COMPARATIVE PERFORMANCE OF LOOSE SANDY SOILS IMPROVED BY DEEP COMPACTION TECHNIQUES

by

MOHD FARID BIN AHMAD @ MAJID

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

November 2005

-

пь f\$592.353 M697 2005 e^{-1}

ACKNOWLEDGEMENTS

First and foremost I am forever indebted to my late father and my mother for their exceptional belief in education and knowledge seeking that has become an eternal challenge in the family. To mother, thanks for all the prayers.

I wish to express my appreciations to my supervisor Assoc. Prof. Dr. Nor Azazi Zakaria and my co-supervisor Assoc. Prof. Dr. Md Razip Selamat for the support and guidance that have enabled me to complete this study. Their comments and suggestions have contributed significantly to the success of this study.

I would like also to thank PETRONAS for allowing me to be in charge of the project that has become the base of this study and subsequently use the data available to for this study. I would also like to thank UiTM for allowing me to conduct research that helps me to complete this study.

Along the way many people have given suggestions that have helped shape this study. I wish to thank Assoc. Prof. Dr Aminudin Abd. Ghani of USM, Prof. Dr. Rosli Hamir from OUM, Prof. Dr. Iqraz Nabi Khan from University of Jaipur, India, Assoc. Prof. Dr. Ahmad Hilmy Abd Hamid of UiTM, Assoc. Prof. Dr. Mustofa Osman of UIA, Dr V.R. Raju of Keller, Mr. Sim Peng Thean of Menard, Mr Mohd Taufiq Mohd Kamal of CSL Soil Centralab, Pn. Teoh Han Eng and Pn Tengku Mahani of UiTM, Pn Anita Yusuff, Cik Liza Tajul Aripin and Cik Noor Ezlyn Othman.

Thanks also to many friends, many of them in PETRONAS and UiTM, who have assisted in one way or the other, in helping me progress and complete the study.

To my sister Suraiya thank you for your language reviews. Last but not least, I would like to extend my gratitude to my wife, Fadiyah Ahmed Rabi and children; Farah Aiman, Imran Hafidz, Imran Amin, Farah 'Aisyah and Imran Yasir, for their understanding and patience throughout my journey to complete the study.

TABLE OF CONTENTS

	PAGE
Acknowledgements	ii
Table of Contents	iii
List of Tables	ix
List of Figures	xii
List of Plates	xvi
List of Symbols and Abbreviations	xviii
Abstrak	xxi
Abstract	xxii

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Definitions	6
1.3	Objectives of Study	11
1.4	Rational of Study	12
1.5	Contributions from the Study	16
1.6	Summary of Chapters in the Thesis	18

iii

.

CHAPTER TWO: REVIEW OF SELECTED DEEP COMPACTION

TECHNIQUES

2.1	Introduction	21
2.2	Selection of Deep Compaction Techniques	25
2.3	The Mechanics of Vibro-compaction	32
	2.3.1 Influence of Fine Content	38
2.4	The Mechanics of Dynamic Compaction	43
	2.4.1 Influence of Fine Content	47
2.5	Overview of Cone Penetration Test (CPT) for Quality Control	51
2.6	Comparison Effort To Date	56
2.7	Appropriate Research for Current Study	65
2.8	Summary	66

CHAPTER THREE: METHODOLOGY, SAMPLING AND LABORATORY WORK

3.1	Research Methodology	68
3.2	Limitations of the Study	72
3.3	Site Constraints	73
3.4	Soil Boring	77
3.5	Sampling	84
3.6	Laboratory Tests	91
	3.6.1 Sieve Analysis	91

iv

.

	3.6.2 Moisture Content	96
3.7	Major Challenges in the Sampling Activities	99
3.8	Summary	101

CHAPTER FOUR: CONSTRUCTION TECHNIQUES

4.1	Introduction	103
4.2	Basis for Selection of the Techniques	106
	4.2.1 Soil Parameters at Dynamic Compaction Area	106
	4.2.2 Soil Parameters at Vibro-compaction Area	108
4.3	Dynamic Compaction Work	110
	4.3.1 Equipment and Fill Material	111
	4.3.2 Construction Procedure	113
	4.3.3 Cone Penetration Test (CPT)	118
4.4	Vibro-compaction Work	120
	4.4.1 Equipment and Fill Material	121
	4.4.2 Construction Procedure	123
	4.4.3 Cone Penetration Test (CPT)	127
4.5	Summary	129

CHAPTER FIVE: RESULTS AND DISCUSSIONS

5.1	Introduction	131
5.2	Cone Penetration Test (CPT)	132
	5.2.1 CPT Results at Dynamic Compaction Area	132

v

	5.2.2	CPT Results at Vibro-compaction Area	136
5.3	Site N	leasurement	139
	5.3.1	Bulk Unit Weight at Dynamic Compaction Area	142
	5.3.2	Bulk Unit Weight at Vibro-compaction Area	144
5.4	Labor	atory Tests	148
	5.4.1	Fine Content Results at Dynamic Compaction Area	149
	5.4.2	Fine Content Results at Vibro-compaction Area	151
	5.4.3	Moisture Content	153
5.5	Effect	ive Size and Soil Classification	155
	5.5.1	Dynamic Compaction Area	156
	5.5.2	Vibro-compaction Area	159
5.6	Sumn	nary	163

CHAPTER SIX: MODEL DEVELOPMENT

6.1	Introduction	166
6.2	Selection of Parameters	167
6.3	Depth of Improvement	171
6.4	Analysis of Normalised Improvement(I) for Dynamic Compaction	172
	6.4.1 Selection of Data	173
	6.4.2 Model	175
	6.4.3 Verification of Semi-empirical Model	180
6.5	Analysis of Normalised Improvement(I) for Vibro-compaction	183
	6.5.1 Selection of Data	183
	6.5.2 Model	185

