STENT CONFIGURATIONS AND ITS EFFECTIVENESS IN RENAL ARTERY ANEURYSM

MUHAMMAD HAZIQ BIN ABU BAKAR

UNIVERSITI SAINS MALAYSIA 2019

STENT CONFIGURATIONS AND ITS EFFECTIVENESS IN RENAL ARTERY ANEURYSM

by

MUHAMMAD HAZIQ BIN ABU BAKAR

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

August 2019

ACKNOWLEDGEMENT

Alhamdulillah and praise to Allah the Al-Mighty as with His blessings, I was able to finish writing my thesis and my research. Without His guidance, I might not able to complete writing this thesis on time. I am truly grateful that I have managed to finish it. Firstly, I would like to express deepest appreciations to my lovely parents: Abu Bakar Haron and Nasriah Zakaria, and my siblings for their prayers and continuous support throughout my life.

I want to express my deeply gratitude to my supervisor, Dr. Mohamad Aizat Bin Abas for giving me endless guidance throughout the completion of this research. Working with him even in this period has made me realize that no matter how high our academic level is, there is always room for more and for improvement. Regarding this project, he has guided me on the steps I should take in order to achieve the objectives. Also, a big thanks to my co-supervisor Dr. Norizham Bin Abdul Razak, he has teach, guide and help me during experiment testing.

I also want to say thank En. Norijas, En. Faris, En. Mahmud and all my friends (Hafiz, Hazwan, Aqil, Faiz, Arif and Hafizah) in providing me their assistance throughout my study. Thank you very much, without your help I would not able to do it on my own. Again, I am truly grateful that this research is completed. I hope everything will end well for everyone. Thank You.

	Page	
ACKNOWLEDGEMENT II		
LIST OF TABLES V		
LIST OF SYMBOLSIX		
LIST OF ABBREVIATIONSX		
ABSTRAKXI		
ABST	TRACTXIII	
CHA	PTER 1 INTRODUCTION15	
1.1	Overview	
1.2	Research Background15	
1.3	Problem Statement	
1.4	Research Objectives	
1.5	Research Scope	
1.6	Thesis Outline	
CHA	PTER 2 LITERATURE REVIEW	
2.1	Overview	
2.2	Review of renal artery, aneurysm, and renal artery aneurysm (RAA)26	
2.3	Review of flow diverter (FD)	
2.4	Review of fluid-structure interaction (FSI)	
2.5	Review of particle image velocimetry (PIV)	
2.6	Summary	
CHA	PTER 3 METHODOLOGY	
3.1	CAD model	
3.2	Meshing55	

TABLE OF CONTENTS

3.3	Fluid-structure interaction (FSI) simulation	
3.4	Particle image velocimetry (PIV) experiment	66
СНАР	PTER 4 RESULTS AND DISCUSSION	75
4.1	Introduction	75
4.2	Experimental validation	75
4.3	Blood flow pattern	78
4.4	Wall shear stress (WSS) of the aneurysm	89
4.5	Deformation of RAA	95
4.6	Von Mises stress of RAA	102
4.7	Summary of the results	109
СНАР	PTER 5 CONCLUSION AND FUTURE RECOMMENDATION	NS 111
5.1	Conclusion	
		111
5.2	Recommendations for Future Research	
		113
REFE	Recommendations for Future Research	113
REFE APPEN	Recommendations for Future Research	113
REFE APPEN APPEN	Recommendations for Future Research CRENCES	113 114
REFE APPEI APPEI APPEI	Recommendations for Future Research CRENCES NDICES APPENDIX A: CAD DRAWING OF RAA MODEL NDIX B: CAD DRAWING OF FLOW DIVERTER	113 114
REFE APPEN APPEN APPEN APPEN	Recommendations for Future Research CRENCES NDICES APPENDIX A: CAD DRAWING OF RAA MODEL NDIX B: CAD DRAWING OF FLOW DIVERTER NDIX C: SAMPLE CALCULATION FOR FD POROSITY PERCE	113 114 NTAGE
REFE APPEN APPEN APPEN APPEN	Recommendations for Future Research CRENCES NDICES APPENDIX A: CAD DRAWING OF RAA MODEL NDIX B: CAD DRAWING OF FLOW DIVERTER NDIX C: SAMPLE CALCULATION FOR FD POROSITY PERCE NDIX D: FLOW SENSOR CIRCUIT CONNECTION	113 114 NTAGE

