.7	Breakthrough curve	51
Figure 2.8	Adsorption isotherm based on principle of PSA.	54
Figure 2.9	A scheme of the first patented two-column PSA and the four steps	56
	of the "Skarstrom cycle"	
Figure 2.10	Valve sequencing of two-columns PSA and the four steps of the	58
	"Skarstrom cycle"	
Figure 3.1	Flow diagram of the research methodology	64
Figure 3.2	Flow process of PKS pyrolysis, physical and chemical activation.	72
Figure 3.3	Temperature profile for PKS carbonization (pyrolysis)	73
Figure 3.4	Flow chart of CMS pyrolysis, physical and chemical activation	74
Figure 3.5	Schematic diagram of ZIF-7 development	76
Figure 3.6	Flow chart of ZIF-7 development	76

Figure 3.7	Flow chart of UiO-66 development		
Figure 3.8:	Schematic diagram of the adsorption column configuration	83	
Figure 3.9	Experimental set-up for breakthrough analysis	85	
Figure 3.10	Schematic diagram of PSA test rig	89	
Figure 3.11	Schematic diagram of the two-columned pressure swing	92	
	adsorption unit and valves sequencing for different steps in the		
	cycle involving pressure equalization mode.		
Figure 3.12	Pressure profile of: (a) Overall PSA steps, and	96	
	(b) Experimental PSA one column at a time.		
Figure 3.13	Material balance in a cyclic steady state of PSA unit.	99	
Figure 4.1	TG-DTG analysis profile of PKS-AC	102	
Figure 4.2	TG-DTG analysis profile of CMS.	104	
Figure 4.3	TG-DTG analysis profile of ZIF-7	105	
Figure 4.4	TG-DTG analysis profile of UiO-66	106	
Figure 4.5	XRD patterns for PKS-AC.	108	
Figure 4.6	XRD patterns for CMS	109	
Figure 4.7	XRD patterns for ZIF-7	110	
Figure 4.8	XRD patterns of UiO-66	111	
Figure 4.9	PKS-AC spectra.	112	
Figure 4.10	CMS spectra	113	
Figure 4.11	ZIF-7 spectra.	114	
Figure 4.12	UiO-66 spectra.	115	
Figure 4.13	EDX analysis on elemental composition of PKS-AC.	117	

Figure 4.14	EDX analysis on elemental composition of CMS		
Figure 4.15	EDX analysis on elemental composition of ZIF-7.	121	
Figure 4.16	EDX analysis on elemental composition of UiO-66.	123	
Figure 4.17	Particle size distribution of PKS-AC.	124	
Figure 4.18	Particle size distribution of CMS.	125	
Figure 4.19	Particle size distribution of ZIF-7.	126	
Figure 4.20	Particle size distribution of UiO-66.	127	
Figure 4.21	Nitrogen sorption isotherms for PKS-AC.	129	
Figure 4.22	Nitrogen sorption isotherms for CMS	130	
Figure 4.23	Nitrogen sorption isotherms for ZIF-7.	131	
Figure 4.24	Nitrogen sorption isotherms for UiO-66 crystals	131	
Figure 4.25	CO ₂ -pulse chemisorption and CO ₂ -TPD analysis of PKS-AC as	133	
	function of: (a) time, and (b) temperature.		
Figure 4.26	CO ₂ -pulse chemisorption and CO ₂ -TPD analysis for CMS as	134	
	function of: (a) time, and (b) temperature.		
Figure 4.27	CO ₂ -pulse chemisorption and CO ₂ -TPD analysis of ZIF-7 as	135	
	function of: (a) time, and (b) temperature.		
Figure 4.28	CO ₂ -pulse chemisorption and CO ₂ -TPD analysis for UiO-66 as	136	
	function of: (a) time, and (b) temperature.		
Figure 4.29	Breakthrough concentration with time for hydrogen and carbon	138	
	dioxide using PKS-AC adsorbent at:		
	(a) 1 bar, (b) 2 bar and (c) 3 bar.		

Figure 4.30	Breakthrough concentration with time for hydrogen and carbon	139
	dioxide using CMS adsorbent at: (a) 1 bar, (b) 2 bar and (c) 3 bar.	
Figure 4.31	Breakthrough concentration with time for hydrogen and carbon	140
	dioxide using ZIF-7 adsorbent at: (a) 1 bar, (b) 2 bar and (c) 3 bar.	
Figure 4.32	Breakthrough concentration with time for hydrogen and carbon	141
	dioxide using UiO-66 adsorbent at:	
	(a) 1 bar, (b) 2 bar and (c) 3 bar.	
Figure 4.33	Langmuir isotherm models designed for adsorbents.	145
Figure 4.34	Freundlich isotherm models designed for adsorbents.	146
Figure 4.35	CO ₂ adsorption kinetics of PKS-AC.	150
Figure 4.36	CO ₂ adsorption kinetics of CMS.	151
Figure 4.37	CO ₂ adsorption kinetics of ZIF-7.	152
Figure 4.38	CO ₂ adsorption kinetics of UiO-66.	153
Figure 4.39	Intra-particle diffusion model for CO ₂ adsorption on adsorbents.	155
Figure 4.40	Comparison of the effect of initial adsorption pressures on CO_2/H_2	159
	gas separation performances for PKS-AC at 1, 2 and 3 bar, which	
	are represented in a series of the following plots of:	
	(i) purity versus recovery for CO ₂ enriched stream;	
	(ii) purity versus recovery for H ₂ enriched stream;	
	(iii) purity versus cycle for CO ₂ enriched stream; and	
	(iv) purity versus cycle for H ₂ enriched stream; respectively.	

Figure 4.41 Comparison of the effect of adsorption time on CO₂/H₂ gas 161 separation performances for PKS at 2 bar and 0.5, 1, 3, 5 mins adsorption time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- (iv) purity versus cycle for H₂ enriched stream; respectively.
- Figure 4.42 Comparison of the effect of blowdown time on CO₂/H₂ gas 163 separation performances for PKS-AC at 2 bar, 5 mins adsorption and 0.5, 1, 3, 5 blowdown time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- Figure 4.43 Comparison of the effect of initial adsorption pressures on CO₂/H₂ 165 gas separation performances for CMS at 1, 2 and 3 bar, which are represented in a series of the following plots of:
 (i) purity versus recovery for CO₂ enriched stream;
 (ii) purity versus recovery for H₂ enriched stream;
 - (iii) purity versus cycle for CO₂ enriched stream; and
 - (iv) purity versus cycle for H₂ enriched stream; respectively.