	6.5.3 Verification of Semi-empirical Model	190
6.6	Comparison Between Dynamic Compaction and Vibro-compaction	193
6.7	Guideline Based on This Study	198
6.8	Summary	200

CHAPTER SEVEN: CONCLUSIONS AND RECOMMENDATIONS

7.1	Summary of the Study	203
7.2	Conclusions	206
7.3	Recommendations for Further Study	207

REFERENCES

APPENDICES

Appendix A:	Plates from Dynamic Compaction and
	Vibro-compaction work
Appendix B:	Plates from Soil Boring Activities
Appendix C:	Plates from Laboratory Activities
Appendix D:	Analytical data for Q and I
Appendix E:	Particle Size Distribution
Appendix F:	Average Particle Size Distributions and Most Desirable Range
Appendix G:	Reduced Levels for Pre and Post CPT

.

Appendix H: CPT Results

Appendix J: Sampling Recovery Ratio

Appendix K: Modelling Results

Appendix L: Publication List

VITA

LIST OF TABLES

.

No.	Title				
Table 2.1	Performance of selected deep compaction techniques				
	(After Mitchell, 1995)	24			
Table 2.2	Factors affecting selection of deep compaction technique				
	(After Bergado et al, 1996)	28			
Table 2.3	Soil type and its classification (Based on Massarsch,				
	1991)	31			
Table 2.4	Limit of percentage of fine for vibro-compaction to be				
	effective	40			
Table 2.5	Brown Suitability Number (BSN) Rating (Brown, 1977)	42			
Table 2.6	Effect of vibro-compaction on cohesionless soils (Mitchell,				
	1970)	43			
Table 2.7	Theoretical depth of influence	45			
Table 2.8	Upper bound test values after dynamic compaction				
	(Lukas, 1986)	50			
Table 2.9	Selective guideline for CPT test (From IRTP)	54			
Table 2.10	Summary of study on comparison of deep compaction				
	techniques and their limitations	64			
Table 3.1	Study methodology and related issues	69			
Table 3.2	Water levels at the deep compaction area during planning	75			
Table 3.3	Sampling points at the dynamic compaction area	81			
Table 3.4	Sampling points at the vibro-compaction area	82			
Table 3.5	Classes of soil boring (BS 5930: 1999)	85			

Table 3.6	Mass of soil sample required for various laboratory tests	
	(BS 5930; 1999)	86
Table 3.7	Details of special tube	88
Table 3.8	Minimum quantities for particle size test	94
Table 4.1	Sample Soil parameter at dynamic compaction area	107
Table 4.2	Sample Soil parameter at vibro-compaction area	108
Table 4.3	Property of fill material for dynamic compaction	113
Table 4.4	Dynamic compaction parameters	116
Table 4.5	S-Vibrator Specification	122
Table 4.6	Parameters of vibro-compaction	124
Table 5.1	Unit weight of Malaysian granular soils (Neoh, 1997)	141
Table 5.2	Unit weight of the soil sample (kN/m ³) at dynamic	
	compaction area	143
Table 5.3	Unit weight of soil sample (kN/m ³) at vibro-compaction	
	area	145
Table 5.4	Soil Classification at dynamic compaction area	158
Table 5.5	Soil Classification at vibro-compaction area	161
Table 5.6	Summary of key results at deep compaction site	163
Table 6.1	Key parameters for deep compaction (ISSMFE-TC-17,	
	2001)	168
Table 6.2	Depth of improvement for dynamic compaction based on	
	various researchers	172
Table 6.3	Data utilization for curve fitting at dynamic compaction	
	area	174

x

Table 6.4	Minimum and maximum depth of data available for	
	formulation at dynamic compaction site	175
Table 6.5	Result of statistical study	177
Table 6.6	Summary of Dynamic Compaction Model	179
Table 6.7	Data discarded from verification	181
Table 6.8	Results of verification	181
Table 6.9	Data utilisation for curve fitting at vibro-compaction area	184
Table 6.10	Minimum and maximum depth of data available for	
	formulation at vibro-compaction area	185
Table 6.11	Results of statistical study	187
Table 6.12	Summary of Vibro-compaction Model	189
Table 6.13	Results of verification	192
Table 6.14	Constants for dynamic compaction and vibro-compaction	193
Table 6.15	Comparison of finding against Mitchell (1970) for vibro-	
	compaction	195
Table 6.16	Comparison of finding against Cao et al (1998) for	
	dynamic compaction	197

.

þ

LIST OF FIGURES

No.	Title	Page			
Figure 1.1	Soft soil problem in Kemaman district, Terengganu	4			
Figure 1.2	Dynamic compaction technique				
Figure 1.3	Vibro-compaction technique	10			
Figure 1.4	Selection of deep compaction technique (Mitchell, 1970)	17			
Figure 2.1	Area pattern design chart (D'Appolonia, 1953)	26			
Figure 2.2	Flowchart for selection of ground improvement technique				
	(Kamon et al, 1991)	29			
Figure 2.3	Compactability of soil based on CPT result in MP				
	(Megapascal). (Massarsch, 1991)	30			
Figure 2.4	Vibrators for dynamic compaction (a) Normal (b) Bottom				
	feed (Slocombe et al, 2000c)	34			
Figure 2.5	Effect of fines content on improvement of loose sandy				
	soils (Saito, 1977)	38			
Figure 2.6	Effect of fine content on SPT values (Mori, 1992)	48			
Figure 2.7	Grouping of soils for dynamic compaction (Lukas, 1986)	49			
Figure 2.8	Relationship between relative density and ϕ'				
	(Schmertmann, 1978)	53			
Figure 2.9	Range of soils suitable for vibro-technique (Baumann et				
	al, 1974)	57			
Figure 2.10	Relationship between spacing center of vibration against				
	relative density (Thorburn, 1976)	58			