LIST OF TABLES

	Page
Table 3. 1. Dimensions of Renal artery aneurysm 3D model	51
Table 3. 2. Dimensions of the flow diverter	53
Table 3. 3. Material properties of cobalt chromium for the flow diverter	54
Table 3. 4. Mesh convergence analysis	56
Table 3. 5. Fitting coefficients of hyperelastic Mooney-Rivlin five-	62
parameters model	
Table 4. 1. Velocity contours for all cases from time 1.0 to 2.0 s.	80
(a) RAA; (b) FD porosity 65%; (c) FD porosity 70%; (d)	
FD porosity 75%; (e) FD porosity 80%	
Table 4. 2. Velocities comparison at locations inside the aneurysm	84
dome. The percentage difference is the comparison of	
velocity between each case with the case of RAA without	
the FD placement	
Table 4. 3 (a). Velocity contours for FD of different thickness through	87
the period of 1 to 2 s. (a) FD thickness 0.05 mm; (b) FD	
thickness 0.07 mm; (c) FD thickness 0.09 mm	
Table 4. 4 Velocities comparison at locations inside the aneurysm	89
dome. The percentage difference is the comparison of	
velocity between each case with the case of FD with	
thickness 0.05 mm	
Table 4. 5. Shear stress at aneurysm wall and FD of different porosity	90
percentage	

Table 4. 6. Maximum wall shear stress (WSS) for all cases of FD with	92
different porosity percentage	
Table 4. 7. Shear stress at aneurysm wall and FD of different thickness	94
Table 4. 8. Maximum WSS at aneurysm and FD for FD with different	94
thickness cases	
Table 4. 9. Deformation contours for all cases of FD without and with	98
different porosity	
Table 4. 10. Maximum deformation experienced by the RAA model	100
without and with FD of different porosity	
Table 4. 11. Deformation contours for FD with different thickness	100
Table 4. 12. Maximum deformation for cases of FD with different	101
thickness	
Table 4. 13. Von Mises stress contours for cases of RAA without and	105
with FD of different porosity percentage	
Table 4. 14. Maximum von Mises stress for all cases of RAA without	107
and with FD of different porosity percentage	
Table 4. 15. Von Mises stress contours for cases of FD with different	107
thickness	
Table 4. 16. Maximum von Mises stress for cases of FD with different	108
thickness	
Table 4. 17. Summary of the results of cases of RAA without and with	109
FD of different porosity percentage	
Table 4. 18 Summary of the results of FD of different thickness	110

LIST OF FIGURES

Page

Figure 1. 1. Renal arteries configuration	16
Figure 1. 2. (a) Renal artery stenosis disease; (b) Renal artery aneurysm	17
Figure 1. 3. types of aneurysm: saccular, fusiform and	18
pseudoaneurysm/false abeurysm.	
Figure 1. 4. (a) Example of surgical treatment in TAA and AAA (a, b, c,	20
e,f) and EVAR treatment (d, g); (b) The insertion of	
FD in renal artery	
Figure 1. 5. Depiction of ruptured aneurysm that caused hemorrhage	21
Figure 2. 1. (a) Pipeline Embolization flow diverter; (b) SILK Flow	29
diverter	
Figure 2. 2. Angiography images taken in the case study	32
Figure 2. 3. (a) three saccular aneurysms located in the left main renal	33
artery; (b) Deployment of stent shows complete filling of the	
aneurysms	
Figure 2. 4. The comparison of Power Law and Carreau non–Newtonian	38
blood model to the Newtonian model	
Figure 2.5. Graph for determining the suitable glycerol solution based on	47
own requirement	
Figure 3. 1. 3D model of renal artery aneurysm	52
Figure 3. 2. (a) 3D model of flow diverters (FD); (b) Enlargement of FD	53
Figure 3. 3. Saturation point for the maximum velocity in the mesh	56
convergence analysis	

