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KESAN METILASI DNA KEPULAUAN CpG TERHADAP AKTIVITI 

PROMOTER KOLINA KINASE ALPHA MANUSIA  

 

ABSTRAK 

 

Kolina kinase (CK) adalah enzim sitosolik yang merupakan pemangkin yang 

terlibat dalam fosforilasi kolina kepada penghasilan fosfokolina (PCho) dalam proses 

biosintesis fosfatidilkolina (PC), komponen utama dalam fosfolipid membran. Di sebalik 

kepentingan CK dalam biosintesis PC, pertumbuhan sel dan karsinogenesis, maklumat 

berkaitan pengawalaturan transkripsi gen ckα masih terhad. Kewujudan kepulauan CpG 

di bahagian promoter gen ckα mencadangkan penglibatan metilasi DNA dalam 

pengawalaturan transkripsi gen ckα. Oleh itu, kajian ini bertujuan untuk mengkaji kesan 

metilasi DNA kepulauan CpG terhadap aktiviti promoter gen ckα. Promoter gen ckα 

bersaiz 2009 bp telah diklonkan ke dalam vektor pelapor, firefly luciferase (pGL4.10) 

untuk menghasilkan plasmid rekombinan, pGL4.10-ckα (-2000/+9). Kemudian, satu siri 

mutasi penghapusan kepulauan CpG telah dihasilkan dengan kaedah mutagenesis 

berpandu tapak PCR, dan diklon ke dalam vektor pGL4.10 untuk dikaji dalam sel 

adenokarsinoma payudara manusia, MCF-7. Status metilasi selepas rawatan dengan 

menggunakan agen pengurangan metilasi, 5-azasitidina dan agen penambahan metilasi, 

budesonida menunjukkan peranan metilasi DNA di bahagian promoter gen ckα yang 

lebih ketara dalam sel kanser MCF-7 berbanding sel normal MCF10A. Sebanyak empat 

kepulauan CpG telah dikenalpasti di dalam kawasan promoter ini menggunakan perisian 

MethPrimer dan EMBOSS CpGPlot. Penyingkiran pada kawasan -225 ke -56 bp dalam 

kepulauan CpG keempat menunjukkan peningkatan aktiviti promoter berbanding dengan 
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promoter berkepanjangan penuh. Ini menunjukkan adanya unsur pengawalseliaan 

negatif yang penting yang mungkin dimodulasikan oleh metilasi DNA. Analisis in vitro 

menunjukkan metilasi promoter berkepanjangan penuh menghasilkan aktiviti yang lebih 

rendah jika dibandingkan dengan metilasi promoter yang terhapus kepulauan CpG 

keempat. Ini menggambarkan bahawa kepulauan CpG ini mungkin mengandungi tapak 

pengikatan untuk faktor transkripsi penghalang. Mutasi tapak pengikatan MZF1 

menunjukkan peningkatan yang signifikan dalam aktiviti promoter ckα berbanding 

dengan promoter ckα berkepanjangan penuh sekaligus menunjukkan sifatfungsi 

perencatan elemen jujukan ini. Analisis EMSA menunjukkan terdapat pengikatan faktor 

transkripsi pada bahagian tapak perlekatan MZF1, dan metilasi sitosina pada bahagian 

ini menunjukkan peningkatan terhadap pengikatan faktor MZF1 jangkaan ini di 

bahagian -181 sehingga -175 pada promoter ckα. Tambahan lagi, mutasi pada tapak 

perlekatan MZF1 menghapuskan pembentukan kompleks protein-DNA. Ini 

menunjukkan bahawa metilasi DNA mengurangkan aktiviti promoter ckα dengan cara 

mempromosikan pengikatan faktor transkripsi MZF1 di kepulauan CpG keempat pada 

bahagian -225/-56. Sebagai kesimpulan, kajian ini memberi perspektif mengenai 

penglibatan kepulauan CpG dan metilasi DNA dalam pengawalaturan transkripsi gen 

ckα.   
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EFFECTS OF CpG ISLANDS DNA METHYLATION ON THE HUMAN 