xii

Figure 2.11	Result at Trident Marine Facility Project (Hussin et al,			
	1987)	59		
Figure 2.12	Time increase of cone resistance (Charlie et al, 1992)	60		
Figure 2.13	Depth against dynamic probing resistance			
	(Watts et al, 1997)	61		
Figure 2.14	Semi-empirical model for dynamic compaction and vibro-			
	compaction (Cao, 1998)	74		
Figure 3.1	Flowchart of the study	71		
Figure 3.2	Location of the study area	79		
Figure 3.3	Schematic showing the soil boring point, Pre-CPT and			
	Post-CPT	80		
Figure 4.1	Key plan showing the location of the site	104		
Figure 4.2	Sample borelog at the vibro-compaction area	109		
Figure 4.3	Construction procedure in clockwise direction based on			
	Napier (2003)	118		
Figure 4.4	Procedure for construction	125		
	(Based on Raju 1998b)			
Figure 5.1	Depth vs Pre-CPT at dynamic compaction area	133		
Figure 5.2	Depth vs Post-CPT at dynamic compaction area	134		
Figure 5.3	Average Pre-CPT and Post-CPT resistances at DC area	135		
Figure 5.4	Depth vs Pre-CPT at VC area	138		
Figure 5.5	Depth vs Post-CPT result at VC area	137		

~

Figure 5.6	Average Pre-CPT and Post-CPT result against depth at		
	VC area	139	
Figure 5.7	Fine content at dynamic compaction locations	149	
Figure 5.8	Average fine content at dynamic compaction locations for		
	various depths	150	
Figure 5.9	Depth vs fine content at vibro-compaction area	151	
Figure 5.10	Depth vs average fine content at vibro-compaction site	152	
Figure 5.11	Moisture content at dynamic compaction area	153	
Figure 5.12	Moisture content at vibro-compaction area	154	
Figure 5.13	Effective size at various depths for dynamic compaction		
	site	156	
Figure 5.14	Uniformity coefficient at various depths of loose sandy		
	soils at the dynamic compaction area	157	
Figure 5.15	Effective size of loose sandy soils at vibro-compaction		
	area	159	
Figure 5.16	Uniformity coefficient of loose sandy soils at vibro-		
	compaction site	160	
Figure 5.17	Comparison of overall particle size distribution for VC and		
	DC areas	162	
Figure 6.1	Normal probability plot for square root of Q using SPSS	176	
Figure 6.2	Chart of observed data and cubic line for dynamic		
	compaction	178	
Figure 6.3	Chart showing linear relation between measured and		
	calculated results	182	
Figure 6.4	Probability plot for Q using SPSS	186	

xiv

Figure 6.5 Chart of observed data and cubic line for vibrocompaction 188 Figure 6.6 Chart showing linear relation between actual and 191

calculated results

Figure 6.7 Comparison between dynamic compaction and vibrocompaction 194

- ---

LIST OF PLATES

No.	Title	Page
Plate 1.1	Piled embankment under construction	
Plate 1.2	Uneven pavement surface at a stretch along north-south	
	highway near km 70 due to failure in ground improvement	15
	work	
Plate 2.1	The runaway at King County airport, after an earthquake	31
	(Seattletimes, 2001)	
Plate 2.2	A CFT cone used to obtain the soil data	51
Plate 3.1	Dynamic compaction and vibro-compaction sites	73
Plate 3.2	Soil boring	78
Plate 3.3	Collection of sample from sampling tube	84
Plate 3.4	Sampler	87
Plate 3.5	Sand trap and door closer	87
Plate 3.6	Sample preservation: sample placed in a large plastic	
	bag, marked sample in plastic bags and sample box	89
Plate 3.7	Digital balance readable to 0.01 g	89
Plate 3.8	Measuring of water level	90
Plate 3.9	Samples on the left and quartering on the right	92
Plate 3.10	Stirrer and sodium hexametaphosphate on the left and	
	wet sieved sample in the pan on the right	92
Plate 3.11	Oven on the left and Mechanical Sieve on the right	92
Plate 3.12	Wash fluid at wash boring area	102
Plate 4.1	The vibro-compaction area after site clearing	110

Plate 4.2	Crane and 150 kN pounder utilised on site	112
Plate 4.3	Dynamic compaction in progress	114
Plate 4.4	Earth drain around the platform	115
Plate 4.5	An S-vibrator	123
Plate 4.6	Vibrator, pay loader, crane and electric generator	124
Plate 4.7	CPT test in progress	129

Ľ.