Figure 3. 4. General overview of the two-way FSI	
Figure 3. 5. Comparison of stress against stretch ratio of Mooney-Rivlin	
hyperelastic model (left) and Valencia, et al (2013)	
experimental results	
Figure 3. 6. (a) Fixed support boundary condition; (b) Fluid-structure	64
interface boundary condition	
Figure 3. 7. (a) Inlet and Outlet boundary conditions; (b) Fluid-solid	65
interface for fluid domain	
Figure 3. 8. System coupling setup	62
Figure 3. 9. PIV experimental setup	67
Figure 3. 10. (a) RAA model; (b) FD model; (c) the assembled model	68
Figure 3. 11. Schematic diagram of the flow system of the PIV	71
experiment	
Figure 3. 12. Process steps in PIVlab	72
Figure 3.13. (a) raw image imported in PIVlab; (b) Masking in the pre-	73
processing stage	
Figure 3.14. (a) Selecting reference distance (red line) in image	74
calibration process; (b) vector calibration process	
Figure 4. 1. Comparison between the fluent simulation and PIV	77
experiment for the case of RAA with and without FD	
placement	
Figure 4. 2. Locations inside the aneurysm sac for velocity	80
measurement	

LIST OF SYMBOLS

D	characteristic length
Re _d	Reynolds number
ρ	Density of the fluid
ν	Velocity of the fluid flow
p	Fluid pressure
μ	Apparent viscosity
μ_p	Viscosity of the suspending fluid
k_0 and k_∞	Model parameters
Ϋ́	Shear rate
Ϋ́c	Critical shear rate
Ø	Volume concentration of the dispersed phase
u	Displacement of the structural body
b ^s	Body forces subjected to the structure
S	Second Piola-Kirchhoff stress tensor
$ ho^{s}$	Density of the structure
F	Gradient tensor of deformation
I_1 and I_2	1st and 2nd strain invariants of the Cauchy-Green deformation tensor
$C_{ij}, C_{10}, C_{01}, C_{11}, C_{20}, C_{02}$	material constants for Mooney–Rivlin hyperelastic model
δ_{ij}	Kronecker delta
Δx	particles displacement
Δt	time interval between the two consecutive images
σ_u	standard deviation of velocity

LIST OF ABBREVIATIONS

3D	3-Dimensional
AAA	Abdominal aortic aneurysm
Bpm	Beat per minute
CAD	Computer aided design
CFD	Computational fluid dynamic
CNC	Computer numerical control
CSS	Computational solid stress
СТ	Computer tomography
EVAR	Endovascular
FD	Flow diverter
Fps	Frame per second
FSI	Fluid-structure interaction
ICU	Intensive care unit
L1 and L2	Lumbar spinal disc 1 and 2
LBM	Lattice Boltzmann method
LED	Light emitting diode
MRI	Magnetic resonance imaging
PIV	Particle image velocimetry
RAA	Renal artery aneurysm
TAA	Thoracic aortic aneurysm
UDF	User-define function
WSS	Wall shear stress

