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Ē twist of E
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PEMBINAAN ENDOMORFISMA YANG DAPAT DIHITUNG SECARA

EFISIEN BAGI PENDARABAN SKALAR TERHADAP BEBERAPA

LENGKUNG ELIPTIK

ABSTRAK

Pendaraban skalar lengkung eliptik (ECSM), dilambangkan sebagai kP, merupak-

an satu di antara cabaran terbesar dalam kriptografi yang melibatkan kriptografi leng-

kung eliptik (ECC). Suatu lengkung eliptik, E yang ditakrifkan pada suatu medan per-

dana terhingga, Fp mempunyai titik-titik terhingga bilangannya yang membentuk satu

kumpulan abelan dan wujudnya satu subkumpulan perdana yang berkitar dengan bi-

langan n. ECSM melibatkan pendaraban skalar k ∈ [1,n−1] dan titik P yang terdapat

dalam subkumpulan perdana tersebut. ECSM memerlukan kos operasi yang tertinggi

dalam ECC dan seterusnya akan mempengaruhi kecekapan sistem kriptografi ini. Un-

tuk beberapa tahun kebelakangan ini, ramai penyelidik mencadangkan pelbagai kae-

dah, seperti kaedah Gallant, Lambert dan Vanstone (GLV) dan kaedah sub-penguraian

integer (ISD), untuk mengurangkan kos operasi ECSM. Salah satu pendekatan un-

tuk mengurangkan kos operasi ECSM ini adalah dengan menggunakan endomorfisma

yang dapat dihitung secara efisien. Kajian ini bertujuan untuk membina endomor-

fisma yang dapat dihitung secara efisien terhadap beberapa lengkung eliptik, khusus

kepada lengkung eliptik yang mempunyai j-invarians, j(E) = 0,1728,8000,54000,

yang mana lengkung-lengkung ini masing-masing berpadanan dengan medan kua-

dratik khayalan, Q(
√
−3),Q(

√
−1),Q(

√
−2), Q(

√
−3) dengan pendiskriminasi D =

−3,−4,−8,−12. Medan kuadratik khayalan ini masing-masing mempunyai bentuk

turunan unik bagi nombor perdana dan mempunyai turutan maksimal unik. Turut-

an maksimal bagi setiap medan kuadratik khayalan memenuhi suatu bentuk khusus

xiv



polinomial monik yang akan menjadi polinomial cirian bagi endomorfisma yang da-

pat dihitung secara efisien untuk mewakili pendaraban kompleks pada suatu lengkung

eliptik. Memandangkan penjana untuk turutan maksimal bagi lengkung eliptik dengan

j(E) = 0,1728 memenuhi punca primitif keunitan, konsep isomorfisma digunakan da-

lam kajian ini bagi menerbitkan pemetaan bagi endomorfisma pertama tertakrif pada

lengkung eliptik tersebut. Kajian ini juga membina pemetaan bagi endomorfisma se-

lain daripada yang telah diterbitkan berdasarkan pemetaan terhadap isogeni, φ yang

mana φ : E→ E. Isogeni ini ditakrifkan menggunakan titik-titik kilasan yang terdapat

pada E dan konsep formula Velu. Kajian ini mewakilkan pemetaan isogeni tersebut se-

bagai pemetaan bagi endomorfisma sekiranya ia mengekalkan struktur lengkung elip-

tik dan memenuhi bentuk terbatas bagi sesuatu isomorfima yang tertakrif pada medan

kuadratik khayalan yang sama seperti medan kuadratik khayalan bagi suatu lengkung

eliptik. Endomorfisma-endomorfisma yang dapat dihitung secara efisien ini kemudian-

nya digunakan dalam kaedah ISD untuk mengurangkan kos operasi ECSM. Kos ope-

rasi ECSM dikira menggunakan kaedah penambahan dan penggandaan titik berulang

melalui algoritma Kanan-ke-Kiri. Perbandingan di antara kos operasi menggunakan

kaedah penambahan dan penggandaan titik berulang, kaedah GLV dan kaedah ISD

juga dibuat. Sebagai tambahan, kos operasi bagi setiap endomorfisma yang dapat di-

hitung secara efisien yang telah diterbitkan juga dibincangkan dalam kajian ini. Kos

operasi ECSM dalam kaedah ISD dengan endomorfisma yang dapat dihitung secara

efisien dan tanpa endomorfisma dapat dihitung secara efisien dikira bagi menunjukkan

bahawa kewujudan endomorfisma dapat dihitung secara efisien mempercepatkan dan

mengurangkan kos operasi ECSM dalam kaedah ISD.

xv



THE CONSTRUCTION OF EFFICIENTLY COMPUTABLE

ENDOMORPHISMS FOR SCALAR MULTIPLICATION ON SOME

ELLIPTIC CURVES

ABSTRACT

Elliptic curves scalar multiplication (ECSM), denoted as kP, is one of the build-

ing blocks in Elliptic Curve Cryptography (ECC). An elliptic curve, E defined over

a finite prime field, Fp have finitely many points which form an abelian group and

there exists a prime subgroup with order n. ECSM involves the multiplication of scalar

k ∈ [1,n− 1] and a point P which belongs to the prime subgroup. ECSM consumes

the highest operating cost in ECC which later affects the efficiency of this cryptosys-

tem. For the past few years, many researchers proposed various methods, such as the