LIST OF SYMBOLS AND ABBREVIATIONS

μ	Speed factor of cable drop
α	Soil structure factor
ρd(field)	Achieved dry density in the field (kN/m ³)
ρd(maximum)	Maximum dry density (kN/m ³)
σ _v	Vertical stress
σ'v	Effective Overburden vertical stress
BSN	Brown Suitability Number
CIRIA .	Construction Industry Research and Information Association,
	UK
CPT	Cone Penetration Test
C _u	Coefficient of Uniformity
D	Depth of improvement
D ₁₀	Effective diameter
D ₅₀	Mean diameter
D ₆₀	Diameter of soil passing 60 % in grading curve
DC	Dynamic compaction
DC 1	Dynamic compaction sampling point 1
DC 2	Dynamic compaction sampling point 2
DC 3	Dynamic compaction sampling point 3
DC 4	Dynamic compaction sampling point 4
DC 5	Dynamic compaction sampling point 5
DC 6	Dynamic compaction sampling point 6
DC A	Dynamic compaction verification point

e _{max}	Maximum void ratio
emin	Minimum void ratio
F	Fine content
F _w	Total fine quantity loss during wet sieving in percentage
F _d	Total fine quantity in the pan after dry sieving in percentage
G	Weight of pounder
G _c	Soil shear modulus
Н	Height of pounder drop
I	Normalised improvement
i	Improvement
IRTP	International Reference Test Procedure
ISSMFE	International Society of Soil Mechanics and Foundation
	Engineering
m ₁	Mass of empty container (g)
m ₂	Mass of the container and wet soil (g)
m ₃	Mass of container and dry soil (g)
Pre-CPT	Cone Penetration Test before soil treatment
Post-CPT	Cone Penetration Test after soil treatment
Q	Normalised initial cone resistance
qc	Cone resistance
q _i	Initial cone resistance
q _f	Final cone resistance
R (%)	Relative compaction in percentage
RD	Relative Density
SPT	Standard Penetration Test

SP	Poorly graded SAND
SW	Well graded SAND
VC	Vibro-compaction
VC 1	Vibro-compaction sampling point 1
VC 2	Vibro-compaction sampling point 2
VC 3	Vibro-compaction sampling point 3
VC 4	Vibro-compaction sampling point 4
VC 5	Vibro-compaction sampling point 5
VC A	Vibro-compaction verification point
w	Moisture content
W	Weight of pounder

PERBANDINGAN PRESTASI TANAH PASIR LONGGAR HASIL PEMBAIKAN OLEH TEKNIK PEMADATAN DALAM

ABSTRAK

Objektif penyelidikan ini adalah untuk mengkaji kesan penambaikan keatas tanah pasir longgar dengan kehadiran kandungan tanah halus, menilai dan membandingkan keberkesanan kaedah pemadatan dinamik dan pemadatan getaran, menyediakan model separa empirik yang bersesuaian dan akhirnya mencadangkan suatu carta perbandingan prestasi bagi memilih kaedah yang memberikan peningkatan rintangan tanah yang terbaik. Kajian telah dijalankan di Kerteh, Terengganu. Berdasarkan pembaikan yang dijalankan, adalah didapati peningkatan rintangan tanah adalah berbeza antara kedua-dua teknik. Sampel tanah selanjutnya telah diambil menggunakan tiub pensampelan yang dibuat khas, dan ujian ayakan basah telah dijalankan di makmal bagi menentukan perbezaan jumlah kandungan tanah halus. Model kemudiannya dibangunkan bagi menentukan kehubungan antara penambaikan dan rintangan tanah. Kehubungan model kuasa tiga didapati adalah terbaik untuk kedua-dua kaedah pemadatan dinamik dan pemadatan getaran. Model-model ini membolehkan penggunaan nilai rintangan tanah secara terus bagi menilai pembaikan kaedah pemadatan dalaman dengan mengambil kira kandungan tanah halus. Model-model ini kemudian digunakan untuk menyediakan suatu carta perbandingan yang dapat membantu jurutera di dalam merekabentuk teknik pemadatan.

xxi

COMPARATIVE PERFORMANCE OF LOOSE SANDY SOILS IMPROVED BY DEEP COMPACTION TECHNIQUES

ABSTRACT

The objectives of the study were to determine the effect of fine content on the improvement of cohesionless loose sandy soils, to evaluate and compare the effectiveness of the dynamic compaction and vibro-compaction techniques, to provide suitable semi empirical models on improvement and finally to propose a suitable comparative performance chart that can help select the technique that provided higher improvement. The research was conducted at study sites in Kerteh, Terengganu. Based on improvements made, it was found that the increase in soil resistances after completion of treatment differs between the two techniques. Extensive soil samples were then collected using specially fabricated sampling tube, and wet sieve grading analyses on the soils were performed in the laboratory to determine the difference in fine content. Models were then developed to determine the relations between improvement against soil resistance. Cubic semi-empirical models were found to be the best models for both dynamic compaction and vibro-compaction. The models allowed direct usage of the cone resistance to evaluate the performance of the deep compaction technique incorporating the effect of fine content. The models were then used to produce a suitable comparison chart that can assist engineers in designing the compaction techniques.

CHAPTER ONE

1.1 Introduction

Malaysia is a dynamic developing country continuously absorbing and adopting new knowledge and skill to propel itself along the path towards its 2020 vision. Over the decades after independence, much effort has been devoted to develop and enhance various infrastructures, most significantly in the development of land for roads, bridges, highways and buildings.

The advancement in the construction industry has opened up opportunities to research and improved existing knowledge and fine tune several aspects of construction practices.

Soil treatments, for instances, had been used 3000 years ago for the construction of temples by the Babylonian (Van Impe, 1989). In the past decades, they have gathered widespread acceptance in the global geotechnical community. Conventional practice had been either to perform removal and replacement of unsuitable soils such as soft soils, or bypass them with expensive pile foundations. However due to their success in obtaining significant engineering property improvements, as well as the economic benefits of their usage, soil treatment is now common in engineering projects where poor or unstable soils are encountered.