KONFIGURASI STENT DAN KEBERKESANANNYA PADA ANEURISME ARTERI BUAH PINGGANG

ABSTRAK

Aneurisme arteri buah pinggang (RAA) adalah penyakit di mana arteri buah pinggang mengembang pada satu kawasan tertumpu. Endovaskular, sebuah rawatan aneurisma dengan memasukkan stent (atau penyonsang aliran (FD)) ke dalam arteri adalah antara pilihan terbaik hari ini. Dalam kajian hemodinamik, tumpuan kajian kepada RAA masih kurang berbanding dengan penyakit aneurisme yang lain. Di dalam tesis ini, simulasi FSI dan eksperimen PIV bagi RAA dengan pelbagai konfigurasi FD telah dilakukan untuk mengkaji keberkesanannya dalam merawat RAA. Corak aliran, tegasan ricih dinding (WSS), perubahan bentuk dan tekanan von Mises dianalisis. Konfigurasi FD terbahagi kepada dua: (1) keliangan yang berbeza (65% hingga 80%); (2) ketebalan yang berbeza (0.05 mm hingga 0.09 mm). Tambahan itu, model rheologi Quemada digunakan untuk mewakili sifat darah. Model ini mengambil kira segala faktor penting yang mempengaruhi kelikatan darah termasuk kadar rincihan, kelikatan plasma dan sel darah merah. Perbandingan antara data simulasi dan eksperimen PIV menunjukkan persamaan dengan purata perbezaan peratusan sekitar 5%. Peredaran darah di dalam aneurisma berkurang dengan drastik apabila FD diletakkan dalam model RAA. Pengurangan sekitar 90% untuk WSS dan 40% untuk perubahan bentuk apabila FD tidak hadir. Di samping itu, tekanan von Mises yang dialami oleh RAA adalah lebih besar apabila tiada FD di dalam RAA. Keduanya ialah perbandingan FD dengan ketebalan yang berlainan. Untuk corak aliran, FD dengan ketebalan 0.05 mm mempunyai peredaran darah di dalam kubah aneurisme. Selain itu, WSS yang dicatatkan adalah yang terbesar di antara ketiga-tiga kes tersebut. Selanjutnya, apabila ketebalan FD meningkat, tegasan maksimum von Mises mengalami penurunan.

Kesimpulannya, FD dengan peratusan keliangan sebanyak 65% adalah mencukupi untuk menghasilkan hasil yang diinginkan setanding dengan FD dengan peratusan keliangan yang lebih besar. Dari ketebalan FD, ketebalan stent minimum yang dicadangkan untuk mengelakkan daripada peredaran darah di dalam kantung aneurisme adalah 0.07 mm.

STENT CONFIGURATIONS AND ITS EFFECTIVENESS IN RENAL ARTERY ANEURYSM

ABSTRACT

Renal artery aneurysm (RAA) is a disease in which the renal artery is dilated at a particular point. Endovascular, a treatment for aneurysm by inserting a stent (or flow diverter (FD)) in the aneurysm effected artery is the preferable choice today. In the hemodynamic study, the focus on RAA study is still lacking compared to other aneurysm conditions. In this thesis, FSI simulations and PIV experimental work of RAA condition for different configurations of FD were conducted to study its effectiveness in treating RAA. Flow patterns, wall shear stress (WSS), deformation and von Mises stress parameters were analysed. The FD configurations were divided into two: (1) different porosity (65% to 80%); (2) different thickness (0.05 mm to 0.09 mm). In addition, Quemada rheological model was used to represent blood material properties. This material model considers all the important factor that affect the viscosity of the blood including shear rate, plasma viscosity and red blood cells. Comparison between simulations and PIV experimental data showed good agreement with average percentage difference around 5%. The blood circulation inside the aneurysm reduced drastically when FD placed in the RAA model. A reduction around 90% for WSS and 40% for deformation when FD was not presence. Additionally, von Mises stresses experienced by RAA was larger stress when no FD placed inside the RAA. Secondly was comparison of FD with different thicknesses. For the flow pattern, FD with thickness of 0.05 mm had blood circulation inside the aneurysm dome. additionally, the WSS recorded for it was the largest among all three cases. Furthermore, as the FD thickness increased, the maximum von Mises stress experienced decreases. In conclusion, FD with porosity percentage of 65% is sufficient

to produce the desired and comparable results as with FD with greater percentage porosity. In terms of the FD thickness, the suggested minimum FD thickness to prevent from having blood circulation inside the aneurysm sac is 0.07 mm.

CHAPTER 1

INTRODUCTION

1.1 Overview

Chapter one is an introduction to the thesis. The research background, problem statements, research objectives and research scopes are discussed here. In section 1.2, the thesis discussed the background of renal artery, aneurysm and renal artery aneurysm (RAA). In addition, this section also reviewed briefly the treatment of RAA and how RAA could be analysed through the lens of engineering. Section 1.3 explains about the problem statements, the issues that lead to the importance of conducting the research. In section 1.4, the objectives of the research were stated. Section 1.5 is the research scopes, explaining the scopes that were being covered in this study. To close the chapter one is the thesis outline that described the structure of this thesis.