CHOLINE KINASE ALPHA PROMOTER ACTIVITY 

 

ABSTRACT 

 

Choline kinase (CK) is a cytosolic enzyme catalyzing the phosphorylation of 

choline to phosphocholine (PCho) in the biosynthesis of phosphatidylcholine (PC), a 

major component of membrane phospholipid. Despite the importance of CK in PC 

biosynthesis, cell growth and carcinogenesis, little is known about the transcriptional 

regulation of ckα gene. The presence of CpG islands on the promoter region of ckα gene 

suggests the involvement of DNA methylation in its transcriptional control. Therefore, 

this study aimed to investigate the effects of CpG islands DNA methylation on ckα gene 

promoter activity. A 2009 bp promoter region of the human ckα gene was cloned into a 

firefly luciferase reporter vector (pGL4.10) to create a recombinant plasmid, pGL4.10-

ckα (-2000/+9). Then, a series of CpG island deletion mutants were constructed using 

PCR site-directed mutagenesis method and cloned into pGL4.10 vector and studied in 

human breast adenocarcinoma, MCF-7 cells. The methylation status after treatment with 

a demethylating agent, 5-azacytidine and re-methylating agent, budesonide showed a 

prominent role of DNA methylation of ckα gene promoter in MCF-7 cancer cells 

compared to the corresponding normal cells MCF10A. A total of four CpG islands were 

identified within the promoter region by using MethPrimer and EMBOSS CpGPlot 

software. Deletion of the region between -225 to -56 bp in the fourth CpG island showed 

an increased promoter activity as compared to the full-length promoter indicating the 

presence of important negative regulatory elements which could be modulated by DNA 
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methylation. An in vitro methylation analysis showed the methylated full-length 

promoter activity was significantly lower than the methylated fourth CpG island deletion 

suggesting that this CpG island contains elements for the binding of suppressor 

transcription factors. Mutation of MZF1 binding site in the fourth CpG island caused a 

significant increase in the ckα promoter activity, suggesting a repressive role of this 

sequence element. EMSA analysis showed that there is a binding of transcription factor 

to the MZF1 binding site, and the cytosine methylation at this site showed an increase of 

the binding of this putative MZF1 transcription factor at -181 to -175 ckα promoter 

region. Furthermore, mutation of MZF1 binding site abolished the protein-DNA 

formation complex. These results suggest that DNA methylation decreased the ckα 

promoter activity by promoting the binding of MZF1 transcription factor to the fourth 

CpG island located at -225 to -56 region. In conclusion, this study provides a perspective 

on the involvement of CpG island and DNA methylation in the transcriptional control of 

cka gene. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Choline kinases (CK) (EC 2.7.1.32) are cytosolic enzymes catalyzing the 

phosphorylation of choline to phosphocholine (PCho) in the biosynthesis of the 

phosphatidylcholine (PC) (Wu et al., 2008). PC is the primary phospholipid of 

eukaryotic cellular membranes and has crucial roles in the structure and function of 

those membranes (Gibellini and Smith, 2010). Human CK is encoded by two separate 

genes named ckα and ckβ. ckβ codes for a single protein (CKβ) while ckα undergoes 

alternative splicing to produce CKα1 and CKα2 isoenzymes (Gallego-Ortega et al., 

2011). Increased activities of CK and PCho have been implicated in human 

carcinogenesis where CK overexpression increases the invasiveness and drug resistance 

of breast cancer cells (Shah et al., 2010). Many researchers have focused on the 

abnormal expression of ckα in various human cancers such as colorectal, lung, and 

prostate adenocarcinomas (Nakagami et al., 1999; Ramirez de Molina, 2002; Rizzo et 

al., 2021) and the potential of ckα inhibition as anticancer therapy. Yet, the regulation of 

CK gene expression at the transcriptional level, particularly by epigenetic mechanism, 

has never been explored. 