Gallant, Lambert and Vanstone (GLV) method and Integer Sub-Decomposition (ISD)

method, to reduce the operation cost of ECSM. One of the approaches to reduce the op-

eration cost of ECSM is by employing an efficiently computable endomorphism. This

research aims to construct efficiently computable endomorphisms on selected ellip-

tic curves, mainly elliptic curves with j-invariant, j(E) = 0,1728,8000,54000, which

corresponds to imaginary quadratic field Q(
√
−3),Q(

√
−1),Q(

√
−2),Q(

√
−3), with

discriminant, D = −3,−4,−8,−12, respectively. These imaginary quadratic fields

correspond to a unique reduced form of prime numbers and a unique maximal order,

respectively. The maximal order for each imaginary quadratic field satisfies a spe-

cific monic polynomial which becomes the characteristic polynomial for the endomor-

phisms that has been constructed to represent the complex multiplication on elliptic

curves. Since the generator of maximal order for elliptic curves with j(E) = 0,1728

satisfy the primitive roots of unity, the concept of isomorphism is used in this work

xvi



to derive their first endomorphism mapping. This study also constructed the mapping

for endomorphisms apart from those derived earlier, based on the mapping of isogeny,

φ where φ : E → E. The isogeny is derived using the torsion points defined on E

and from the concept of Velu’s formulae. This work represents the isogeny mapping

as the endomorphism mapping if it preserves the structure of elliptic curve and it sat-

isfies the restricted form of isomorphism defined over the same imaginary quadratic

field as the elliptic curves itself. These efficiently computable endomorphisms are be-

ing employed on the ISD method to reduce the operating cost of ECSM. The cost

of computing ECSM is computed using repeated additions and doublings via Right-

to-Left algorithm. The comparison of operation counts among the repeated additions

and doublings approach, GLV method and ISD method is also discussed in this work.

Additionally, the operation counts for each of the derived efficiently computable endo-

morphism is computed. The cost of computing ECSM in ISD method with and without

using efficiently computable endomorphism is computed to show that the existence of

efficiently computable endomorphism accelerates and reduces the cost of computing

ECSM in the ISD method.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This introductory chapter explains the background of cryptography and elliptic

curves. Section 1.2 lists the basic concepts on elliptic curves. Next section is the

literature review section which succinctly explains the previous works related to elliptic

curve scalar multiplication. This is followed by Section 1.4 that highlights the problem

statement. The last section, Section 1.5 lists the research objectives.

1.2 Background of the Study

Cryptography is a platform which provides secure communication between two

parties to pass their secret messages and provide authentication of one party to an-

other from being traced by the third parties, known as eavesdroppers (Galbraith, 2012).

There are two main processes in cryptography which are encryption and decryption.

The following figure describes how the secret messages being encrypted and decrypted.

Figure 1.1: Cryptography processes
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From Figure 1.1, the process where the first party namely Alice converts her plain-

text (secret messages) into codes (ciphertext) that is unreadable by using an encryption

key (or public key) and pass it to the second party namely Bob is called encryption.

While decryption is the process where the second party Bob converts the unreadable

messages (ciphertext) back into the plaintext by using a decryption key (or private key).

There are two types of cryptography which are symmetric cryptography and asym-

metric cryptography. In symmetric cryptography, the encryption key and the decryp-

tion key are the same (Washington, 2007). This symmetric cryptography has been

widely used in the Data Encryption Standard (DES) and Advanced Encryption Stan-

dard (AES). Meanwhile, in asymmetric cryptography or also known as Public Key

Cryptography (PKC), the encryption key is being public while the decryption key is

being kept secret. This asymmetric encryption is being used by cryptographic proto-

cols such as Diffie-Hellman (DH), Rivest-Shamir-Adleman (RSA) and Elliptic Curve

Cryptography (ECC).

The use of elliptic curve in the cryptographic area was first discovered by Miller

(1985) and Koblitz (1987). The security of ECC is based on the intractability of solv-

ing the discrete logarithm problem in the elliptic curve which is the problem of finding

scalar k, given Q in the operation Q = kP (Salah & Said, 2015). ECC attracted many

attentions due to its effectiveness of having a shorter key as compared to other cryp-

tosystems such as RSA at the same level of security (Salah & Said, 2014). For instance,

a 160-bit ECC can have an equivalent security level as RSA 2048-bit (Park et al., 2005).

Similarly, a 256-bit ECC equivalent to RSA 3072-bit (Kwon et al., 2018). The n-bit

refers to the bit length of scalar k or the length of k in its binary representation.
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An elliptic curve E is defined by the general Weierstrass equation

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 (1.1)

where a1,a2,a3,a4,a6 are scalars defined in a field K (Silverman, 2009), then E is said

to be defined over K and can be denoted as E(K). The scalar ai’s are the coefficients

of the elliptic curve in the given Weierstrass equation as defined in Eq. (1.1).