Figure 4.44 Comparison of the effect of adsorption time on CO₂/H₂ gas separation performances for CMS at 2 bar and 0.5, 1, 3, 5 mins adsorption time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- (iv) purity versus cycle for H₂ enriched stream; respectively.
- Figure 4.45 Comparison of the effect of blowdown time on CO₂/H₂ gas 169 separation performances for CMS at 2 bar, 5 mins adsorption and 0.5, 1, 3, 5 blowdown time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- Figure 4.46 Comparison of the effect of initial adsorption pressures on CO₂/H₂ 171 gas separation performances for ZIF-7 at 1, 2 and 3 bar, which are represented in a series of the following plots of:
 (i) purity versus recovery for CO₂ enriched stream;
 - (ii) purity versus recovery for H₂ enriched stream;
 - (iii) purity versus cycle for CO₂ enriched stream; and
 - (iv) purity versus cycle for H₂ enriched stream; respectively.

Figure 4.47 Comparison of the effect of adsorption time on CO₂/H₂ gas separation performances for ZIF-7 at 2 bar and 0.5, 1, 3, 5 mins adsorption time, which are represented in a series of the following plots of: 173

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

(iv) purity versus cycle for H₂ enriched stream; respectively.

Figure 4.48 Comparison of the effect of blowdown time on CO₂/H₂ gas 175 separation performances for ZIF-7 at 3 bar, 3 mins adsorption and 0.5, 1, 3, 5 blowdown time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- Figure 4.49 Comparison of the effect of initial adsorption pressures on CO₂/H₂ 177 gas separation performances for UiO-66 at 1, 2 and 3 bar, which are represented in a series of the following plots of:
 (i) purity versus recovery for CO₂ enriched stream;
 - (ii) purity versus recovery for H₂ enriched stream;
 - (iii) purity versus cycle for CO₂ enriched stream; and
 - (iv) purity versus cycle for H₂ enriched stream; respectively.

Figure 4.50 Comparison of the effect of adsorption time on CO₂/H₂ gas 179 separation performances for UiO-66 at 2 bar and 0.5, 1, 3, 5 mins adsorption time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

(iv) purity versus cycle for H₂ enriched stream; respectively.

Figure 4.51 Comparison of the effect of blowdown time on CO₂/H₂ gas 181 separation performances for UiO-66 at 2 bar, 5 mins adsorption and 0.5, 1, 3, 5 blowdown time, which are represented in a series of the following plots of:

(i) purity versus recovery for CO₂ enriched stream;

(ii) purity versus recovery for H₂ enriched stream;

(iii) purity versus cycle for CO₂ enriched stream; and

- Figure 4.52 Optimized (maximized) of 2-fixed bed PSA unit performance on 186 organic and inorganic adsorbents.
- Figure 4.53 Material balance in a cyclic steady state of PSA unit using PKS-AC adsorbent.
- Figure 4.54 Cumulative energy reduction by PKS-AC at 2 bar. 188

LIST OF PLATES

Page

Plate 3.1	Raw and pyrolzed PKS precursor.	71
Plate 4.1	SEM images of PKS-AC at different magnifications:	116
	(a) x10k, (b) x20k, (c) x30k and (d) x40k.	
Plate 4.2	SEM images of CMS at different magnifications:	118
	(a) x10k, (b) x20k, (c) x30k and (d) x40k.	
Plate 4.3	SEM images of ZIF-7 at different magnifications:	120
	(a) x10k, (b) x20k, (c) x30k and (d) x40k.	
Plate 4.4	SEM images of UiO-66 at different magnifications:	122
	(a) x10k, (b) x20k, (c) x30k and (d) x40k.	

LIST OF SYMBOLS

Symbol	Description	Unit
C/Co	Concentration ratio	-
Ce	Concentration of adsorbate at equilibrium	mg/L
Co	Adsorbate initial concentration	mg/L
Ct	Adsorbate concentration at any given time, t	mg/L
\mathbf{k}_1	Pseudo-first order rate constant	min ⁻¹
k ₂	Pseduo-second order rate constant	g/mg.min
$K_{\rm f}$	Freundlich isotherm contant	$(mg/g)(L/mg)^{1/n}$
\mathbf{K}_{id}	Intraparticle diffusion rate constant	mgg ⁻¹ min ^{-1(1/2)}
KL	Langmuir isotherm rate constant	L/mg
m	Mass of adsorbent	g
$M_{\rm w}$	Molecular weight	g/mol
n	Heterogeneity factor	-
P/Po	Partial Relative pressure	-
Р	Pressure	bar
\mathbf{P}_1	High pressure	bar

P ₂	Low pressure	bar
q _e	Equilibrium adsorption capacity	mg/g
qexp	Experimental adsorption capacity	mg/g
qm	Maximum monolayer adsorption capacity	mg/g
qt	Adsorption capacity at any given time	mg/g
R	Universal gas constant	J/mol.K
R ²	Correlation coefficient	-
R _L	Separation factor	-
t	Time	min
t _b	Breakthrough time	min
ts	Saturation time	min
Т	Temperature	°C
Ý	Volumetric flowrate	mL/min
W	Energy flow	J/min
θ	Theta	-
ρ	Density of inlet CO ₂	mg/L

LIST OF ABBREVIATIONS

AC	Activated carbon
Ar	Argon
BIM	Benzimidazole
BET	Brunnauer-Emmet-Teller
CMS	Carbon molecular sieve
CCS	Carbon capture storage
CO ₂	Carbon dioxide
EDX	Energy dispersive X-ray
FTIR	Fourier transform infrared
GC	Gas chromatographer
GHG	Greenhouse gas
H ₂	Hydrogen
H ₂ S	Hydrogen sulphide
H ₂ O	Water
HFC	Hydrofluorocarbon
HNO ₃	Nitric acid

IGCC	Integrated gasification combined cycle (IGCC)
IUPAC	International Union of Pure and Applied Chemistry
КОН	Potassium hydroxide
MOF	Modified organic framework
MTZ	Mass transfer zone
N2	Nitrogen
N ₂ O	Nitrous oxide
OFAT	One-factor-at-a-time
O ₂	Oxygen
PC	Pulse-chemisorption
PFC	Perfluorocarbon
PI	Performance indicator (Parameter indices)
PKS	Palm kernel shell
PSA	Pressure swing adsorption
PVA	Poly vinyl alcohol
SBU	Structural building unit
sccm	Standard cubic centimeters per minute