 

Epigenetics is defined as a heritable process that alters gene activity without changing 

the DNA sequence (Weinhold, 2006). Epigenetic processes are natural and vital to many 

organism functions, and abnormal epigenetic changes often lead to dysregulation of 

developmental activities (Hon et al., 2012). DNA methylation is the most well-studied 
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epigenetic mechanism that involved in diverse cellular function, including silencing of 

transposable elements, inactivation of viral sequences, maintenance of chromosomal 

integrity, X-chromosome inactivation, and transcriptional suppression of a large number 

of genes (Lister et al., 2009; Olkhov-Mitsel and Bapat, 2012). In somatic cells, DNA 

methylation occurs at cytosine in any context of the genome but predominantly in a 

cytosine-phosphate-guanine (CpG) dinucleotide context (Jin et al., 2011). Methylated 

CpGs augment transcription repression by a number of processes, including the direct 

blockage of transcription initiation complexes from binding to DNA promoter regions 

and recruitment of transcriptional repressor complexes, including methyl CpG binding 

proteins (MBPs) that bind at methylated DNA sequence (Sasai et al., 2010). Aberrant 

methylation levels have been postulated to inactivate tumor suppressors and activate 

oncogenes, which lead to carcinogenesis (Gal-Yam et al., 2008). 

 

In mammals, methylation occurs predominantly at the CpG dinucleotides, which are 

extremely depleted in the genome except at a short stretch genomic region termed as 

CpG islands, which are usually located at gene promoters (Deaton and Bird, 2011). 

Roughly about 50% of mammalian gene promoters are associated with one or more CpG 

islands, making this the most common promoter type in the vertebrate genome 

(Ioshikhes and Zhang, 2000). While the CpG dinucleotides in the genome are heavily 

methylated, the CpG dinucleotides in these islands remain unmethylated. Inactivation of 

numerous numbers of genes has been associated with the increased CpG island 

methylation in tumors such as hMTLH1, p16, MGMT, BRCA1, and CCDN2 (Lian et al., 

2012). Hence, methylation of CpG islands is an important mechanism for gene 

inactivation in the prevention of tumor growth and development.  
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1.2 Rationale of the study 

Despite the importance of CK in PC biosynthesis, embryogenesis, muscular dystrophy 

and tumorigenesis, literature describing transcriptional regulation of ckα gene is still 

lacking. Higher level of ckα is a common feature in many types of cancer. Over the 

years, enormous efforts have been focused on investigating the expression of CK in 

different cancer cells which led to the use of CK inhibitors as potential anticancer agents 

(Trousil et al., 2016; Zimmerman and Ibrahim, 2017; Khalifa et al., 2020). 

Unfortunately, less attention has been given to the intracellular regulation of choline 

kinase gene expression including by epigenetic mechanism. DNA methylation of CpG 

islands especially on the promoter of a gene is one of the mechanisms that regulate the 

gene expression at transcriptional level. 

 

Analysis of 5’ flanking region of ckα gene showed that it possesses characteristics of a 

housekeeping gene which are: absence of TATA box in close proximity to the 

transcription start site and containing several proximal CCAAT boxes as well as Sp1 

binding sites (Aoyama et al., 2004). The TATA-less and high GC-rich sequence 

promoters are typically characterized as CpG island promoter, generally associated with 

DNA methylation. The presence of numerous Sp1 binding sites indicates that the ckα 

promoter contains high GC contents which led to the assumptions that transcriptional 

regulation of ckα gene might be controlled through DNA methylation at the promoter 

region. Based on the presence of several CpG islands on the promoter region, we 

hypothesize that the levels of DNA methylation in the ckα promoter could be affected by 

epigenetic drugs such as 5-azacytidine, a demethylating agent and budesonide, a 

methylating agent. MCF-7 cell line was used for the analysis of DNA methylation as it 
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showed the highest promoter activity compared to the other cell lines and could activate 

the transcription of firefly luciferase for promoter study (Kuan et al., 2014).  