1.2 Research Background

1.2.1 Renal artery

Renal arteries is the arteries that supply blood to the kidneys. Renal arteries also connected the abdominal aorta with the kidneys. Usually, these arteries are located at level L1 or L2 relative to the intervertebral disk. They are located below the mesenteric artery and enter the renal hila to supply blood to the kidneys. Figure 1. 1 shows the renal arteries branches from abdominal aorta to the kidneys

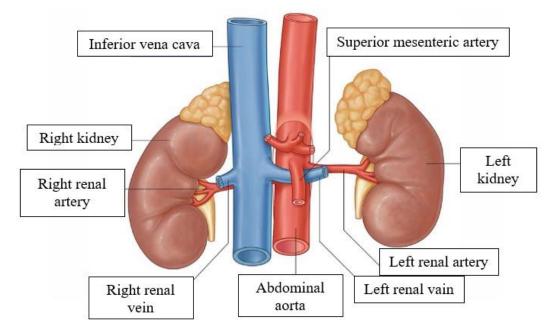


Figure 1. 1. Renal arteries configuration (X. Wang et al., 2011)

Typically, the left renal artery is shorter, more horizontally and arise slightly more than the right renal artery. On the other hand, the right renal artery located behind and passing through the vena cava and right renal vein to reach renal hilum. It is estimated that around 1200 ml/min blood flows through renal artery and both kidneys filter at least 115 litres of blood thus producing a minimum of 950 ml of urine (X. Wang et al., 2011). One of the importance of kidneys is to regulate blood volume and composition, blood pressure, pH level, and glucose level.

Among the diseases commonly related to renal artery are renal artery stenosis and renal artery aneurysm. Renal artery stenosis is the condition where there exist plaque build-up that obstructed the flow of the blood to the kidney. This will results in increased in blood pressure, which is also known as renovascular hypertension. Conversely, renal artery aneurysm (RAA) is the bulging of the renal artery wall due to the weakening of the muscle of artery. Figure 1. 2 (a) depicted the renal artery stenosis disease while Figure 1. 2 (b) depicted the renal artery aneurysm disease.

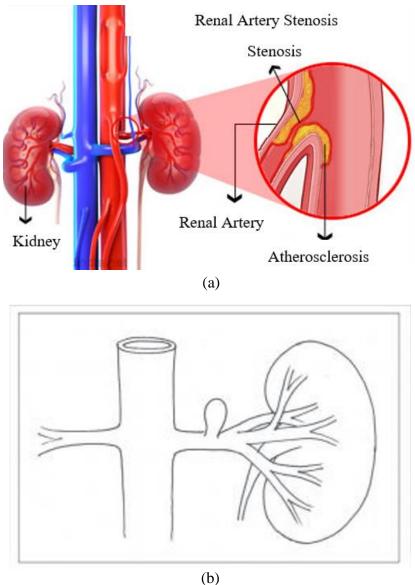


Figure 1. 2. (a) Renal artery stenosis disease (Tharu, 2015); (b) Renal artery aneurysm (RAA) (Gates et al., 2017)

1.2.2 Aneurysm

Aneurysm is a weakening of a localized region of the arterial vessel wall that causes a bulge. The increase in size of the bulge usually more than half of the diameter of the arterial vessel. There are three types of aneurysm, namely: (1) fusiform; (2) saccular; (3) pseudoaneurysm. Fusiform aneurysm is the expansion of the arterial vessel on both side of the arterial wall. Saccular aneurysm on the other hand is the bulging on only one side of the arterial wall. Saccular aneurysm is also known as 'berry' aneurysm. Pseudoaneurysm is a false aneurysm that occurs commonly due to trauma. It happens when there is a tear inside of the vessel, causing the blood to fill in the layer in between the blood vessel. Figure 1. 3 exhibits the three forms of aneurysm that could occurs.