SEM	Scanning electron microscope		
SF ₆	Sulphur hexafluoride		
TGA	Thermogravimetric analysis		
TG-DTG	Thermogravimetric - Derivative Thermogravimetric		
TPD	Temperature programmed desorption		
TSA	Temperature swing adsorption		
VPSA	Vacuum pressure swing adsorption		
wt.%	Weight percent		
XRD	X-ray Diffraction		
ZIF	Zeolitic imidazolate framework		
ZIF-7	Zeolitic imidazolate framework-7		
ZnCl ₂	Zinc chloride		
Zr	Zirconium		

PENULENAN HIDROGEN DARIPADA GAS SINTETIK MELALUI PSA MENGGUNAKAN MEDIA BERLIANG MIKRO

ABSTRAK

Penggunaan tenaga yang boleh diperbaharui telah menjadi teknologi yang menarik dalam menangani masalah perubahan iklim sedunia dan penjanaan tenaga masa depan. Hidrogen sebagai tenaga alternatif yang dicari telah mendapat sokongan yang meningkat untuk menjanakuasa sistem sel bahan api atau bagi penggunaan manusia yang selamat. Terdapat keperluan mendesak untuk menulen gas hidrogen daripada gas sintetik ataupun pengeluaran singas daripada gasifikasi arang batu bagi memperoleh kembali hidrogen yang terbebas dan memerangkap CO₂ untuk menangani isu global perubahan iklim dengan lebih cekap. Salah satu teknologi penulenan singas utama iaitu unit penjerapan ayunan tekanan (PSA) digabung dengan langkah tindak balas anjakan air-gas (WGSR) bagi suapan gasifikasi (H₂ dan CO₂) melalui penangkapan pra-pembakaran dapat memberikan perolehan semula hidrogen yang lebih bersih untuk aplikasi yang menguntungkan. Tesis ini memfokuskan kepada kajian penulenan hidrogen disamping penangkapan karbon (15 mol%), daripada 10 ml/min kadar aliran gas campuran H₂/CO₂ singas dengan tekanan penjerapan yang berbeza-beza (1, 2 and 3 bar) dalam PSA dua lajur yang digabungkan dengan langkah penyamaan tekanan untuk penalti tenaga yang lebih rendah dan perolehan hidrogen yang lebih tinggi. Antara empat penyerap berliang yang telah disediakan, diaktifkan dan dicirikan, karbon teraktif tempurung sawit (PKS-AC) yang boleh digunakan semula dan kos rendah telah diketengahkan untuk menjadi memberikan penulenan hidrogen yang terbaik disebabkan oleh luas permukaan tertentu yang tinggi iaitu sebanyak 697.67 m²/g dengan kapasiti penjerapan CO₂ yang agak tinggi iaitu sebanyak 422.64 cm³ (CO₂)/g pada STP. Masa penembusan adalah sehingga 35 min dengan kapasiti penjerapan sebanyak 7.9733 mg CO₂/g. Nilai ujikaji sesuai dengan isoterma Langmuir jenis-I iaitu penjerapan selapis dan model tertib satu pseudo, menunjukkan jerapanfisi berbalik penuh melalui resapan saput dan resapan intra-zarah sebagai mekanisma langkah penentuan kadar. Media PKS-AC berliang didapati berkesan dalam mencapai pemisahan optimum CO₂/H₂ pada 2 bar, 5 minit masa penjerapan dan 5 minit masa tiup turun dengan 99.99% purata ketulenan H₂, 99.99% purata perolehan H₂ dan 19.05% purata ketulenan CO₂, 7.14% purata perolehan CO₂.

HYDROGEN PURIFICATION FROM SYNGAS BY PSA USING MICROPOROUS MEDIA

ABSTRACT

Utilization of renewable energy has become attractive alternative in tackling the problem of global climate change and future energy production. Hydrogen as a sought-after energy substitute have received increasing support to power a fuel cell system or for safe human consumption. There is an urgent need to purify hydrogen gas from synthetic gas or syngas production of coal gasification in order to recover the spent hydrogen and capture CO₂ to address the global issue of climate change more efficiently. One of the main syngas purification technologies, i.e., pressure swing adsorption (PSA) unit coupled with water-gas shift reaction (WGSR) step of gasified feed (H₂ and CO₂) via precombustion capture could provide cleaner hydrogen recovery for profitable applications.

This thesis focused on studying the purification of hydrogen in addition to carbon capture (15 mol%), from a 10 ml/min gas flowrate of H₂/CO₂ mixture of syngas stream with varied adsorption pressures (1, 2 and 3 bar) in the two-column PSA incorporated with pressure equalization step for less energy penalty and higher hydrogen recovery. Amongst four porous adsorbents prepared, activated and characterized, the reusable and low-cost palm kernel shell activated carbon (PKS-AC) was highlighted to be the best in the hydrogen purification due to its high specific surface area of 697.67 m²/g with relatively high CO₂ adsorption capacity of 422.64 cm³ (CO₂)/g at STP. The breakthrough time was up to 35 min with adsorption capacity of 7.9733 mg CO₂/g. The experimental values fitted a typical type-I Langmuir isotherm of a monolayer adsorption and pseudo-

one-order model, indicating fully reversible physisorption through film diffusion and intra-particle diffusion as the rate-determining step mechanisms. The porous PKS-AC medium was found effective in achieving CO_2/H_2 optimum separation at 2 bar, 5 min adsorption time and 5 min blowdown time with 99.99% H₂ average purity, 99.99% H₂ average recovery and 19.05% CO₂ average purity, 7.14% CO₂ average recovery.

CHAPTER ONE

INTRODUCTION

This chapter familiarizes the research ideas by outlining the background and justification for the present study. It provides an overview on the evaluation of the current methods in the production of pure hydrogen (H₂) from syngas by using Pressure Swing Adsorption (PSA) system and consequently program on the sequestration of carbon dioxide. The fundamentals of PSA process and the gas separation challenges are discussed providing framework for the objectives of this project. The chapter subsequently presents the problem statements, scope of the research and chapter by chapter summary of the thesis.

1.1 Concern on anthropogenic carbon dioxide release

The global climate change resulting from the release of anthropogenic carbon dioxide has been a global concern due to the close connection with human livelihood and the ecosystem (IPCC, 2018). The 2018 report states that the anthropogenic carbon dioxide triggered circa 1.0°C of global warming to exceed the pre-industrial levels about 0.8°C to 1.2°C. It also predicts that global warming would reach mean temperature up to 1.5°C in 2030 which would adversely affect the ecosystem and social order. The escalation of the greenhouse gas has been predominantly associated with the combustion of coal, livestock industry and fossil fuel in energy sector, deforestation and transportation sector. The Kyoto Protocol specified methane (CH₄), nitrous oxide (N₂O), carbon dioxide (CO₂), sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) as the greenhouse gases. Amongst them, carbon dioxide contributed 76% to the greenhouse gas emission (IPCC, 2014) as illustrated in Figure 1.1. The greenhouse gas (GHG) has been known to cause climate change, extreme weather, rising of the sea level and marine population endangerment (Pires et al., 2011) leading to food supply disruptions, wildfires and loss of biodiversity. In addition, the increasing GHGs would lead to the depletion of ozone layer, thus the need to reduce the GHG emission especially from the anthropogenic origins.