Let the following scalars be defined as

b2 = a2
1 +4a2

b4 = a1a3 +2a4

b6 = a2
3 +4a6

b8 = a2
1a6 +4a2a6−a1a2a3 +a2a2

3−a2
4

c4 = b2
2−24b4

c6 =−b3
2 +36b2b4−216b6

(Silverman, 2009). These scalars are useful to determine the discriminant and j-invariant

of an elliptic curve.

The discriminant of E (Silverman, 2009) denoted as ∆ is defined by

∆ =−b2
2b8−8b3

4−27b2
6 +9b2b4b6

=
c3

4− c2
6

1728
.
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The value for ∆ determines whether the curves is smooth or not smooth (Longa, 2011).

Points on elliptic curves does not form a group when ∆ = 0. Thus, it is crucial to have

∆ 6= 0. The curve is said to be smooth if tangent line that touches any point on the

elliptic curve is unique (Hankerson et al., 2004), which happened when ∆ 6= 0.

Meanwhile, the j-invariant of elliptic curves, j(E) is defined as follows

j(E) =
c3

4
∆

= 1728
c3

4

c3
4− c2

6

(Silverman, 2009). The value for j(E) determines the types of family of curves, as two

elliptic curves with the same j(E) are belong to the same family of curves and they are

said to be isomorphic to each other over K̄(Galbraith, 2012) where K̄ is the algebraic

closure of K. A homomorphism from E1 to E2 is a map φ : E1 → E2 which satisfy

φ(P+Q) = φ(P)+φ(Q) for all P,Q ∈ E1 (Washington, 2007). While an isomorphism

is a bijective homomorphism (Roman, 2006). Two elliptic curve E(K) and Ē(K) are

said to be isomorphic over K̄ if every isomorphism satisfies the restricted form of

change of variable where φ(x,y) = (u2x+r,u3y+su2x+t) for u∈ K̄ and r,s, t ∈ K̄, and

they can be written as E(K)∼= Ē(K). The elements u,r,s, t are chosen to be defined in

K̄ since every element in K̄ are called algebraic numbers, and every algebraic number

satisfies a non-constant polynomial defined in K.

The field K can be either R, C, Q or finite field Fp where p is prime(Washington,

2007). Since K is a field, it has two binary operations namely addition (+) and mul-

tiplication (·) such that K an Abelian group under addition and the set of non-zero

elements in K is an Abelian group under multiplication (Roman, 2008). Other than
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that, the elements in K should satisfy the distributive law where for a,b,c ∈ K then

(a+b) · c = a · c+b · c and a · (b+ c) = a ·b+a · c (Roman, 2008).

The characteristic of a field K can be either 0 or a prime number (Roman, 2006).

The characteristic of a field K denoted as char(K) is equal to the characteristic of a

ring char(R) if char(R) is a prime number. The char(K) = 0 if the field K = Q and

char(K) is a prime number if K is a finite field (Roman, 2006). A characteristic of a

ring R is defined by the smallest positive number n where n · 1 = 0 such that 1 is the

multiplicative identity and 0 is the additive identity (Roman, 2006).

Elliptic curve cryptography always deal with finite prime field. The characteristic

of finite field can be either be characteristic 2 where char(K) = 2 or char(K) = 2q

( also known as binary field) (Roman, 2006), characteristic 3 where char(K) = 3 or

char(K) = 3q, or large prime characteristic specifically char(K) = p or char(K) = pq

where p is a prime number and q ∈ N (Hankerson et al., 2004). If q = 1, K = Fp is

called a finite prime field while if q≥ 1, K = Fpq is called the extension field (Roman,

2006).

It is known that {0,1,2, ..., p−1} is the set of elements in Fp. These elements

form an abelian group under addition with 0 as the additive identity. Meanwhile, the

non-zero p-elements {1,2, ..., p−1} in Fp forms an abelian group under multiplication

where 1 is considered as the multiplicative identity. Some arithmetic operations exist

in Fp in shown in the example below.

Example 1.2.1. A finite field Fp with p = 17 have the following arithmetic operations:

1. Addition: 13+12 = 12+13 = 8.
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2. Substraction: 11−16 = 12.

3. Multiplition; 13 ·2 = 26 = 9.

4. Inversion: 12−1 = 10 since 12 ·10 = 120 = 1.

Since char(K) 6= 2,3, one can transform Eq. (1.1) into

E : y2 = x3 +Ax+B, (1.2)

where A,B ∈ K (Silverman, 2009). The discriminant ∆ of Eq. (1.2) (Cohen et al.,

2006) is equal to the polynomial discriminant of f (x) where

E : y2 = x3 +Ax+B := f (x),

which is the product of the differences of zeroes of f (x), which endowed with the

constant

∆ =−16(4A3 +27B2). (1.3)

To make ∆ is well-defined, it is important to consider it modulo 12-th power in K .

