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A problem of the first excedance of a given level by the family of independent branching processes is considered. The
limit Theorems for the number of the first process exceeding some levels in critical cases will be presented. The limit
distributions obtained for normalized exceedance time are exponential. Asymptotic formulae for expectations and
variances of the number are shown.
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1. Introduction

Consider the evolution and reproduction process of some individuals (or particles). Suppose that each
individual lives for a unit time and at the ends of its lifetime, have produce k¥ new offspring with
probability Py, & >0. This new individuals also have unit lifetimes and at their death, independent from
each other, reproduce a random number of new offspring. The number of individuals X () at time
t,te Ny =1{0,1,2,--}, called the Galton-Watson process that is the size of the population is the main
investigation in the theory of branching processes.

Let X,;,1eNy={0,1,2,},ieN={,2,--} be independent and identically distributed
random variables taking values in theset N . We define process X(¢),t € N by the relation
X@0= ) X; X(©0)=1
Here, X; denotes the number of destendants of the ith individual existing at time . Now we consider
the sequence of Galton-Watson branching processes {X;(¢),i € N} such that

@) X;(t) areindependent for any fixed & Np and X;(0)=1;

b) P{X,-(t)=k|Xj(0)=1}=Pk,keN0,ZPk =1.
k=0
We define the ‘index’ process

v(t) = min{k: X, (¢) > 6(t)}
or a given “level” function &(¢).

f we interpret X;(#),i € N, as sizes of different populations existing in different regions of an area,
ssumptions (a) and (b) mean that life of individuals in different regions are independent and the
listribution of the number of direct descendants of one individual is the same for all regions. The process
“(#) can be considered as the'index of the first process in the family which exceeds level &(z).

Interested readers can read more on the properties of exceedances of given levels by sequences
findependent and identically distributed random variables in Leadbetter (1983), Watts et. al. (1982) and
sferences in there where these properties have been studied widely. The processes of exceedance were
onsidered in Rahimov (1998a) and Rahimov (1998b) where some limit theorems for the index of the
Ist process were obtained for Galton-Watson process.



We denote

[y =Es*D1=3"ps*, 0<s21
k=0
A= f')=E[X], QM)=PX(1)>0], F(t,x)=PX()<x].

Here, we will only consider the case that 4=1 where the process is called the critical process. The
probability of such an exceedance is clearly 1 - F[t,6(£)]. In this critical case, all the processes of the set
X, (¢) will extinct with probability 1.

Assume that the offspring generating function f(s) is representable in the form of

(&) =s+1-)"*L(1-5) 1)

where @ e(0,1) and L(x) is a slowly varying at zero function. Note that if the offspring distribution
satisfies (1), it has expectation 1 and the variance may not be finite. Under the assumption (1)
[Slack(1967)],

tlin; POMX@O<x| X()>0=G(x), x20,
where G(x) has the Laplace transform

[e#doe) =1-aa+4%ye, | 2
and the probability of non-extinction has the following asymptotic behaviour:

o ~ N /1Y%, t s,
where N(f) is a slowly varying as ¢ — o function such that

[N@®]* L(N(t) e )—> a’l.
The following theorem has been proved in Rahimov (1998a).
Theorem 1.1. If f(s) satisfied (1) and &(¢) =¢/Q(¢),c € (0,x) , then

lim P()Q0) < 3} = 1-¢7(-6EDx; x>0

and G(c) is defined by (2).
Theorem 1 gives the limit distribution of v(¢) when @(f) — o in such a way that 8(¢)Q(t) — c € (0, ).

One can see that Q(f)v(f) — « as { —» oo in probability if 8(H)Q(f) — c« and the limiting distribution is
exponential with parameter 1 if (¢)Q(r) = 0.

2. Beliman-Harris Process

We consider the process of evolution and reproduction process as before. Each of these individuals,
independently of others, has a random life length L and at the end of its life, produces a random number
X of new individuals. We assume the random variables L and X are independent and we also allow
lifetime L to be random variables with arbitrary distribution that is G(u) = P(L <u). Beside independent
and identically distributed, the pairs (L, X) are different for different individuals and that a realized
individual is born at the death of his mother. If we denote X (¢} to be the number of individuals at time
t,t €[0,00) then X(¢) is called the Bellman-Harris process.
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The Bellman-Harris process has been considered by many authors [Rahimov ( 1995), Athreya & Ney
(1972)]. We consider the sequence of the Bellman-Harris process X;(t),ieN=1{1,2,--},t&[0,0) with
the same assumption (a) and (b) except that the process considered is Bellman-Harris process.

It is known that if A=1, f"(l) = o’ <oo,Jj§dG(t) =y <o and tz[l—G(t)] —0 as t > o then,

x {%)
limP{T(t)-leX(t)>0}=l—e o). %20 3)
=30

Theorem 2.1. If A=1,6(t) =ct,c €[0,) then

{%)
lim PO(V(7) < x] = 1-exple o Nx x20

Proof: We obtain the following relation for the probability generating function H(¢,s) of v(f):

- S{I—F[I,G(t)]} (4)

= e

Putting s =e*9() and using (4) above with 8() = ¢t , we find the Laplace transform of Q(£) v(?) :

E[e—le(t)V(t)] = H(t, e—zQ(z))= e~ 0 F, ct)]‘
1-e~ RO R, cf)

1-F(t,et) _ PIX()>ct, X()> 0] _
o PlX(#)>0]

Since P[Xt(t) >c| X () > O], , using the limit theorem in (3), we

obtain

tim ~= 2D _ 752

too Q) )

On the other hand, it follows the formula e™* =1- +o(a),a — 0 that

e~ 20 =12 20001 +0(1)) ©

Thus, from relations (4), (5) and (6), we have that

lim A, e00) 7 Q)

-

2u
. ~~c
The last expression is the Laplace transform of the exponential distribution with parameter e & :
Hence, the assertion of the theorem follows from (7) and the continuity theorem for Laplace transform

Feller (1971)].

We conclude the discussion with remarks on the asymptotic behaviour of some moments of the process
v(2). Using (4), we find the expectation and the variance of the process.

565



Evin}=H'(D) = Wle(t)]'

Var[v(¢)] =

For the Galton-Watson process [see Rahimov (1998a)], if the offspring distribution satisfies (1) and
() =c/ Q) , then

E(A)] ~ — -1

vl T G( )[Q( )

Varlv(t)] = ———— 50) [0 N2, tow
[1-G(o))?

where G(c) is as defined in ( ).
For the Bellman-Harris model, if f"(1) = o? <, J-:th(t) =p<w, tz[l-—G(t)] —+0 as t > and
é(t) =ct , then

)~ —5— 00T,
e o
.
Varly (0] = 15— e, (e
€ )

The study of the processs v(f) in the case when 6(r) has different asymptotic behaviour and for dxﬁ'erent
processes such as subcritical and supercritical is another topic for further investigation.
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