Numerous people have conducted studies to delve into ways and techniques to treat soils. Bell (1992) has listed some of the more popular soil treatment techniques. They include:

- i) Deep compaction techniques such as vibro-compaction, vibroreplacement and dynamic compaction.
- ii) Freezing techniques such as the use of freon/brine refrigeration and cryogenic liquids.
- iii) Drainage techniques such as the use of filter drains, sand drains and lime columns.
- iv) Ground lowering techniques such as sump pumping, deep bored filter wells with submersible pumps and vacuum dewatering.
- v) Electro-osmosis and electro-chemical stabilization.
- vi) Exclusion techniques such as sheet piling, slurry trenches and diaphragm walls.
- vii) Reinforcement techniques such as reinforced earth and soil nailing.
- viii) Grouting techniques such as cement-clay grouts, resin grouts and compaction grouting.

ix) Soil stabilization techniques such as cement and lime stabilization.

Among those above list, the two most widely used methods of soil treatment for loose sandy soils are vibro-compaction and dynamic compaction (tamping). These two methods are also part of deep compaction techniques.

Assuredly these techniques have gained popularity due to the availability of more powerful equipments such as vibrators and cranes, and also more accurate and reliable field soil investigation equipment such as Cone Penetration Test (CPT). With the highly increasing awareness and concern on the part of the public and government on the detrimental impact of liquefaction of loose sand on foundations due to dynamic loading such as earthquake there has been an increase in the popularity of usage of these techniques.

Loose sands are sandy soils having shear strength of less than 100 kPa (Whitlow, 1997). In Malaysia, developments are also now proceeding to areas of soft soils (Ting et al, 1988). Kuantan-Kerteh railway system and petrochemical plants in the district of Kemaman, Terengganu are examples where developments have proceeded to loose sandy soils area. These places, being rich in natural resources and rapidly growing in development, naturally requires special look into such as the one being conducted in this study.

Report such as in Figure 1.1 relating technical difficulties in constructing a road in Kemaman district, is now common in Malaysia. The project was a road project that took nine years to complete due to weak soil present in the area.

Is it really fair to blame just the consultant as being the culprit in this case? Consultants, at best work with the latest available technology in any construction work, which not necessarily is the best way to do the job. That is why problems occur and thus consequently more research is required to clearly identify the problems and come up with solutions.

Consultant blamed for road work woes

Rosli Zakaria

By Rosli Zakaria KEMAMAN, Tues. — The Finance Ministry has been urged to blacklist a civil and structural consultant involved in the construc-tion of a 21.4km road link-ing Kampung Mak Lagam, Lubuk Batu and Bandar. Cheneh Baru. Central Terengganu De-velopment Authority made failure of the Selangor sadder of the sadder of the sadder sadder of the sadd

TENGKU PUTERA ... three extensions metre. metre. In addition, the contrac-tor had to incur higher costs resulting from addi-tional excavation work and landfill and build two

bridges. State infrastructure and

Public Facilities Develop-ment Committee chairman. Tengku Putera Tengku Awang said with all the problems. the project. which started in 1991. had been delayed for more than five years. The project was scheduled to be completed in February 1994. "It is not the contractor's fault. The design for the road has been bogged down by too many technical problems which should have been identified earlier by the consultant, he said after visiting the road pro-lect site. Part was and the managing Ah Wa and the managing Ah Wa and the managing director of Sri Minal Con-struction Siaw Teck Hwa at the project site. "The failure of the con-nultant to identify the tech-nical problems, especially

al problems, especially soll tests, and propose to overcome them ich is an important t for growth in cata-the lyst

Area." Tengku Putera said the contractor had been given three extensions, the first ended in May 1995, second in March this year and the third is October next year. He said the contractor was also forced to delay the project for a year in 1993 because it did not get the approval from Petronas to build the road across its gas opienite. "This problem had been solved by laying concrete slabs over the section of the pipeline affected by the road construction." Tengku Putera said about 75 per cent of the contractor had to excavate more than 10 metres to lay the foundation. "To solve this problem the advice of the Malaysian Public Works Institute which proposed the use of geotextile materials."

Figure 1.1: Soft soil problem in Kemaman district, Terengganu. (NST, anon)

Loose sand has been proven to be detrimental to in construction of roads, railway tracks and buildings because they can experience large settlements and also liquefy under dynamic loading. In areas where there are thick loose sands, special technique is required to treat and stabilize the ground before further construction can proceed over it. With the frequent earthquakes

in the Asian region in recent years, the need for densification of loose sand is extremely important to prevent damage to structures constructed at the loose sandy beach areas. Mitchell (1995) has published one of the most widely referred publication reporting success of soil densification techniques such as vibro-compaction and dynamic compaction in mitigating the effect of earthquakes relating experiences in Japan. Further research in these techniques is surely needed to help us improve our understanding on the technique and its applicability.

Admittedly, the use of surface compaction to densify thick layers of loose sandy soils is not suitable. This is because densification to the required depths cannot be achieved through mere surface compaction. Alternatively pile embankment could be constructed (Plate 1.1) to bypass the weak soil and found the development on the firm strata below the ground.

Typically in Malaysia 250 mm to 300 mm diameter piles at 2 m center to center were driven to achieve the required embedded length. A large pile cap would then be constructed to transmit loadings to the piles. Due to many activities and large material quantities involved, piled embankment is a very expensive alternative. Thus ground treatment such as deep compaction is an attractive and viable construction technique as opposed to surface compaction and deep piled embankment foundation.