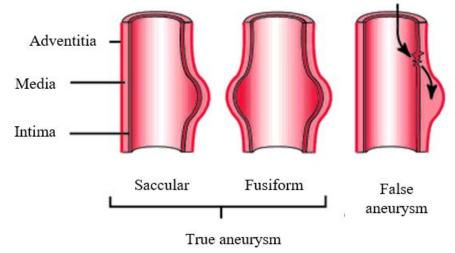


Figure 1. 3. Types of aneurysm: saccular, fusiform and pseudoaneurysm/false abeurysm. ("false aneurysm.," 2003)

Aneurysm can occurs at several locations. Usually, the aneurysm will be named based on the location where it take place. Abdominal aortic aneurysm (AAA) happens in the aorta vessel. AAA is one of the common aneurysm condition and it usually occurs in abdominal region of the aorta. Thoracic aortic aneurysm (TAA) is the aneurysm that occurs in the chest portion of the aorta vessel. Cerebral aneurysm happens in the vessel of the brain. Generally, cerebral aneurysm ruptures could lead to stroke or worst, death. Renal artery aneurysm is a dilated renal artery wall that exceed 50% of the normal diameter. The patients suffering from RAA can either have symptoms or no symptom at all. Up until today, there are limited study on RAA compared to other aneurysm conditions mentioned previously.

1.2.3 Renal artery aneurysm (RAA)

As mentioned in the previous sub-section, renal artery aneurysm or RAA is a localized, blood-filled balloon-like segment in the wall of the renal artery that expand twice the size of the vessel diameter. RAA occurrence is not as common as any other aneurysm conditions. It is usually found unintentionally when performing MRI to investigate other condition. It is estimated that the prevalence of RAA is only 0.01% (Barros et al., 2014). However, in a study of RAA ruptured during pregnancy, Soliman et al. (2006) stated that the RAA condition has been detected more frequently in recent years because of the frequent use of angiography technology.

1.2.4 Treatment of RAA

There are two types of treatment for RAA patients namely surgery and endovascular treatments (EVAR). Figure 1. 4 (a) shows the surgical treatment for aneurysm condition located in aortic of thoracic artery. Another examples of open surgery is the aneurysm clipping. EVAR treatments includes insertion of stent-graft, coil-embolization and stent-assisted coil embolization. The current treatment intervention is when the size of the bulge is larger than 2 cm. Patient with symptom such as hypertension is also required to undergo treatment as well. The EVAR procedure is the preferable option today compared to conventional surgery. EVAR treatment is done by inserting either a mesh-like tube called stent or coils from the femoral artery to the desired location that is effected by aneurysm. The stent is carried by a guiding tube or catheter. For aneurysm with narrow neck opening, coil embolization technique is the preferable choice. However, for a large neck opening, also known as wide-neck aneurysm, stent or flow modulator/diverter is the suitable selection. Figure 1. 4 (b) depicts the insertion of flow diverter in RAA. The intervention is crucial because of the devastating outcomes that could occurred if the aneurysm ruptures. The most devastating outcome of RAA rupture is mortality especially for women in pregnancy period (Sherif Sultan et al., 2016). Another possible consequences are kidney failure and hemorrhage. Hemorrhage is the escape of the blood from the vessel causing the internal bleeding (Figure 1. 5).

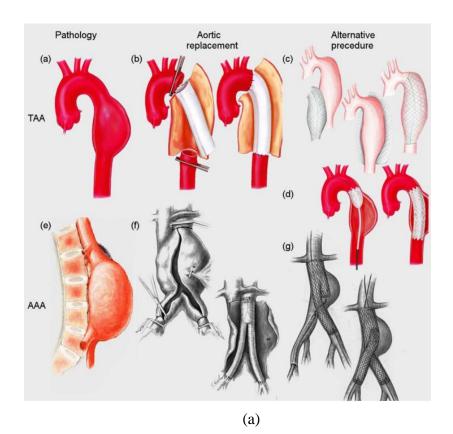


Figure 1. 4. (a) Example of surgical treatment in TAA and AAA (a, b, c, e, f) and EVAR treatment (d,g)(Farotto et al., 2018); (b) The insertion of FD in renal artery (Sherif Sultan, Basuoniy Alawy, et al., 2016)