 

DNA methylation is suggested to modulate the binding of transcription factors to DNA 

(Héberlé and Bardet, 2019). Our previous studies have identified important transcription 

factor binding sites in the promoter region of ckα gene. Hence, this study aimed to 

investigate the correlation between DNA methylation of CpG island and transcription 

factor binding based on the overlaps between methylation sites and transcription factor 

binding motifs. From this study, the involvement of CpG island and DNA methylation in 

the transcriptional control of ckα gene would be elucidated.  

 

1.3 Objectives of the study 

1.3.1 General objective 

To study the effect of DNA methylation on ckα CpG islands promoter activity.  

 

1.3.2 Specific objectives 

1. To identify putative CpG islands of human ckα promoter by in silico analysis. 

2. To determine the level of methylation on the methylation-prone CpG island of 

ckα promoter. 

3. To identify important CpG islands that regulate the activities of ckα promoter by 

site-directed mutagenesis. 

4. To investigate the effects of 5-azacytidine and budesonide on ckα promoter 

activity in MCF-7 cell lines. 
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5. To confirm the binding of transcription factors on methylation-prone CpG island 

ckα promoter using EMSA. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Phospholipids 

Back in 1915, membranes isolated from red blood cells were found to be composed of 

lipids and proteins (Campbell and Reece, 2005). Lipid constitutes approximately 50% of 

most animal cell membranes in which phospholipids are the most abundant membrane 

lipids. A phospholipid molecule consists of a polar head group and two fatty acids tails 

in which one tail contains one or more cis-double bonds (unsaturated) which create a 

small kink in the tail, while the other tail does not (Alberts et al., 2002). A glycerol 

molecule is attached to one end of two fatty acids and to the other end of a phosphate 

group linked to an organic compound such as choline (Figure 2.1). The fatty acids tails 

are hydrophobic and not soluble in water whereas the hydrophilic polar head group is 

ionized and readily water soluble to enable interaction with the environment (Solomon 

et al., 2004). Due to its amphiphilic properties, phospholipids are spontaneously 

arranged in lipid bilayers in aqueous solution and aggregated into membranous 

structures (Alberts et al., 2002). These fundamental components make them uniquely 

suited to form membranes of living cells (Marinetti, 1990).  

 

Phospholipids are categorized into two major classes namely glycerophospholipids and 

sphingolipids based on their alcohol structure. Glycerophospholipids and sphingolipids 

contain glycerol and sphingosine respectively as the alcohol group (Newsholme and 

Leech, 2011). These phospholipid constituents play specific roles in the physiological  
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Figure 2.1 Structure of phospholipid and a phospholipid bilayer. a) A phospholipid 

consists of a hydrophobic tail made up of two fatty acids and a 

hydrophilic head consists of a glycerol bonded to a phosphate group, 

which in turn bonded to an organic group, choline. The fatty acid at the 

top contains one double bond that produces a kink in the chain. b) 

Phospholipids form lipid bilayers where the hydrophilic head interacts 

with water whereas the hydrophobic tails are arranged in bilayers. 

Adapted from Solomon et al. (2004). 

 

 

 

kink 
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functions depending on their chemical structure. Glycerophospholipids mainly act as 

structural components of cell membranes while sphingolipids are often used as part of a 

signaling cascade (Lim and Kwan, 2018).  

 

2.1.1 Phosphatidylcholine 

Phosphatidylcholine (PC) is the major glycerophospholipid, accounting for 40-50% of 

total phospholipids in all eukaryotic membranes. This is followed by 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), 

sphingomyelin, cardiolipin and its phosphorylated derivatives which are also 

predominant in plasma membrane (Table 2.1) (Vance, 2015). PC plays a vital role in 

maintaining the cells and is found in all the subcellular components of the nervous 

system (Ansell, 1972). A study by Chakravarthy et al. (2009) discovered an isoform of 

PC, known as 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) that serves as 

endogenous ligand for Peroxisome Proliferator-Activated Receptor (PPARs) in 

hepatocytes. PPAR plays regulatory roles in gene expression and has been used as drug 

target to treat human disorders of lipid metabolism. PPARα-dependent gene expression 

is reduced with inactivation of fatty acid synthase (FAS) in the hypothalamus, which is 

required for the presence of POPC. However, injection of POPC into the hepatic veins 

of mice for several days induced PPARα-dependent gene expression and decreased 

hepatic steatosis. These data suggest that POPC is able to influence gene expression and 

acts as signaling molecule in mammals (Chakravarthy et al., 2009). 