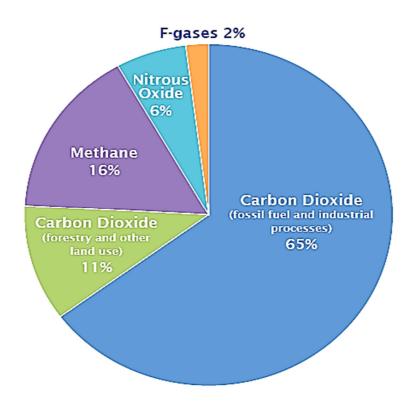


Figure 1.1: Global greenhouse gas emission

(US Environmental Protection Agency, 2019)

[Key: F-Gases (HFCs, PFCs, SF₆)]

As indicated in "BP Statistical Review of World Energy 2019" report, the direct anthropogenic CO₂ released to the atmosphere triggered the escalation in worldwide temperatures recorded throughout the past decades (Dudley, 2019). CO₂ release is closely related to the energy demand such as illustrated in Figure 1.2 that shows energy demand and carbon emissions driven by industrial plants and fossil fuel power plants grew by 2.0% to 0.6 gigatonnes (Gt). As a result, the increase in CO₂ mitigation is needed to compensate for the global releases from 2 billion tonnes of CO₂ to over 36.8 billion tonnes due to the exponential growth in economic and population. The mitigation should come from fossil-fuel usage in power plants that contribute about 80% of the energy source worldwide and for decades to come (EIA, 2013). Coal-fired power plants alone, is generating about 38% of global electricity ("Coal & electricity, World Coal Association," 2013)

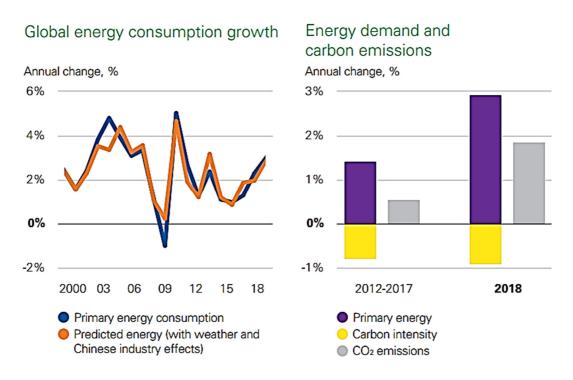


Figure 1.2: Global energy demand and carbon emission.

(Data source: "BP Statistical Review of World Energy 2019")

The ever increasing anthropogenic CO_2 causes the heat to confine and increase in the overall tropospheric temperature (Charney et al., 1979). Removal of CO_2 can be done if CO_2 from fuel gas combustion is captured and prevented from being emitted to the atmosphere. In the effort to reduce the CO_2 footprints from the atmosphere, there are two main options available: (i) employment of renewable and alternatives energy, and (ii) application of carbon capture and sequestration or carbon capture and storage (CCS). The latter presently is the most practical near-term solution in tackling the challenges of climate change and therefore is applied industrially for a sustainable pathway in economic development and environmental benefits (Yang et al., 2008).

A CO₂ removal method can be categorized into three main methods including pre-combustion, post-combustion, or oxy-combustion. In the process energy generation, the pre-combustion CCS is a key in economical attempt to ease global warming to below 2°C relative to pre-industrial levels (IPCC, 2018). Pre-combustion capture method has been highlighted of late due to its low capital cost in comparison to post-combustion capture. The much higher partial pressure of CO₂ in the shifted syngas (15-60% concentration of total pressure of 2-7 MPa CO₂) is sent to the separation stage for CO₂ separation using lower compression which allows for lower energy demanding separation process, and more effective use of pressure-driven systems compare to post-combustion capture (Lockwood, 2017). This method shall be able to alleviate the deterioration of environmental pollution, besides offering relatively affordable and practical means to produce hydrogen and capture CO₂ from syngas (CO₂/H₂) via a post-combustion capture (Chalmers et al., 2009) for electricity generation.

1.2 Syngas (synthesis gas)

Syngases are commonly obtained from the conventional partial oxidation of hydrocarbon in fossil fuels using oxygen (O₂) in air or generated steam. In coal gasification process specifically, syngas is a mixture of gases (approximately 25-30% hydrogen (H₂), 30-60% carbon monoxide (CO), 5-15% carbon dioxide (CO₂) and about 5% methane (CH₄) and other gases (Mondal et al., 2011). These are amongst the essential components used as industrial feedstocks for power generation, chemical processes and refineries which produce substantial amount of H₂ and CO₂ as wastes or by-products (Jordal et al., 2015). Table 1.1 shows the composition of syngas from various coal-gasification process.

	Syngas composition (%)				
References	CO	CO ₂	H2	H ₂ O	Others (CH4, C2H2, N2)
(Chen et al., 2015)	42.36	9.81	29.38	16.34	2.11
(Lu & Wang, 2014)	52.00	8.00	15.00	19.00	6.00
(Li et al., 2020)	27.18	2.78	57.20	-	12.54
(Pinto et al., 2003)	17.30	20.40	39.40	-	22.90
(Cao et al., 2008)	31.12	17.29	45.60	-	5.99

Table 1.1Syngas composition from coal gasification.

Coal gasification is a key technology in the H_2 production (i.e. during the steam methane reforming reaction (SMR) and water gas shift reaction (WGSR) as shown in Equation 1.1 and Equation 1.2), in which gasification of carbon and steam are reacted to produce H_2 and CO, and the produced CO can accordingly shift to CO₂ while generating more H_2 via WGSR (Chimpae et al., 2019).

$$C(Char) + H_2 O \rightarrow CO + H_2$$
 (Steam reforming reaction) (Equation 1.1)

$$CO + H_2O \leftrightarrow CO_2 + H_2$$
 (*Water shift reaction*) (Equation 1.2)

Figure 1.3 represents the schematic of H_2 production from coal gasification process. The production of hydrogen in this way is considered unsustainable in long term (Staffell et al., 2019) because of the consumption of a sizable amount of the coal resources.