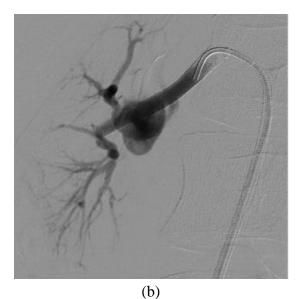


Figure 1. 4. (a) Example of surgical treatment in TAA and AAA (a, b, c, e, f) and EVAR treatment (d, g) (Farotto et al., 2018); (b) The insertion of FD in renal artery aneurysm (Sherif Sultan, Basuoniy Alawy, et al., 2016) (cont.)

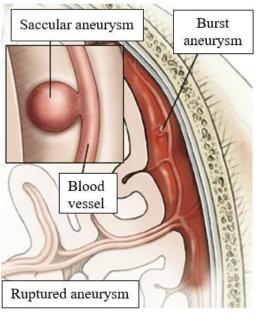


Figure 1. 5. Depiction of ruptured aneurysm that caused hemorrhage ("Subarachnoid Hemorrhage," 2018)

1.2.5 Engineering approach in RAA analysis

The current advancement in engineering can be translated with the advancement in the medical devices available today. In the treatment of aneurysm, devices such as coil embolization and stents have made a great impact in treating the disease. The progression in computational fluid dynamic (CFD) for instance, has increased our understanding of the aneurysm pathology. Characteristics such as stresses, wall shear and the blood flow patterns are important parameters in the study of aneurysm from engineering perspective. The significance of engineering approach in the study of aneurysm and renal artery aneurysm specifically will result in providing a proper solution to treat RAA effectively.

1.3 Problem Statement

The study of RAA is still lacking in comparison with other aneurysm conditions. It is said that RAA only happens about 0.1% of the general population of the world (Coleman et al., 2015). This low incidence rate may be a factor contributes to the lack of research of this disease. Although RAA incidence rate is not as significant as other RAA conditions, the effect of the aneurysm ruptures is as devastating as other aneurysm conditions.

It is noteworthy to mention that due to small dimension of renal artery as compared to other artery such as abdominal aorta could produce different flow circumstance which in turn would yield different effects if an aneurysm is presence in that artery. For instance, the abdominal aortic aneurysm size which requires proper intervention is at a size of 8.0 cm and above in diameter. In contrast, the intervention for RAA is needed when the aneurysm size reached a diameter greater than 2 cm (which is debatable) or patients with hypertension symptom. On this premises, a separate study regarding RAA is desired.

In addition, the lack of FSI study in RAA is also a major motivation for this thesis. The conventional FSI analysis in the study of RAA is incapable to formulate

the exact viscosity of the blood. Most existing models only cosiders the shear rate factor when trying to model the blood viscosity. This will neglect the haematorcit factor in influencing the viscosity of the blood. The hyperleastic behaviour of the artery, shear rate–dependent viscosity of the blood are among the factors that FSI study is lack too.

1.4 Research Objectives

The objectives of this research are as follow:

- To study the flow pattern in the idealized, wide-neck, saccular renal artery aneurysm
 - Validate the FSI simulations with PIV experiment

• To determine the efficiency of flow diverter by changing its porosity and thickness

1.5 Research Scope

The research scopes consist of three elements, the design, simulations and experiments. Design elements is the creation of RAA model and FD to be used in the simulations and experiments parts. Due to the unavailability of CT data, the RAA model will be an idealized model based on a case study by Bracale et al. (2017) on a wide-neck renal artery aneurysm. There are two parameters that are vary when designing the FD, which are porosity percentage and thickness. For the porosity percentage, four FD with porosity percentage 65%, 70%, 75% and 80% are constructed. For the thickness parameter, three FD with thickness 0.05 mm, 0.07 mm