 

PC also plays a distinct role in insulin transduction (Furse and De Kroon, 2015). 

Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that 
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catalyzes the intermembrane exchange of phosphatidylcholine in vitro (Wirtz, 1991; 

Kang et al., 2010). Elsoy and colleagues (2013) reported that PC-TP inhibits Insulin 

Receptor Substrate 2 (IRS2), which is an effector of insulin signaling that is impaired in 

diabetes, suggesting the functional role of PC-TP as a sensor of membrane 

phosphatidylcolines (Ersoy et al., 2013).  

 

2.2 CDP-choline pathway 

PC biosynthesis in all mammalian cells is synthesized mainly via the CDP-choline 

pathway, also known as Kennedy pathway (McMaster, 2018). This pathway consists of 

three steps: the first reaction of choline phosphorylation to form phosphocholine (PCho) 

is catalyzed by choline kinase (CK) using ATP and Mg
2+

 as cofactor. This is followed 

by the formation of CDP-choline from PCho which is catalyzed by cytidyltransferase 

(CCT), and final condensation of CDP-choline with a lipid anchor, diacylglycerol 

(DAG) to PC catalyzed by cholinephosphotransferase (CPT) (Figure 2.2) (Aoyama et 

al., 2004). During the biosynthesis of PC, the conversion of choline into PC accounts for 

approximately 95% of the total choline embedded in most animal tissues, whereas the 

remaining 5% consists of free choline, phosphocholine, glycerophosphocholine, CDP-

choline and acetylcholine (Li and Vance, 2008). 

 

2.3 Choline kinase 

The first step of PC biosynthesis involves choline kinase. Choline kinase (CK, 

ATP:choline phosphotransferase) was discovered in 1953 in Brewer’s yeast by 

Wittenberg and Kornberg (Wittenberg and Kornberg, 1953). This cytosolic enzyme  
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Table 2.1 Lipid composition of a typical nucleated mammalian cell. Adapted from 

Vance (2015). 

 Percentage of total lipids
a 

Phosphatidylcholine 45 – 55 

Phosphatidylethanolamine 15 – 25 

Phosphatidylinositol  10 - 15 

Phosphatidylserine 5 – 10 

Phosphatidic acid 1 – 2 

Sphingomyelin 5 – 10 

Cardiolipin 2 – 5 

Phosphatidylglycerol <1 

Glycosphingolipids 2 – 5 

Cholesterol 10 - 20 

a 
Data are averaged from several sources 

 

 

 

 

 

 

 

 

 



11 
 

present in various tissues in which the enzymatic activity has been observed to occur in 

liver, brain, intestine and kidney of several species (Wittenberg and Kornberg, 1953). 

CK is the first enzyme in the CDP-choline pathway for the de novo biosynthesis of PC 

(Farine et al., 2015) and changes in CK can influence the rate of PC synthesis (Gibellini 

and Smith, 2010). Until its purification in 1984, subsequent cloning and expression of 

cDNA of CK from yeasts, mammals and plants have been characterized which led to the 

description of the gene structure (Wu and Vance, 2010).  

 

In mammalian cells, CK exists in three isoforms namely CKα1 (50 kDa, 435 amino 

acids), CKα2 (52 kDa, 453 amino acids) and CKβ (45 kDa, 394 amino acids) which are 

encoded by two separate genes that are ckα and ckβ, located on chromosomes 11q13.2 

and 23q13.33, respectively (National Center for Biotechnology Information (NCBI). 