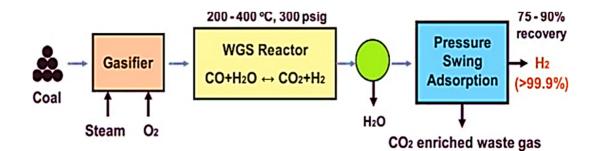


Figure 1.3: Process flow of H₂ production from coal gasification (Chou et al., 2013).

1.3 Technologies for H₂ purification from CO₂

 H_2 has been increasingly demanded by chemical production sector such as in production of methanol, ammonia and refineries (Golmakani et al., 2020). The gas is extracted mainly from fossil fuels, but now other renewable sources are also increasingly used. Half of the world H_2 demand is generated from steam reforming of natural gas, 30% from oil or naphtha refineries and off-gases, 18% from coal gasifier, 3.9% from electrolysis of H_2O and 0.1% from other origins (Muradov & Veziroğlu, 2005).

 H_2 energy has been an ideal candidate for providing a solution to the energyrelated environmental problem (Acar & Dincer, 2014). Clean combustion of H_2 in fuel cells for power generation and also in transportation produces only energy and water thus making H_2 an alternative to fossil fuel replacement (García-Olivares et al., 2018). However, the present production of H_2 yields variety of unwanted by-products. Therefore, hydrogen needs to be purified before being utilized in power generation plants or fuel cells in vehicles for total zero emissions.

The performance and durability of H_2 fuel-cell is strongly dependent on the purity of the H_2 because contamination even with a minute CO or CO₂ can poison the catalyst in the fuel cell system and render the cell useless. This matured technology was further developed through prototype vehicles using H_2 -fuels cells and can be found all around European, Iceland, Japanese and North American cities (Brandon & Kurban, 2017; Haraldsson et al., 2005; Solomon & Banerjee, 2006). Thus, manufacturers have set high standards on the ultra-purity of commercial H_2 ("Hydrogen fuel quality — Product specification (ISO 14687:2019(E))," 2020). H_2 purity is specified to be at least 99.97% and other gases <300 ppm for commercial applications (Ohi et al., 2016).

By combining H_2 with oxygen (O₂), a fuel cell could generate a sufficient electric power that emits only pure water as a by-product. The water produced by fuel cells was safe and clean enough to be consumed as drinking water for astronauts on the space shuttle (Hristovski et al., 2009). The potential of H_2 utilisation is further explored as a healing and preventive medicine against health disorder. H_2 infused in water reportedly could provide the health benefits (Nakao et al., 2010), but an ultrapurified H_2 is required for human safe consumption. In recent advances, the broaden potential use of hydrogen as preventive and therapeutic medical gas was proven to be advantageous (Huang et al., 2010).

Following our previous discussion, H₂ purification from syngas production is the key to solving the energy and environmental challenges via purification technologies applications such as cryogenic separation, chemical absorption, pressure swing adsorption (PSA) and membrane diffusion.

The industrial cryogenic separation has made momentous progress since 1960s (Weinstock, 1969). It utilizes H_2 low boiling point of -252.9°C and phase change to separate other pollutants from H_2 . The H_2 -rich stream is cooled to a low temperature that turns H_2 into solid and separated from the remaining component gases. Cooled solid product is passed through a heat exchanger, then a compressor to final pressures of 100-200 atm in order to recover the purified hydrogen (Baxter et al., 2011). The benefit of the approach is that the H_2 is stored as a liquid due to the extreme cooling. This is considered ideal for a large-scale industry storage and application. The disadvantage however, comes from the expensive cooling process. The feed gas also

needs a prior purification step to remove CO_2 , H_2S and water. This makes cryogenic separation less appealing than PSA or membrane processes (Liemberger et al., 2017). Apart from the cryogenic technology's energy extensiveness due to the extremely low temperature and high pressure requirement (Olajire, 2010), the purity of the hydrogen is also capped at 99% using this method (Al-Mufachi et al., 2015).

A chemical absorption process is carried out through a continuous scrubbing system consists of an absorber and a stripper occurred between 20 and 50°C, while desorption (regeneration) process occurs between 110 and 130°C (Kim et al., 2013). The reboiler is required in providing the heat of desorption and steam production for the stripping of CO_2 from the solvent. In the transition of CO_2 from gas phase to liquid phase, this process employs the CO₂ reversible chemical reaction using aqueous alkaline solvents. Adsorbents that are commonly used are monoetanoloamine (MEA), dietanoloamine (DEA), methylodietyloamine (MDEA) and trietanoloamine (TEA) (Shakerian et al., 2015). A strong bonded intermediate compound and kinetically faster is formed. Then, the absorbed CO_2 is stripped from the solution and a pure stream of CO_2 is compressed while the solvent recovered is pumped back to the absorber through a heat exchanger for subsequent cyclic application (Nwaoha et al., 2017). The weak binding of CO₂ and the solvent at high pressure is performed by a physical absorption process. In commercial applications, Purisol, Selexol, Rectisol and Fluor are commonly applied as the solvents. The disadvantages are flow problem (flooding) due to the increase of solvent viscosity, corrosion and high energy requirement for solvent regeneration (Islam et al., 2011).

Membrane diffusion is carried out using a selective barrier, separating gas stream through the membrane to permeate at various velocities. Among commercially attractive for membrane materials are dense and porous membranes, ion-conductive and pervaporation membranes (Abanades et al., 2015). Differences in pressure are used to separate the feed gas components (Edlund, 2009). The mechanism for H_2 separation in polymeric and dense material membranes is solution-diffusion (Yin & Yip, 2017) which depends on both solubility and diffusivity. It is described in following steps: (i) Adsorption: H₂ molecules diffuse at one surface (feed side) of the membrane; (ii) Chemisorption and dissociation: The H₂ molecules split into atomic form of protons and electrons; (iv) Diffusion: The elementary components consists of proton diffuse through the membrane lattice; (v) Recombination: Protons and electrons re-associate to form molecular H₂; and (vi) Desorption: The purified H₂ desorbs from the permeate. Membrane technology has unique advantages, including ease of operation, low energy demand as no phase transformation is involved, simple equipment and continuous operation (Bernardo et al., 2020). Since the H₂ needs to undergo a compression process for transport or storage, this separation method consumes much energy, yields low throughput, requires high operational and maintenance cost (Mondal et al., 2012). Beside limited scale of use in the industry, polymer membrane diffusion also faces some issues with impurities of CO₂ and H₂O requiring further stages of purification in the post-treatment (Sanders et al., 2013).