Meanwhile, the j-invariant for Eq. (1.2) is defined by

j(E) = 123−4A3

∆
= 1728

4A3

4A3 +27B2 (1.4)

(Silverman, 2009). An elliptic curve with a given j-invariant can be constructed by

using Eq. (1.4), where E jE : y2 = x3 +Ax+B. Figure 1.2 shows a few types of elliptic

6



curves based on Eq. (1.2) with respective values for A and B.

Figure 1.2: Examples of elliptic curves

The set of rational points in an affine coordinate in E defined over an extension

field L of K is given by

E(L) =
{
(x,y) ∈ L×L : y2 +a1xy+a3y− x3−a2x2−a3x−a6 = 0

}
∪{OE} ,

(Hankerson et al., 2004) where OE is point at infinity or the identity element in E.

Geometrically, OE sits infinitely far up the y-axis (Koblitz, 1991).

The set of points in E form an abelian additive group satisfy the following proper-

ties (Washington, 2007):

1. Commutative: P1 +P2 = P2 +P1 for P1,P2 in E.

2. Associative: (P1 +P2)+P3 = P1 +(P2 +P3) for P1,P2,P3 in E.

3. Existence of identity: Given a point P in E. There exists OE in E with P+OE =

OE +P = P.

4. Existence of inverse: Given a point P in E. There exists −P in E with P+
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(−P) =−P+P = OE . −P is called the inverse of P where it just a reflection of

P over the x-axis. If P = (x,y), then −P = (x,−y).

The cardinality of this additive group denoted as #E(Fp) is given by #E(Fp) = nh

where n is a prime number and h is the cofactor of elliptic curves. A cofactor h is

a prime divisor of #E (Fp) where h =
#E(Fp)

n (Galbraith, 2012). For cryptographic

purpose, h ≤ 4 (Longa & Sica, 2012). The additive group consists of points defined

in the elliptic curve with coordinate (x,y) where x,y ∈ Fp. In other words, there are

nh’s points in additive group E(Fp) including the identity element OE . In the additive

group of E(Fp), there exists a subgroup G with prime order n. In the subgroup G,

there exists a cyclic subgroup which is generated by a where a ∈ G and a is not the

identity element. It is known that the order of the element divides the order of the

group (Fraleigh, 2004). Since G has prime order n which is only divisible by 1 and

itself, where the only element of order one is the identity element, this implies the order

of a is equal to the order of G and a generates G. Thus, G is a cyclic subgroup. Since

G ⊂ E(Fp), where E(Fp) consists of points defined in E over Fp, thus G also consists

of points in E(Fp). In other words, every point in G is the generator of G. Thus, the

prime subgroup of E(Fp) can be generated by knowing only a single point P which

belongs the respected prime subgroup by using arithmetic operation defined in elliptic

curve.

Two main point arithmetic operations in elliptic curve are point addition and point

doubling. Let P = (x1,y1) and Q = (x2,y2) be points on elliptic curve defined over Fp,

where P 6= Q. The geometry of point addition P+Q = R = (x3,y3) is as follows:
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Figure 1.3: Point addition

The point addition P+Q can be computed using this formula:

m =
y1− y2

x1− x2

x3 = m2− x1− x2

y3 = m(x1− x3)− y1

(Silverman, 2009). As can be seen, m needs one inversion operation, x3 needs one

squaring and y3 needs two multiplications. Different operations require different run-

ning time. As the number of operation increases, the computational cost also increases.

Thus, the computational cost is represented by the total number of operations. The cost

of computing a point addition is 2M+1S+1I where M,S, I denote the multiplication,

squaring and inversion operations, respectively.

By using same description, the geometry of point doubling P+P = R = (x3,y3)

for Eq. (1.2) where E : y2 = x3 +Ax+B is as follows:
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Figure 1.4: Point doubling

Point doubling (Silverman, 2009) can also be computed by using this formula:

m =
3x2

1 +A
2y1

x3 = m2−2x1

y3 = m(x1− x3)− y1.

As can be seen, m needs one squaring and one inversion operation, x3 needs one squar-

ing and y3 needs two multiplications. Thus, cost of computing a point doubling is

2M + 2S+ 1I where M,S, I denote the multiplication, squaring and inversion opera-

tions, respectively.

The point addition and point doubling arithmetic operations are important in ECC,

especially to generate the public key. The following steps ECC and point arithmetic

operation play roles in public key cryptography:

1. Alice and Bob agree on certain parameters, such as an elliptic curve E defined

10



over the finite prime field Fp, a point P with large prime order n.