Available from: https://www.ncbi.nlm.nih.gov/). The CKα1 and CKα2 functional 

isoforms are the results of alternative splicing of CKα transcript which differ in an 

additional 54 bp extra internal nucleotide sequence, yielding 18 amino acids insertion 

starting at nucleotide 155 for CKα2. On the other hand, protein sequence of CKβ shares 

approximately 60% sequence identity with CKα1 and CKα2. CK isoform is active only 

in either homo or heterodimeric form but not in monomeric form in which α/α 

homodimer is the most active form, followed by α/β heterodimer and β/β homodimer 

which is the less active phenotype (Aoyama et al., 2004; Arlauckas et al., 2016).  

 

2.3.1 Expression and regulation of CK activity 

CKα and CKβ are both ubiquitously expressed in mammalian cells, yet the distribution 

of CK is reported to be tissue-specific (Aoyama et al., 2002). The analysis of expression  

https://www.ncbi.nlm.nih.gov/
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Figure 2.2 The CDP-choline pathway. CK, choline kinase; CCT, CTP:phosphocholine 

cytidyltransferase; CPT,cholinephosphotransferase; PC, phosphatidylcholine; 

DAG, diacylglycerol; CMP, cytidine monophosphate; PCho, phosphocholine; 

CDP-Cho, cytidinediphosphocholine. Adapted from Gibellini and Smith 

(2010). 
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and distribution of CK isoforms in mouse tissue using both Northern blot and Western 

blot analysis shows the expression of CKα isoform is the highest in the testis, whereas 

that of CKβ isoform is comparatively high in the heart and liver (Aoyama et al., 2002; 

Arlauckas et al., 2016). Further investigation was carried out to estimate each CK 

isoform activity in the mouse tissue by immunoprecipitation with each isoform-specific 

antiserum. They found out that the addition of anti-CKα and anti-CKβ antisera mixture 

in mouse tissue cytosols resulted in complete inhibition of CK activity (Aoyama et al., 

2002). This finding indicates that each CK isoform plays a distinct function in the 

expression of mammalian cells. 

 

In addition to its involvement in the biosynthesis of PC, CK also has other functions in 

regulating the cell signaling pathway. Downregulation of ckα expression with small 

interfering RNA (siRNA) silencing decreased the phosphatidylcholine, phosphatidic 

acid and signaling through the MAPK and P13/AKT pathway, which has been 

associated with cell proliferation (Yalcin et al., 2010). In another study, a group of 

researchers discovered that CKα forms a complex with EGFR in a c-Src dependent 

manner in which overexpression of EGFR and c-Src ultimately increases the total 

cellular activity and protein levels of CKα (Miyake and Parsons, 2012). EGFR and c-Src 

has been shown to have a synergistic effect in the tumorigenesis of breast as well as 

other cancers. Mutations of ckα introduced at Y197 and Y333 resulted in reduced 

complex formation, EGFR-dependent activation of CKα enzyme activity and EGF-

dependent cell proliferation (Miyake and Parsons, 2012). 
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Several studies discovered the regulation of CK activity at the transcriptional level 

(Uchida, 1994; Aoyama et al., 2000; Glunde et al., 2008). Characterization of human 

putative promoter region of ckα gene (-2.3 kb region upstream of translation start site) 

shows that hypoxic environment regulates the expression of CKα and consequently 

increasing cellular PC and total choline levels (Glunde et al., 2008). The binding of 

hypoxia-inducible factor (HIF-α) on the HRE sites was shown to suppress ckα mRNA 

levels in a human prostate cancer model as shown through chromatin 

immunoprecipitation assay (Glunde et al., 2008). 

 

2.3.2 CK and carcinogenesis 

Cancer is characterized by uncontrolled cell growth due to uncontrolled proliferation and 

decreased apoptosis which is capable of invading adjacent tissues and organs. It is 

postulated that cancer is derived from the accumulation of mutated genes including 

tumor suppressor genes, oncogenes as well as invasion/metastasis related genes, where 

certain mutation may lead to development of malignant changes in their enzymatic 

activities (Han et al., 2019). Aberrant lipid metabolism has been observed in many types 

of cancer in which as tumor cells and tumor progresses, phospholipid biosynthesis 

become greater than in normal tissue (Szachowicz-Petelska et al., 2013; Sola-Leyva et 

al., 2019). Elevated activities of CK and its product, PC has been implicated in 

carcinogenesis as demonstrated by a large number of magnetic resonance spectroscopy 