Adsorption of CO_2 is performed through physical (physisorption) or chemical (chemisorption) (Berger & Bhown, 2011). In a physorption process, a van der Waals bonding between the adsorbate and adsorbent exhibits dispersive forces or dipole interactions which allow rapid and reversible processes to occur during multiple adsorption and desorption. In a chemisorption process, the molecules of CO_2 fuse on surface of adsorbent to form chemical covalent bonds which are much stronger than the van der Waals's. Adsorption-based industrial processes main practises are H₂ purification (Sircar & Golden, 2000), air fractionation/separation (Arvind et al., 2002),

hydrocarbon (HC) separation (Grande & Rodrigues, 2004) and air drying (Subramanian & Ritter, 1998). Physical adsorption of CO₂ capture is most common method used due to its being cost effective and practical design for separation and purification of various gases. Various types of adsorbents for physisorption and chemisorption are zeolites, activated carbons, silica, aluminium oxide aluminosilicates impregnated with amines and metal oxides (Ben-Mansour et al., 2016). Moreover, CO₂ reutilization and exploitation are significant and beneficial in the downstream industries. Nevertheless, there has been insufficient effort in recycling of "after-capture" CO₂ to control the GHG release for economic gains and environmental benefits (Duraccio et al., 2015).

The other alternative for H₂ purification with CO₂ removal from a gas mixture is PSA (Riboldi & Bolland, 2017). PSA operates by exploiting the weak bonding between the adsorbate and adsorbent to benefit the rapid and reversible processes during multiple adsorption and desorption cycles. As such, the process of separating H₂ from CO₂ becomes more effective and efficient than the cryogenic separation, solvent absorption and chemical membrane separation discussed earlier. In this work, we propose the application of carbon-based and zeolite materials in CO₂ adsorption by PSA in order to improve the CO₂ capture so that CCS technology can be made more economical and efficient in the industry.

Table 1.2 enlists the three techniques for refineries off-gasses H₂ purification, summarized by Johnson Matthey Group Research Centre (Grashoff et al.,1983) including the eligible candidates for the present study. To date, the H₂ purification by effective CO₂ removal in about 10–15% composition from the syngas H₂/CO₂ mixture remains a challenge (Lin et al., 2004). Nonetheless, palladium membrane diffusion and PSA technique are reported as compelling options to achieve ultra-pure H₂ quality > 99.999% while the cryogenic separation (97% H_2 purity) and polymer membrane diffusion (98% H_2 purity) are having impurities of CO₂ and water which necessitate subsequent purification step (Rabiei, 2012).

(Ref.)	Principle	Typical feed gas	out	drogen put % Recovery	Scale of use	Comments
Cryogenic Separation (Weinstock, 1969)	Partial condensation of gas mixtures at low temperatures	Petrochemical and refinery off-gases		95	Large scale	Pre-purification step necessary to remove CO ₂ , H ₂ S and H ₂ O
Chemical absorption (Zhang et al., 2011)	CO ₂ solubility and recovery	Any CO ₂ containing gas stream	85-98	Up to 95	Large scale	High energy requirement for solvent regeneration
Palladium Membrane Diffusion (Boon et al., 2016)	Selective diffusion of H ₂ through a palladium alloy membrane	Any H ₂ containing gas stream	≥99.99 99	Up to 99	Small to medium	Sulphur- containing compounds and unsaturated hydrocarbon impair permeability
Pressure Swing Adsorption (Siqueira et al., 2017)	Selective adsorption of impurities from gas stream	Any H ₂ rich gas	99.999	70–85	Large scale	The recovery is relatively low as H ₂ is lost in the purging step

Table 1.2Separation techniques for purification of H2 and CO2 removal.

1.4 Pressure Swing Adsorption (PSA) unit for H₂ purification

Several other techniques for CO_2 separation from syngas has been discussed in previous section. However, they are insufficiently feasible for CCS approach, they do not reach an acceptable separation performance, or do not fulfil the requirements for current economic conditions (Al-Mamoori et al., 2017).

Pressure swing adsorption (PSA) is a viable energy, cost-efficient option and widely applied in industrial processes for gas separation from flue, fuel and syngas. PSA is a novel method to facilitate home medical oxygen generators and airbrake drying systems for small, medium and large-scale industrial applications for H₂ purification. In a cyclical process, adsorption is performed during pressurization while, desorption for adsorbent regeneration is performed during blowdown to produce high-purity outputs (Riboldi & Bolland, 2017). The PSA is considered as a favourable option, in comparison to the absorption method which likely to suffer a few drawbacks resulted from high energy requirement and corrosion problem in process equipment. The selection of PSA approach is further supported by the adsorbent regenerability potential intended for lowering the energy penalty, hence the capital cost reduction in CO₂ capture (Hongjun et al., 2011) and least environmental impact (Glier & Rubina, 2013).

PSA processes are operated with a pressure elevated feed, whereas vacuum swing adsorption (VSA) processes are driven by vacuum control. In temperature swing adsorption (TSA) processes, they are operated at alternating bed temperature to achieve the swing effect between adsorption columns. Among the adsorption processes mentioned, TSA is found to be productively and economically unattractive due to the heating requirement in regeneration step. In the latest development of PSA,

a vacuum pressure swing adsorption (VPSA) processes are also applied for CO₂ capture, CH₄ separation and H₂ purification (Lopes et al., 2011) and solid adsorbents such as zeolites, metal organic frameworks, poly aspartamide, metal oxides, activated carbon, porous silicates, and chitosan are being used (Mondal et al., 2012). Solid adsorbent is indisputably an alternative to physical solvents, due to its accessibility and non-corrosiveness (Ebner & Ritter, 2009; Yong et al., 2002). For large-scale operations using solid adsorbents, among the known challenges are, a large volume of adsorbent is required, complicated synthesis process, limited adsorption capacity due to adsorbent exhaustion and heating requirement for adsorbent regeneration (Lee & Park, 2015).

Liu et al. (2009) reported that the commercially utilised 13X zeolite suffers drawbacks from co-adsorption with water causing reduction in adsorption capacity. In the work, there were also problems in implementing the rapid change of pressure and temperatures on a large-scale level and the influence gas impurities on capacity, selectivity and stability of the adsorption process. In the study, they also mentioned the importance of developing and recognizing the practicality in regeneration methods intended for large-scale operation. Yang et al., (1997) studied on gas separation via one column PSA process using zeolite 5Å for H_2/CO_2 and H_2/CO binary mixtures at 70/30 volume % composition via both experimental and simulation. The H₂ achieved a purity up to 70% to 99.99% (recovery 67.5%) in the H_2/CO_2 and up to 97.09% purity (recovery 67.5%) in the H_2/CO system. A low pressure range (below 10 bar) was proposed in H₂ enrichment for coke oven gas and melting incinerator gas through PSA processes (Ahn et al., 2001; Moon et al., 2014). Similarly, Divekar et al. (2020) reported on an experiment which was also being conducted at a low pressure ranging from 2 to 0.1 bar resulted in CO_2 purity of 95 mole% and at least 90 mole% for H_2/CO_2 , respectively.