2. Alice chooses her secret key, kA ∈ [1,n−1].

3. Alice computes her own public key, QA = kAP and then she sends it to Bob.

4. Bob chooses his secret key, kB ∈ [1,n−1].

5. Bob computes his own public key, QB = kBP and then he sends it to Alice.

6. They both can compute QA ·QB which are their shared secret key.

Every secret key and public key refer to points on an elliptic curve. In elliptic curve

public key cryptography, the secret messages are being embedded on the points of el-

liptic curves. Only if Alice and Bob able to compute the shared secret key correctly,

then they can read the secret messages. However, the cost of computing the shared

secret key and also the public requires high computational time resulting in high com-

putational cost. The process of computing these keys is called the elliptic curves scalar

multiplication (ECSM) denoted as kP where P ∈ E(Fp) and k is the secret key chosen

from [1,n−1]. Generally, to compute kP, one needs (k−1) addition processes where

kP = P+P+ · · ·+P+P.︸ ︷︷ ︸
adding P by k-times

One can also use repeated point additions and point doublings to compute kP. In order

to know the number of doubling and addition operations needed to compute kP, the

scalar k needs to be changed into its binary form representation where the bit length

and Hamming weight are determined. The bit length of k refers to the length of the

binary representation of k. While, the Hamming weight of an integer k is defined as the
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number of ones in its binary expansion, denoted as w (Galbraith, 2012). The number

of addition operations needed to compute kP depends on the Hamming weight of k in

its binary representation, while the number of doubling operations needed depends on

the bit length of k in its binary representations.

However, the problem arises when the subgroup has a very large prime order which

causes the scalar multiplication to have high computational cost due to the higher num-

ber of operation needed to compute kP. As the number of operations getting bigger,

the running time will be higher, resulted in higher computational cost. Hence, many

researchers try to speed up and reduce the cost of computing kP so that it requires

less running time and storage, and it can be beneficial to elliptic curve cryptosystem.

One of the methods to speed up and reduce the cost of computing scalar computa-

tion is by employing the efficiently computable endomorphism such as the Frobenius

endomorphism and endomorphism with complex multiplication.

An endomorphism is a homomorphism φ where φ : E 7→ E which is given by

rational function φ(x,y) = (R1 (x,y) ,R2 (x,y)) (Washington, 2007). Every endomor-

phism satisfies a quadratic characteristic polynomial with integer coefficients (Gal-

braith, 2012). A Frobenius endomorphism for char(K) = 2 is the morphism from

E to E which maps τ(x,y) = (x2,y2) (Park et al., 2002) with characteristic polyno-

mial of τ2− tτ +2 = 0. Meanwhile, Frobenius endomorphism for char(K) = p maps

π(x,y) = (xp,yp) (Itjima et al., 2002). While, an endomorphism with complex multi-

plication is an endomorphism with characteristic polynomial of complex roots which

is given by

Φ
2− tΦ +nΦ = 0 (1.5)
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where tΦ = Φ+ Φ̂ is the trace of endomorphism Φ and nΦ = Φ · Φ̂ is the norm of

endomorphism Φ (Silverman, 2009).

The existence of the rational function of an endomorphism allows the scalar multi-

plication to skip the process of repeated additions and doublings. If the rational func-

tion is well-defined and requires a small number of operations, then the endomorphism

is said to be efficiently computable. The existence of efficiently computable endomor-

phism accelerates the scalar multiplication kP in an elliptic curve since it allows the

scalar multiplication to be computed easily with less number of operation.

1.3 Literature Review

Scalar multiplication, kP is one of the most critical operations in ECC, where k

is the secret key and P belong to the prime subgroup with order n in E(Fp). This

operation consumes most of the operation time, especially when dealing with large

prime field due to a higher number of operations. Other than that, it requires more

storage as the field getting larger. In the past few years, many researchers proposed

various methods to accelerate and reduce the cost of computing kP to overcome this

problem. However, this operation still needs further improvement.

Previous studies show that the use of an efficiently computable endomorphism

can be applied to improve the performance of scalar multiplication (Gallant et al.,

2001; Part et al., 2005). One of the efficiently computable endomorphism is Frobe-

nius endomorphism. In 1992, Neal Koblitz employed the Frobenius endomorphism

on curves with characteristic 2 (char(K) = 2 or a binary field), which is known as the

Koblitz curves (Koblitz, 1991) by using τ-adic expansion. Define the Koblitz curves
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as Ea : y2+xy = x3+ax2+1 where a∈ {0,1}. A Frobenius endomorphism is the mor-

phism which maps τ(x,y) = (x2,y2) (Park et al., 2002). The characteristic polynomial

of a Frobenius maps for char(K) = 2 is given by τ2− tτ +2 = 0, where t is the trace

of Frobenius and t = (−1)1−a. The Frobenius map on elliptic curve with char(K) = 2

can be considered as the complex multiplication by τ = 1+
√
−7

2 or τ = −1+
√
−7

2 . This

endomorphism was able to speed up computation on the elliptic curve defined over

the binary field (Solinas, 2000; Yunos et al., 2015). The following example on the

implementation of Frobenius endomorphism via τ-adic expansion.

Example 1.3.1. Let the Frobenius endomorphism acted on a point P ∈ E(Fp) be de-

fined as τ2(P)− τ(P)+2(P) = 0. Then, 2P can be written as 2 = τ− τ2.