(MRS) studies in cancer cells and solid tumors (Negendank, 1992; Nakagami et al., 

1999; Ronen and Leach, 2000). This elevation has been observed in most cancer types 

and can be targeted as an endogenous biomarker of cancer (Ackerstaff et al., 2003).  
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Overexpression of ckα gene has been reported in a number of human tumor-derived cell 

lines and in biopsy samples of colon, lung, ovarian and prostate carcinomas when 

compared with normal tissue (de Molina et al., 2007; Granata et al., 2014; Bagnoli et al., 

2016). This indicates that ckα is crucial in PC biosynthesis and is required to control the 

development of cancer cells (Glunde et al., 2011). In contrast, there was no evidence to 

implicate ckβ in carcinogenesis as no changes of ckβ expression was detected in breast, 

lung and ovarian cancer cell lines (Eliyahu et al., 2007; Gallego-Ortega et al., 2009).  

 

An increased activity of ckα was shown in human breast cancers where a significant 

increase of ckα activity was observed in approximately 38.5% tumor samples compared 

to the corresponding normal tissue (de Molina et al., 2002; Rizzo et al., 2021). 

Ovverexpression and increased activity of ckα correlated with histological tumor grade 

suggesting that ckα dysregulation might be associated with prognosis and malignancy of 

the disease. However, no significant correlation was observed with age, tumor size or 

progesterone receptor status in these studied breast tumors. These findings suggest that 

ckα activity is directly associated with increased breast cancer proliferation making it a 

potential marker for breast prognosis (de Molina et al., 2002). 

 

The involvement of ckα in carcinogenesis suggests that ckα inhibition could be an 

effective cancer therapy. Early discovery of CK inhibitors includes the study of choline 

phosphorylation  in the presence of the thiol group inhibitors that leads to CK inhibition 

by N-ethylmaleimide (Arlauckas et al., 2016). A preliminary study targeting the 

inhibition of choline kinase using purinyl-6-histamine (PH), which is selectively 

cytotoxic against tumor cells demonstrated the inhibition of choline phosphorylation, 
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reflecting its anti-tumor activity (Mayer and Werner, 1974). Hemicholinium-3 (HC-3), a 

well-known CK inhibitor is shown to reduce PC levels and reduce the growth factor-

induced DNA synthesis in vitro (Arlauckas et al., 2016). Glunde et al. (2005) reported a 

molecular approach by RNA interference (RNAi) to inhibit the expression of specific 

targeted genes in mammalian cells. RNAi knockdown of CK reduced proliferation and 

promoted differentiation of breast cancer cells as detected by MRS (Glunde et al., 2005). 

Specific inhibition of ckα selectively induces apoptosis in several cancer cell lines while 

the normal cell is not affected (Bañez-Coronel et al., 2008). 

 

2.4 Promoter and transcriptional regulation of gene expression 

The expression of a gene is regulated at different stages from transcription initiation to 

post-translational modification of protein. However, the key factor for proper 

functioning of regulatory elements occur at the level of transcription initiation, 

particularly gene promoter which is crucial for coordinated transcription within a cell 

(De Vooght et al., 2009). Till date, the structure of regulatory DNA sequences remains 

poorly understood. With a variety of DNA regulatory elements present within promoter 

region, the identification and characterization of these elements are crucial for the 

understanding of the human gene regulation.  