1.5 Problem statement

Fossil fuels are likely to remain as major contributor to energy production and global warming. However, H_2 recovered from H_2 -rich off-gas streams as a byproduct in petrochemical facilities, power plants or refineries and residual gas (Benson & Celin, 2018) may be able to help alleviate the global warming concern. H_2 recovery system becomes an interesting alternative for significant cost effective and productivity improvement. Here, H_2 must be purified and CO₂ must be removed from the syngas stream in order to benefit economically (Figueroa et al., 2008) and conserve the environment.

Among the techniques developed for gas separation in a power plant, most do not fulfill the requirements for acceptable separation performance from an economic standpoint. It is also important to acknowledge that upon the H₂ extraction, purification and refining will further increase the total cost due to requirement of ultra-high purity supply particularly in semiconductor industry, H₂ fuel cells and H₂ infused drinks in therapeutic alternative for human consumption. The previous advances in the PSA process were mainly driven by motivation to improve the separation performance in terms of the purity and the recovery of the output streams. In this work, the challenge is to achieve a targeted value for pure-H₂ purity in H₂-enriched gas stream that is set to be over 99.99% while for CO₂-enriched gas stream the desired value of CO₂ purity should be above 95%.

PSA is one of the most developed method for gas purification. It is highly relevant for the effectiveness and optimization of CCS process. However, there are limited system analyses reported in the literature that is related to CO₂/H₂ separation using PSA. Also, despite the apparent advantages of PSA in gas separation, the H₂ purification by effective removal of CO₂ of about 10–15 mole% from the syngas remains a challenge. This is worsen by the fact that most adsorbents that are used are costly to produce and regenerate. Thus, there is a need for high quality adsorbent that is produced from a low-cost material such as recycled agricultural wastes (Ochedi et al., 2020). Activated carbon (AC) made from organic waste of palm kernel shell (PKS) turned up to be an impeccable choice, considering Malaysia is facing problems in handling the disposal of the waste from palm oil industries (Singh et al., 2010). Wrong technique of waste disposal and open burning could be avoided by recycling of the wastes in order to benefit the economy and environment. To harness the full potential of this waste material, porous PKS AC is chosen as an adsorbent material and the adsorption performance must be made to compete well with the commercial adsorbents. This material will help in tackling the pollution problems and global CO₂ mitigation through proper handling of waste.

The aim of this thesis is to close the knowledge gap and, consequently provide contribution on the development of CCS via PSA for syngas pre-combustion carbon capture from gas mixture (containing H₂ and CO₂). This work proposes a process in which 15 mol% of CO₂ is adsorbed from a H₂/CO₂ gas mixture approximating a syngas stream via PSA process in the effort to achieve ultra-pure H₂. In evaluating the proposed material's performance, selected solid adsorbents will be tested in a 2 unit fixed-bed PSA unit for CO₂ removal. While for the design aspect, the integrations of equalization step in the "Skarstrom steps" is proposed as a measurement of energy gains leading to operating cost reduction in achieving the low energy requirement for industrial application. Additionally, in this comparative study of carbonaceous and modified organic frameworks (MOF) adsorbents for H_2 purification is carried out in the dynamic condition of two fixed bed adsorption focusing specifically on continuous improvement of PSA performance.

1.6 Objectives of the Research

The objectives of this research are:

- To synthesize adsorbents from palm kernel shell (PKS-AC), carbon molecular sieve (CMS) and MOF-based adsorbents (ZIF-7 and UiO-66).
- 2. To characterize the adsorbents for their physical and chemical properties.
- 3. To study the effects of fixed bed operating pressure and type of adsorbents on the breakthrough and saturation time.
- 4. To determine the adsorption equilibrium isotherms, kinetics and mechanisms of the adsorption process.
- 5. To identify the PSA operation parameters (initial adsorption pressure, adsorption time and blowdown time) that affect the purity and recovery of H_2/CO_2 .

1.7 Scope of research

This work involves synthesis of palm kernel shell activated carbon (PKS-AC), carbon molecular sieve (CMS) and metal–organic framework (ZIF and UiO-66) through physical and chemical activation for pressure swing adsorption. The assynthesized adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, thermogravimetric (TG) analysis, nitrogen adsorption, temperature-pressure desorption (TPD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). This study is an essential effort toward the development of adsorbents porous systems by combining the benefits of thermal, mechanical and structural stability material for diversified future applications.

The investigation of CO_2 breakthrough curves was performed using different adsorbents and initial pressure of gas mixtures (1, 2 and 3 bar). Adsorption isotherms based on Langmuir and Freundlich models, kinetic models of pseudo first and second order, including mechanism such as intra-particle diffusion model were used to analyse the equilibrium of the adsorption process.

Furthermore, the work also assesses the characteristics of the prepared adsorbents in terms of the adsorption capacity, gas separation performance and aging of the adsorbent under a rapid cyclical PSA process within a typical cycle time of 10 minutes (Grande, 2012). A lower range of pressure (1-3 bar) was chosen to address a more economical approach in PSA. Separation studies were carried out via the previously mentioned PSA unit using a varied initial adsorption pressure of 1, 2 and 3 bar, adsorption time of 0.5, 1, 3 and 5 minutes and blowdown time of 0.5, 1, 3 and 5 minutes. The selected range of the adsorption and blowdown time of 1-5 minutes was used based on the breakthrough analyses. The manipulation of variables and their

effects on purity and recovery for H_2 purification with CO₂ removal are investigated. The feed concentration of CO₂ is kept constant at 15 mol% to replicate the composition of actual syngas in the industry. PSA processes with adsorption, pressure equalization, desorption and re-pressurization operating modes are performed.

1.8 Organization of the thesis

There are five (5) chapters in the thesis that gives informative contents about the research.

Chapter One presents the general background on global issues, CO_2 emission, H₂ purification as well as CO_2 capture and sequestration of syngas, viable gas purification and separation technologies and its potential adsorbents. The statement of research problem, objectives and thesis organization are included in this chapter.

Chapter Two presents the literature on the previous researches. This chapter is written to provide details and ideas to move the project forward. The first section presents the definitions of adsorbents, previous applications, materials, preparation methods and expected characterization results. It also covers the analysis of adsorption isotherms, kinetics and mechanisms of a fixed bed breakthroughs, fundamental of PSA processes and its parameter performance indicators.