7 = 1+3(2)

= 1+3
(
τ− τ

2)= 1+3τ−3τ
2

= 1+ τ(3−3τ) = 1+ τ(1+2− τ−2τ)

= 1+ τ + τ
(
τ− τ

2)− τ
2− τ

2 (
τ− τ

2)
= 1+ τ−2τ

3 + τ
4

= 1+ τ− τ
3 (

τ− τ
2)+ τ

4

= 1+ τ + τ
5

Since τ(x,y) = (x2,y2), then

7P = P+ τ(P)+ τ
5(P)

= (x,y)+(x2,y2)+(x2,y2)5

= (x,y)+(x2,y2)+(x32,y32).
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However, the Frobenius map only worked for the field with char(K) = 2. Later in

2001, Gallant et al. proposed a method to speed up the computation of kP that works

on the large prime field, Fp. They work with elliptic curves with char(K) 6= 2,3 which

is defined in Eq. (1.2), E : Y 2 = X3 +AX +B. This method employs an efficiently

computable endomorphism, and it is known as the Gallant, Lambert and Vanstone

(GLV) method (Gallant et al., 2001). The key idea for this method is the scalar k is

decomposed into two scalars, k1 and k2 where each of the decomposed scalars has half

bit length of k (Ciet et al., 2003). The general formula of the GLV method is as follows:

kP = k1P+ k2Φ(P), (1.6)

where Φ is the efficiently computable endomorphism acted on P with prime order n.

The characteristic polynomial for Φ is Φ2 + rΦ+ s = 0 and has root λ . Following

Eq. (1.5), r = −tΦ and s = nΦ where tΦ = Φ+ Φ̂ the trace of endomorphism Φ and

nΦ = Φ · Φ̂ as the norm of endomorphism Φ (Silverman, 2009). The GLV method

considers the group homomorphism :

f : Z×Z→ Zn (1.7)

(i, j) 7→ i+λ j (mod n). (1.8)

GLV method needs two short vectors v1,v2 ∈ Z×Z such that f (v1) = f (v2) =

0. These vectors are independent toward k but dependent on λ . Such vectors can

be obtained by using Extended Euclidean algorithm (EEA). Then, by using Babai’s

rounding to solve the closest vector problem, a vector u = Zv1 +Zv2 = (k1,k2) that is
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closed to (k,0) is computed, where

u = (k1,k2) = (k,0)− (bb1ev1 + bb2ev2) . (1.9)

The vector (k,0) is given by (k,0) = b1v1 +b2v2 where bbe is the nearest integer to b.

The GLV method was able to accelerate the scalar computation roughly by 50%

as long as the condition of GLV method where max{|k1|, |k2|} ≤
√

n is satisfied, and

the endomorphism is efficiently computable (Park et al., 2002). Since then, many

researchers proposed various approaches extension to the GLV method.

Park et al. (2002) extended the GLV method by studying the algebraic structure of

decomposing k. They used µ-Euclidean algorithm where they used the µ-Euclidean

ring Z [Φ] such that Z [Φ] ⊂ End(E) ⊂ Q
(√
−D
)
. They proved that there exists an

element α = a+ bΦ ∈ Z(Φ), such that the norm of alpha nα = snn and αP = OE

where sn ≤ 3, and sn = 1 if Z [Φ] is the maximal order. The value for α can be

found using Shanks’ algorithm and lattice reduction method. Additionally, in the

same year, Itjima et al. (2002) extended the GLV method; but instead of using the

efficiently computable endomorphism Φ, they used the Frobenius endomorphism Ψ

on the quadratic twist of the elliptic curve with genus one. They defined the p-th

power Frobenius map over Fpn where Ψp = φπφ̂ and Ψp : Ē (Fpn)→ Ē (Fpn) such that

Ψp : (x,y) 7→
(

c1−pxp,c
3−3p

2 yp
)

. Note that, φ̂ is the isogeny from Ē to E defined over

Fpn , pi is the isogeny from E to E and φ is the isogeny from E to Ē defined over Fpn

(Galbraith et al., 2009).

The original GLV method did not come up with an explicit or clear upper bound
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for the decomposed scalars. This allows Sica et al. (2002) to fill the gap and they

successfully obtained the explicit bound for the decomposed scalars in GLV method.

Later, in 2009, Galbraith et al. extended the studies of GLV method on elliptic curves

defined over Fp2 , their method is known as Galbraith, Lin and Scott (GLS) method.

As mentioned in Section 1.2, Fp2 is the extension field of finite field Fp with q = 2.

The E(Fp2) curves are also known as the GLS curves. GLS used the p-Frobenius

endomorphism with characteristic polynomial Ψ2 + 1 = 0 to be applied on E(Fp2)

curves. In 2010, Zhou et al. came up with three-dimensional GLV method on some

GLS curves, specifically on elliptic curves with j-invariant 0. They proposed the scalar

k is decomposed into three scalars where

kP = k0P+ k1Φ(P)+ k2Ψ(P) (1.10)

where Φ(P) = λ1P and Ψ(P) = λ2P. Besides, they defined the homomorphism for

three-dimensional GLV as f : Z×Z×Z→ Z/n. They used the Lenstra, Lenstra,

Lovasz (LLL) algorithm on w0 = (n,0,0),w1 = (λ1,−1,0) and w2 = (λ2,0,−1) to

obtain the short vectors v0, v1 and v2.