Plate 1.1: Piled embankment under construction

1.2 Definitions

The following definitions are critical for the understanding of this study:

i) Compaction

According to Whitlow (1997), compaction is the process of bringing about an increase in soil density, with a consequent reduction of air-voids volume, but no change in volume of water. It is affected by mechanical means such as by tamping or vibrating. Further the effectiveness of compaction depends on several factors:

- The nature and type of soil (i.e. sand or clay; uniform or well graded; plastic or non plastic). This is reflected in grain size distribution, shape of soils grain, amount of fine soil and type of clay minerals present.
- The water content at the time of placing of soil. This is because maximum dry density of soil can only be achieved at the optimum moisture content.
- iii) The maximum possible state of compaction possible for the soil.
 Different soil will produce different compaction curve and thus different maximum dry density and optimum moisture content.
- iv) The maximum amount of compaction possible under field conditions.
 Higher compaction energy able to be transmitted will result in higher density of the soil. This will result in higher compaction degree of the soil.
- v) The type of compaction machinery being used. Suitability of compactors has to be ascertained before employing the compactor as it influenced the efficiency and degree of compaction to be achieved.

CIRIA C572 (2002) has defined compaction as the process in which densification of the ground is achieved by mechanical means such as rolling, ramming or vibrating.

ii) Deep Compaction

In areas where thick loose sandy soil is prevalent, deep compaction techniques are attractive choices. Deep compaction technique refers to the insitu deep densification of loose sandy soils using methods such as blasting, vibro-compaction and dynamic compaction (Mitchell, 1981). According to Charles (2002), the in situ densification performed as a ground improvement technique due to:

- Increased in the density of the soils also results in improvement in stiffness and strength.
- ii) Hazards on untreated ground are associated with volumetric compression of the ground. Thus in situ densification actually introduced the hazard for the volumetric compression to occur before construction on the site take place.
- iii) Soils are generally inelastic and will remain densified after treatment.

Deep compaction is performed to improve the strength and deformation characteristics of sandy soils to such a degree, that structures can be supported safely and economically on or below the improved ground surface (Massarsch, 2001). The most common applications of these techniques are for improvement of reclaimed land and the mitigation of liquefaction risk in the seismic areas (Van Impe et al, 1985);(Chan, 1986); (Raju, 1998); (Philips, 2002). In these techniques, sandy soils are compacted by effecting energy for densification to the required depth.

This study focused on dynamic compaction and vibro-compaction. Vibrocompaction is also called vibro-flotation.

Dynamic Compaction technique requires tamping of the ground with pounder that is dropped from height to compact the soft soils at the required

depths. Varaksin (1990) has reported the success of dynamic compaction down to depth of 15 m.

Vibro-compaction on the other hand is a vibratory technique. In this technique, a vibrator is inserted into the ground to compact the loose sandy soils at the required depths. The holes created due to the vibrations of the ground are filled with selected sand fill material. The sandy soil then is better able to support proposed development on top of it. Slocombe et al (2000c)

reported that vibro-compaction has successfully been used to densify soil to depths down to 56 m.

Figure 1.3: Vibro-compaction technique (Bergado et al, 1996)

According to Bergado et al (1996) deep compaction is achieved by transmitting vibration energy into the subsoil with the objectives of reducing of total and differential settlement, increasing shear strength and resistance to earthquake, and reducing the foundation cost.

Further, Bergado (1996) stated that the parameters influencing deep compaction include type of soil, backfill material, site location, construction equipment and construction procedure. In this study, backfill material, site location, construction equipment and construction procedure were controlled parameters and maintained throughout the study so that the focus could be on the in situ soil type.

iii) Fine Content

Sieve analysis is a standard test of soil for civil engineering purpose. This test involves the sieving of sampled soil through various sieve sizes. British Standard BS 1377: 1990 specifies fine soil as soils with more than thirty five percent of the material having sizes smaller than 0.06 mm after through going through sieve analysis. These cover soils such as silts, clays and, gravelly or sandy silts and clays.

Unified Soil Classification System specifies fine grained as soils having fifty percent or more passing through No. 200 sieve (Das, 1999). These cover such soils as silts and clays.

Based on the above definitions, fine content is thus defined as the percentage of fine soil such as silts and clays present in the soil. This can be obtained by measuring the percentage of soil that passes the No. 200 or the 0.06 mm sieve (67 μ m sieve).

1.3 Objectives of Study

The focus of this study is on the dynamic compaction and vibrocompaction techniques. Consequently the objectives of this study are:

 To determine the effect of fine content on the improvement of cohesionless loose sandy soils Cone Penetration Test (CPT) results.

- ii) To evaluate and compare the performance of the dynamic compaction and vibro-compaction techniques.
- iii) To provide suitable semi empirical models to describe the effect of fine content on improvement.
- vi) To propose a suitable correlation chart to select the technique that provided higher improvement.

1.4 Rational of Study

Early application of deep compaction ground improvement techniques dated back to the days of the Babylonians and Ancient Egyptians. The subject was considered a novelty in the 1960's when it became part of geotechnical engineering (Munfakh, 2002). Advances made in deep compaction technique have generally resulted from the initiative and imagination of contractors (Kramer, 1996). Charles (2002) also concluded that ground treatment such as deep compaction technique has not received sufficient attention in the past from geotechnical engineers. This results in slow acceptance of the deep compaction techniques in engineering fraternity. The slow acceptance results in the techniques being suited to mega infrastructure projects and not common techniques that are cost effective and efficient.