Chapter Three covers the material and method. This chapter presents the materials, chemicals and equipment used throughout the experiments. It also provides the detailed description of the experimental procedures and the equipment used in characterizing the samples, preparation methods of adsorbents, fixed bed breakthrough studies and regenerations of adsorbents.

Chapter Four elucidates the experimental results together with the analyses. In the first stage, the characteristics of synthesized adsorbents are explained according to the data obtained from TGA, XRD, FTIR, SEM-EDX, particle size analyzer, nitrogen adsorption studies in Autosorb, CO₂-PC and CO₂-TPD analysis. Second stage involves the transient breakthrough study in defining the adsorption isotherms, kinetics and mechanisms for adsorbents at different pressures. Third stage explains the assumptions made for the idealization of PSA process which aided the fundamental performance indicators (PI). Fourth stage provides the utilization of performance indices for evaluation of the synthesized adsorbents via a PSA unit. Fifth stage is to evaluate and maximize the performances of a CO₂/H₂ gas separation. Cycle repetitions and adsorbent recyclability are also studied. In summary, proper PSA process and material engineering are described in correlation to the separation performance at specific ranges of operating conditions.

Chapter Five presents the conclusion and recommendations for future consideration derived from the thesis based on the project's findings.

CHAPTER TWO

LITERATURE REVIEW

This section is written to arrange the details on the idea of the project by presenting the previous findings and reviews available from reliable scientific databases with references. Herein, the theories of adsorption are elucidated to demonstrate the importance of the adsorbent selection for PSA application. The backgrounds of carbon based and modified organic framework (MOF) based adsorbent, in relation to their adsorption properties, operating parameters and conditions are reviewed and highlighted. A brief discussion of PSA technology is also included. It also elaborates on the basic principles and analysis of breakthroughs curves, adsorption isotherms, kinetic and mechanism, basic principles of PSA processes and its performance in terms of its purity and recovery.

2.1 Adsorbents in PSA

The function of the adsorbent is to offer the surface area of adsorption for molecules interaction. Adsorbents can allow molecules of a gas or liquid mixture to make contact and adhere to its surface in a process called "adsorption". It is an occurrence of molecular attraction between an adsorbate phase and the adsorbent surface of a solid in a monolayer or multilayer diffusion (Langmuir, 1918; Myers & Prausnitz, 1965; Polanyi, 1932). Solid adsorbents are permeable media consist of voids, channels or spaces, which are deeper in dimension, compositions and structures. This characteristic for adsorbent is defined by their specific area, commonly related to porosity which is chosen according to the requirement for substantial adsorption capacity of the heavier component. In order to be considered as a good adsorbent, the following factors are considered: (a) good selectivity between the adsorbing molecule and the adsorbent surface, (b) higher capacity with larger surface area of adsorbent; and (c) durability of adsorbent, which mainly depends on the fabrication process of the adsorbents (Egídio Rodrigues et al., 2017).

Generally, the pore size is significant in defining the physical features of the adsorbent in the typical adsorption and desorption rates. Adsorption processes allow the interaction between the solid and the fluid phase according to the equilibrium pressure and temperature of adsorbents. High surface area and highly porosity (meso and macro pores) in the adsorbent medias are needed to permit the entrance of gas molecules into the porous structure. The diffusion rates of the adsorbates through the pores structure of adsorbent will result in different types of diffusional resistance (Ruthven, 1984). In micropores, the adsorbates are having higher affinity towards the adsorbent surface. Conversely, in mesopores and macropores, the adsorbed molecules experience less or no attractive force allowing the adsorbate to penetrate faster through the material (Beyzavi et al., 2015). While in other circumstances, if the diffusional resistance in bulk component is substantial, this will result in unreasonably longer time to separate the gas (Weber & Chakravorti, 1974). In typical commercial adsorbents, the materials are grouped into organic, hybrid and inorganic adsorbents. They can be in cylinders, spheres, granules, flakes, or powders with varying sizes of 50 nm to 1.2 cm and surface areas of 300 to 1200 m^2/g (Seader & Henley, 2010). Alternatively, the adsorbent can also be shaped into spherical pellets or extruded as the honeycomb monolithic structures in attempt to reduce pressure drop in the typical fixed bed adsorption system (Rezaei & Webley, 2009).

In order to achieve the higher attractions of porous adsorbents towards certain gas components at various working conditions, material engineering and synthesis have been exploited in the recent years. In the material engineering, the main interest is to discover a newly improved adsorbents that could improve the overall adsorption performance (Siqueira et al., 2017; Sircar et al., 1996) which eventually increase the efficiency of the adsorption unit, product purity, product recovery, energy intake and economics of the adsorption unit (Mittal et al., 2016).

The knowledge on both adsorption equilibrium and kinetics are critically dependent on the selection of promising material adsorbent with high selectivity, rapid adsorption kinetics, unlimited regenerability and adsorption capacity, along with the desorption ability and a wide-ranged operating conditions (Shi et al., 2016). The adsorption capacity generally increases with increase in BET surface area. Usually, a BET surface area larger than 500 m²/g is preferable (Song et al., 2015). These factors are the key to adsorbents ideal for application of pre-combustion carbon capture (Wang et al., 2017). A variety of porous adsorbents can be utilized for CO₂ capture commercially such as supported carbons, molecular sieves, zeolites, silica gel, hydrotalcites, aluminosilicate zeolite, activated calcium oxides, amines, mesoporous materials, polymer and metal-organic framework (MOF) materials (Younas et al., 2016)

Table 2.1 lists and compares the characteristics of solid adsorbents in the previous study. The adsorbents that shall be used in the current study are classified into carbon-based and modified organic framework (MOF) based, so the work will be focused more on these types of media.

	Optimal oper	Optimal operating condition	Mechanism	Main application	Advantages	Disadvantages
	P (bar)	T (°C)		4		
Carbon adsorbent Modified organic framework (MOF) adsorbent	0.1-10 high	25-75 low	Physisorption	CO ₂ /CH4 CO ₂ /H2 CO ₂ /H2	cheap raw materials; rapid carbonation kinetics; low desorption temperatures low CO ₂ capacity at mild conditions high surface area; tailorable pore metrics; high density of active sites; adjustable chemical functionality; huge and	low CO ₂ capacity at mild conditions unclear regenerability; expensive synthesis route; low CO ₂ capacity under mild
					accessible pore volumes	conditions

Table 2.1: Characteristics of solid adsorbents (Yuan et al., 2016).