Later in 2012, Longa and Sica proposed a four-dimensional GLV scalar multiplica-

tion on a quadratic extension of the large prime field, Fp2 (Longa & Sica, 2012). They

combined both Frobenius and efficiently computable endomorphism where the general

formula is given as

kP = k1P+ k2Φ(P)+ k3Ψ(P)+ k4ΦΨ(P). (1.11)
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Since it is a four-dimensional scalar multiplication, they used the Cornacchia algorithm

instead of using Extended Euclidean algorithm or LLL to compute the lattice basis v1,

v2, v3 and v4. Also in the same year, Hu et al. (2012) studied the four-dimensional

GLV on GLS curves with j-invariant 0 .

In the following year, Bos et al. (2013a) extended the four-dimensional GLV

method on elliptic curves of genus two. Elliptic curves of genus two are also known

as the Hyperelliptic curves, E : y2 = f (x) where f (x) is a polynomial of degree five or

six. They implemented the four-dimensional GLV method on Buhler-Koblitz curves,

y2 = x5+B and Furukawa-Kawazoe-Takahashi curves, y2 = x5+Ax. In the same year,

Bos et al. (2013b) extended the GLV method to eight-dimensional GLV/GLS decom-

position method and implemented it on genus two curves.

Later in 2014, Hernández et al. studied the efficient and secured algorithm for

GLV scalar multiplication and implemented it on GLV-GLS curves. In the following

year, Smith (2015) proposed an easy scalar decomposition for efficient scalar multi-

plication on elliptic curves and genus two Jacobian. He suggested the short basis in

the integer lattice involving the eigenvalues of the endomorphism for the GLV, GLS

and GLV+GLS curves. Lastly, Kwon et al. (2018) studied on the implementation

of the four-dimensional GLV proposed by Longa and Sica (2012) on several bits of

micro-controllers.

All these variants extensions of GLV method satisfy the same condition as the

original GLV method where the bit length of the decomposed scalars k1 and k2 should

be half of bit length k, such that max{|k1|, |k2|} ≤
√

n. However, not all k’s can be
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successfully decomposed into k1 and k2 that fall within that condition. Thus, Ajeena

and Kamarulhaili (2013) proposed a method known as the Integer Sub-Decomposition

(ISD) method to solve the scalar multiplication problem when min{|k1|, |k2|} >
√

n.

They were able to increase the number of successful decomposition of k’s (Ajeena

& Kamarulhaili, 2014a; 2014b). In 2017, Ajeena and Yaqoob implemented the ISD

method on the elliptic el-gamal digital signature algorithm.

The ISD method proposed an additional layer of decomposition to the GLV method,

such that when min{|k1|, |k2|} >
√

n, these scalars are being further decomposed into

k1,1,k1,2 and k2,1,k2,2, respectively with the help of two other endomorphisms Φ1 and

Φ2. The general formula for the ISD method is as follows:

kP = k1P+ k2Φ(P) (1.12)

= k1,1P+ k1,2Φ1(P)+ k2,1P+ k2,2Φ2(P) (1.13)

where Φ1(P) = λ1P and Φ2P = λ2P.

As it can be seen, Eq. (1.13) have similar form as Eq. (1.11). However, Eq. (1.11)

is a four-dimensional problem while Eq. (1.13) is a two-dimensional problem. Since it

is a two-dimensional problem, it uses the same group homomorphism as defined in Eq.

(1.7), and the same approach as in the GLV method to solve the closest vector problem

to obtain the decomposed scalars. By adopting the Extended Euclidean algorithm on

(n,λ ),(n,λ1) and (n,λ2), they obtained the short vectors (v1,v2),(v3,v4) and (v5,v6),

respectively.

However, the ISD method uses trivial endomorphisms where the minimal poly-
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nomial for the endomorphism is given by Φ−λ = 0. These endomorphisms are not

efficiently computable since λ ,λ1,λ2 in the ISD method are defined in Z, where these

values are chosen randomly from interval [1,n−1], such that λ1 6= ±λ2 (Ajeena and

Kamarulhaili, 2014a).

1.4 Problem Statement

For the past few years, researchers tried to reduce the cost of computing the scalar

multiplication kP in elliptic curves cryptography by introducing methods and algo-

rithms such as GLV and ISD method. The GLV method suggested that the multiplier

k being decomposed into two mini scalars with condition max{|k1| , |k2|} ≤
√

n. This

method is effective provided that the endomorphism can be evaluated at a constant

time and the condition for mini-scalars is satisfied. It suffices to know that one can re-

duce the cost of computing kP if the decomposition is short and the endomorphism is

efficiently computable (Smith, 2015). As mentioned in Section 1.2, the endomorphism

is said to be efficiently computable if it costs less than a small number of point dou-

bling where each point doubling costs 2 multiplications, 2 squarings and 1 inversion

operation.