In addition, the widespread acceptance and application of the deep compaction techniques was also delayed by:

Lack of unbiased literature which detailed objectively the advantages and disadvantages of the techniques (Dhir, 1988). This is the result of innovation and advancement of the techniques which has been led by contractors. What has happened was that the publications available on the techniques were more focused on the successes achieved. No doubt it is because of the difference in objectives between the contractors and the other parties

i)

- ii) As the innovations were being led by contractors, proven theories on the mechanics of the techniques have yet to be developed and accepted (Kramer, 1996). This resulted in successes of the techniques were continuously questioned. An example of this is the improvement made by vibro-compaction technique in loose sandy soils with higher fine content.
- iii) Lack of understanding on improvement made to the loose sandy soils after the performance of the techniques. As a result of this lack of understanding, stringent pre and post-testing were required to verify the improvement made by the techniques. For example was the improvement of cone resistance results at the weak soils area between the sand columns. The issue raised was whether dissipation of pore water pressure occurs within the construction time to allow for strength gain in the soil. Failure of this understanding has resulted in mushrooming effect that could be seen on the earthwork embankment

supported by the treated soil. This has resulted in unnecessary maintenance cost to be incurred.

- iv) Massarsch et al (2002) has put the blame on the lack of financial resources to research on the soil treatment area due to the costly nature of the work. Large funds are needed to study the various impact and parameters affecting the actual construction work.
- v) No direct comparison has been made between the techniques to assist the selection of the more suitable technique.
- vi) Knowledge of ground improvement failure even though not published was well known within the construction industry. This created a need for research to be conducted in the country to assess the suitability and effectiveness of the technique.

Bad experience in the implementation of the deep compaction techniques has also slowed the acceptance of the infrastructure developers to undertake the techniques. Plate 1.2 shows a deep compaction failure site along the north-south highway where the uneven pavement surface could be clearly seen. Improvements only occur at the treatment points whereas area between the points only improves later during the operation of the highway. This results in settlement between the treatment points.

Plate 1.2: Uneven pavement surface at a stretch along north-south highway near km 70 due to failure in ground improvement work.

Finally, in practice, the final decision of the technique to be performed depended on the lowest cost quoted by contractors to achieve the performance specification tendered. For example, in an open bid tender, performance specification is typically provided in the contract with a suggested deep compaction technique based on suitability of the soil in the area. Bidding will come from contractors proposing various techniques to improve the ground meeting the specification. The experienced contractor submitting any suitable technique with the lowest cost will be accepted. This reflects lack of confidence in specifying and judging between the techniques by the engineer and has resulted in negative image for the techniques and the engineering profession.

work. This is especially true considering that as deep compaction work is part of earthwork activity in a tender document, and typically a re-measured item, the cost implication of this is significant.

Because of slow acceptance and negative experience faced, there was a need for a study to take place for a better understanding on the deep compaction techniques. То geotechnical engineering fraternity. the improvement behaviour of loose sandy soils after performing of the techniques needed to be understood. This will assist Malaysian engineers in selecting the technique that can provide the most beneficial improvement in bearing capacity among the deep compaction techniques. This is also in line with recommendation by Professor Balasubramiam in his Professor Chin Fung Kee 2002 Memorial lecture when he emphasized the need for study to be conducted on South East Asian countries in field behaviour of tropical soils.

1.5 Significance of the Study

In this study, large amount of data has been utilized. The cost impact was substantial. The opportunity to conduct this type of study was rare and the contribution will assist Malaysian engineers in the selection and performance of dynamic compaction and vibro-compaction work.

The study will provide a better understanding on the improvement behaviour in cohesionless soil, after the performance of vibro-compaction and dynamic compaction techniques.

The selection of deep compaction technique is still based on Mitchell (1970). As in Figure 1.4, the chart only provides suitability of the technique with ranges of soil particle sizes. In the chart, there are overlapping techniques. The chart did not provide indication of the effectiveness or efficiency of the technique. As such the technique that can give the best improvement and economy cannot be selected.

Figure 1.4: Selection of deep compaction technique (Mitchell, 1970)

This study provides an analysis of the effectiveness of deep compaction techniques on Malaysian soil. It will become a significant reference in selection of the techniques for future work in Malaysian.

Globally, research till date has focused on the improvement to dredging sand fill in reclamation work and to an extend also on the improvement of bearing capacity of fill material such as ash fill and landfill (Yee et al., 2004). Reclamation work possesses a different situation as compared to beach sand. Sand placed by hydraulic means for reclamation work, leads to segregation of the coarser and finer particles (Covil et al , 1997). This coarser sand is called clean sand and they have minimum fine content, if any. Thus according to Cao et al (1998), the influence of fine content on the improvement of the deep compaction techniques has not been investigated. So, the choice of research relating to the fine content is indeed a welcomed contribution to the engineering and construction industry.

The importance of considering fine content was summed up by Massarsch et al (2002) when he said that in the selection of deep compaction technique, the assessment of compatibility of technique has been based on quality test such as Cone Penetration Test (CPT) results because of high cost incurred in finding soil fine content to determine the suitability of the techniques. Without doubt, cost has been the main obstacle for a study on the effect of fine content to be conducted. Costs involved are soil boring, sampling and finally laboratory work itself.

1.6 Summary of Chapters in the Thesis

The thesis has been divided into seven chapters. In Chapter One, the definition of deep compaction technique and objectives of the study are provided. This is to allow for clear understanding on the subject and also the need of this study.

Chapter Two presents selective literature review on deep compaction techniques. Initially the selection process is reviewed. Then the mechanics of the deep compaction techniques are described. After that current knowledge on the effects of fine content for each technique are discussed. Finally an overview of Cone Penetration Testing is provided. In particular the effect of depth or effective vertical stress, on cone resistance is studied. Summary of this chapter discusses the limitation of existing knowledge on selection of ground improvement technique and further emphasis the need to study the effect of fine content.

Chapter Three is titled Methodology and limitations, Sampling and Laboratory Test. It describes the study methodology, soil sampling and laboratory study. Major issues such as rational of the study, limitation of the study and site variability are also discussed. The summary for this chapter also describes the challenges faced in undertaking the soil sampling and laboratory study.

In Chapter Four, construction techniques and quality testing performed for assessment of the techniques are described. In addition the chapter discusses the field constraints and mitigation measures for the field work.

Chapter Five presents the results and discussions of all the cone penetration, site measurement and laboratory test part of the study. This includes pre-CPT, post-CPT, unit weights, fine content and moisture contents.

In Chapter Six, Model Development, the models for the study are developed. The improvement of cone resistances is the main focus. Comparisons are then made between the techniques, having considered the amount of fine content, to gauge increase in cone resistances of loose sandy soils after performance of the different techniques. Based on the comparison of improvement made, a correlation chart guide is proposed to assist the selection of the more suitable technique. The guide is the end product of the research.

Chapter Seven consisted of conclusions and recommendations for further work. Finally, appendices are made available and it includes photographs of site activities and laboratory activities, and raw data from the study.

CHAPTER TWO

REVIEW OF SELECTED DEEP COMPACTION TECHNIQUES

2.1 Introduction

Bergado et al (1996) defined deep compaction as the process of the reducing the compressibility and increasing the strength of soil by packing soil particles together with high energy. No cohesion is however added to the soil.

Due to the limited choice available in selecting sites for infrastructure development, the need to utilize poor soils for foundation and earthwork construction cannot be avoided.

Thus loose sandy soils deposits are to be compacted to eliminate the subsequent excessive settlements and to minimize the possibility of liquefaction under dynamic loading. Example of a dynamic loading is the earthquake. Earthquake causes liquefaction.

Liquefaction is a phenomenon where the strength of the saturated soil is reduced to the point where it cannot support structures or remain stable and appeared to flow as fluid (Kramer, 1996). Here, the value of total overburden stress is equal to pore water pressure.

Plate 2.1 shows a picture of an earthquake hit airport in Seattle, where the effect of sand flowing or sand boiling after liquefaction could be clearly seen.

Plate 2.1: The runway at King County Airport, after an earthquake (Seattletimes, 2001)

The improvement can be done through compaction processes. With the introduction of larger and more powerful machinery, the quantity of compaction work on loose sandy soils becomes better over the years and the amount of work that could be undertaken has also increased.

Soil has three phases that is solid, liquid and gas. Liquid and gas filled up the void within soil. By undertaking a compaction process the soil particles will be packed closer together due to a reduction in the volume of the void space (Bell, 1992). The process results in improvement in soil properties such as reduction of void ratio, increase in bearing capacity of soils and reduction in settlement potential. The main objectives of deep compaction are:

i)

To reduce the void ratio and thus the permeability of the soil. Soil has three phases which can be represented by volume of air, water and solid. Volume of void is represented by volume of air and volume of water. Compaction causes reduction in air volume. This ultimately reduce air void ratio of the soil. This results in the reduction of void spaces available for flow of liquid through the soil and thus the permeability of the soil is reduced.

- To increase the shear strength and thus the bearing capacity of the soil.
 Compaction increases the density of the soil. This results in the soil being able to take higher load and this consequently increases the shear strength of the soil.
- iii) To reduce susceptibility to volume changes and thus settlement under load. The reduction of void volume due to compaction effectively reduces the potential for volume change and thus the settlement under load.

For deep compaction techniques, the water level during compaction dictates the likely water content in the soil. During construction it becomes important to ensure that water table remains as planned or corrective actions are required to be undertaken.

(CPT) will be used to determine the increase in bearing capacity at depths due

to the compaction. This is due to the higher effective overburden stress being subjected to deeper soils by the soil on top of it.

This study covered the use of two different equipments namely vibrator probe for vibro-compaction and weight or pounder for dynamic compaction. Some of their reported performance is shown in Table 2.1.

Table 2.1:Performance of selected deep compaction technique
(After Mitchell, 1995)

Treatment Method	Treatment details	Post Treatment soil Properties	Response of treated ground	Response of untreated ground
Vibro- compaction	More than 1000 probes spaced 2.4 m, extending 6 m beyond perimeter of tower structure, using gravel as backfill.	Based on SPT; D _R >100%, where D _R is relative density of the soil.	No ground settlement observed for the 30 storey tower.	Not available.
Dynamic compaction	Applied energy of 4524 and 5254 kNm/m ² , over an area of 27 m and length of approximately 1.2 km.	Average CPT resistances were 1kN/cm ² , except in some areas where lenses of fine soils were found.	No evidence of liquefaction due to an earthquake	Extensive liquefaction detected after an earthquake (large sand boils and sink holes).

Where;

D_R is the relative density

CPT is cone penetration test

SPT is the standard penetration test

The post treatment test results and the responses of treated ground under dynamic loading and structural loading had shown that the soil had an improved settlement and shear strength characteristics for the dynamic compaction site and vibro-compaction sites. Regional successes for the vibrocompaction technique includes the increase of relative density to 70 % at the 500000 square meter runaway and taxiaway at Changi airport, Singapore as reported by Raju (1998) and in increase to 70 % relative density below the crude oil pipeline on Jurong island, Singapore as reported by Wehr et al (2002).

For dynamic compaction, success has also been reported by Philips (2002) on compacting loose Sabkha sand deposits for airports and runaways in Dubai International Airport to an increased required density.

According to CIRIA C572 (2002) apart from capable of significantly densifying loose granular deposits, deep compaction techniques had also been shown to reduce compressibility of fill as much as fifty percent of its original value.

2.2 Selection of Deep Compaction Techniques

Several researchers had conducted work on identifying scientific technique of selecting deep compaction techniques. The earliest available scientific technique of selecting the deep compaction techniques was proposed by D'Appolonia (1953).