Nonetheless, the GLV method is unable to decompose all scalar k ∈ [1,n−1] into

k1,k2 which are less or equal to
√

n. To increase the number of successful decom-

position of scalar k, Ajeena and Kamarulhaili (2013) proposed the ISD method. The

ISD method employs a double layer decomposition, which extends the decomposition

of GLV method when min{|k1|, |k2|} >
√

n. As a result, the ISD method has longer

decomposition process and higher computational cost. The only way to lower down
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the computing cost is by using the endomorphism that is efficiently computable.

The ISD method proposed by Ajeena and Kamarulhaili (2014a) used trivial endo-

morphisms defined over Z, with the characteristic polynomial of degree one, X −λ =

0. These endomorphisms could not be evaluated easily. The values for λ in the ISD

method were selected randomly from [1,n−1] which made these endomorphisms ring

isomorphic to the ring of integers. Since the endomorphisms are defined over Z, the

ISD method was unable to solve complex multiplication on elliptic curves. These

cause the ISD method to have higher computation cost.

Therefore, this thesis aims to improve the current ISD method and to reduce the

cost of computing kP using the ISD method by implementing the efficiently com-

putable endomorphism which represents the complex multiplication. In order for the

ISD method to allow complex multiplication, the endomorphism ring defined in this

method should be larger than Z, where the endomorphism ring is defined over the

imaginary quadratic field. Some elliptic curves are defined over specific imaginary

quadratic field based on their j-invariant. These imaginary quadratic field have proper-

ties which later helps to define the endomorphism acted on these elliptic curves.

1.5 Research Objectives

The objectives of this study are as follows:

1. To determine the properties of elliptic curves with j(E) = 0,1728,8000,54000.

2. To develop an efficiently computable endomorphism with complex multiplica-

tion acted on elliptic curves with j(E) = 0,1728,8000,54000
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3. To compare the number of operations needed to compute scalar multiplication kP

among repeated additions and doublings approach (via Right-to-Left algorithm),

GLV method and ISD method.

4. To evaluate the operation counts on each of the derived efficiently computable

endomorphism for E0, E1728, E8000 and E54000.

1.6 Thesis Outline

This thesis consists of seven chapters where the organization is as follows:

Chapter 1 discusses the definition of elliptic curves and the group law acting on the

points on elliptic curves. It also includes the literature review which consists of previ-

ous studies on the elliptic curve scalar multiplication, problem statement and research

objectives.

Chapter 2 is the preliminaries chapter which introduces all basic concepts about

linear algebra, quadratic field, prime numbers, and elliptic curves relevant to this study.

It also includes some preliminary results we obtained throughout this study.

Chapter 3 discusses the properties of the elliptic curves with j-invariant 0 and the

construction of three efficiently computable endomorphisms defined on it. This chapter

also includes the lower and upper bound for each of the decomposed scalars on this

curve.

Chapter 4 explains the properties of the elliptic curves with j-invariant 1728 and

the construction of efficiently computable endomorphisms defined on it. Similar to
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Chapter 3, this chapter also discusses the lower and upper bound for each of the de-

composed scalars on this curve.

Chapter 5 presents the result for efficiently computable endomorphism acting on

the other elliptic curves namely elliptic curves j-invariant 8000 and 54000.

Chapter 6 discusses the operation counts among repeated additions and doublings

(via Right-to-Left algorithm), GLV method and ISD method. This chapter evalu-

ates the operation counts for each of efficiently computable endomorphism defined

throughout this study. Next, a comparison is made between the operation counts of the

ISD method with and without using efficiently computable endomorphism.

Chapter 7 is the final chapter which summarises and conclude the thesis.

1.7 Summary

This introductory chapter succinctly explains the background of elliptic curves and

literature review on the elliptic curve scalar multiplication. Followed by the problem

statements as well as the research objectives. Lastly, it describes the contents of each

chapter in this thesis.
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CHAPTER 2

PRELIMINARIES

2.1 Introduction

This chapter highlights the basic concepts related to the elliptic curves scalar mul-

tiplication. Section 2.2 recalls several facts on the algebraic structure of linear algebra

which include group, ring, and field theory. Sections 2.3 and 2.4 discusses the facts

related to the quadratic field and prime numbers. Section 2.5 highlights several im-

portant concepts related to elliptic curves. The following section discusses the concept

of isogeny on the elliptic curve. Next section explains the concept of Frobenius endo-

morphism and endomorphism with complex multiplication on elliptic curves. The last

section discusses previous results that are related to this study which includes some

preliminary results that are obtained throughout this study. Also included, the Right-

to-Left algorithm to compute scalar multiplication which applies repeated additions

and doublings.

2.2 Group, Ring and Field

This section provides a mathematical background related to group, ring and field.

Definition 2.2.1. (Humpreys, 1996) A group is a non-empty set G together with a

binary operation, ◦, with the following properties:

1. (Closure) For a,b ∈ G, then a◦b is in G.

2. (Associative) For a,b,c ∈ G, then (a◦b)◦ c = a◦ (b◦ c).
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