 

Promoters are stretches of genomic sequence typically located upstream of a gene. Core 

promoter is a promoter region typically 60-120 bp, surrounding the transcription start 

site (TSS) that recruits a complex of general transcription factors for the initiation of 

transcription (Haberle et al., 2014). This minimal promoter region is sufficient to direct 

the accurate initiation of transcription. Sequence motifs commonly found within the core 
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promoter region includes TFIIB recognition element (BRE), initiator (Inr), TATA box 

and downstream core promoter element (DPE) (Butler and Kadonaga, 2002). Each of 

these motifs specifically involves in the initiation of transcription process, though these 

elements are not necessarily present in all core promoters. The core promoter provides a 

docking site for RNA Polymerase II transcriptional machinery in a tightly regulated 

manner for a proper level of gene expression (Kumar and Bansal, 2018). RNA 

Polymerase II requires specific core promoter element to initiate transcription through 

the assembly of transcription preinitiation complex (PIC). This process requires general 

transcription factors (GTFs) that recognize and bind core promoter motifs and 

subsequently direct RNA Polymerase II to the TSS and starts the transcription of a gene. 

The common GTFs bind to the core promoter in the following order: TFIID, TFIIB, 

RNA Polymerase II-TFIIF complex, TFIIE, followed by TFIIH (Héberlé and Bardet, 

2019). 

 

In addition to basal transcriptional regulation of core promoter, transcriptional activity is 

greatly stimulated by a concerted action of other elements including proximal promoter 

elements such as enhancers, silencers and insulators (Figure 2.3) (Butler and Kadonaga, 

2002; Hernandez-Garcia and Finer, 2014). Proximal promoter elements such as CAAT 

box, cis-regulatory module (CRM) and GC box which are located immediate upstream 

of core promoter, contain recognition sites for specific consensus elements that involved 

in transcriptional regulation (Kumar and Bansal, 2018). Proximal promoter elements 

which are present in the distal promoter region are mainly act as connecting element for 

enhancers, silencers and insulators.  
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Figure 2.3 Schematic structure of a gene promoter region. The promoter composed 

of core promoter and proximal promoter elements typically span less than 

1 kb pairs. Distal promoter elements located upstream of the promoter 

includes enhancers, silencers and insulators. These distal elements may 

contact the core promoter or proximal promoter by looping out the 

intervening DNA. Adapted from Maston et al. (2006). 
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Cis-regulatory elements are regions of non-coding DNA which regulate the transcription 

of neighboring genes, whereas trans-regulatory elements regulate the expression of 

distant genes. Transcription initiation is a strictly controlled process that involves both 

cis-acting and trans-acting factors (Das and Singal, 2004). The presence of both positive 

and negative regulatory elements within the promoter provides regulatory control of a 

unique gene expression pattern (Maston et al., 2006).  

 

The upstream trans-acting DNA binding transcription factors such as activators and 

coactivators, interact with the regulatory element within core promoter, proximal 

promoter elements and distal promoter to enhance the efficiency of transcription 

initiation. On the other hand, transcription can be inhibited by trans-acting repressors 

which directly or indirectly bind to DNA binding motif and negatively regulate gene 

transcription. A study using full-length cDNA sequence for the identification of TSS in 

the transcriptional human promoters revealed that putative negative regulatory elements 

were located at -1000 to -500 bp upstream of the TSS for 55% genes tested (Cooper et 

al., 2006).  

 

Activators or repressors regulate gene transcription mostly through coregulators, even 

though they can bind directly with PIC complex associated with core promoter (Fuda et 

al., 2009). These processes are important in a mediation of precise controlled patterns of 

gene expression (Maston et al., 2006).  A study of the 5’ flanking sequence of mouse 

ckα gene by the promoter-reporter assay reveal the presence of two putative promoter 

regions which are proximal and distal promoter. Various Sp-1 consensus sequences are 

identified within the proximal region indicating the criteria of housekeeping gene for ckα 
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gene. Meanwhile, distal promoter consists of responsive elements such as XRE and AP-

1 boxes which demonstrated a high expression of ckα. AP-1 binding element responds to 

carbon tetrachloride (CCl4) which resulted in increased expression level of ckα mRNA 

and CK activity in murine liver. Deletion of 9 base pair (bp) sequence corresponding to 

AP-1 binding element resulted in the loss of promoter activity whereas the duplication 

insertion of this 9 bp element caused an increase in promoter activity. These results 

indicated that ckα gene expression is positively regulated by AP-1 or together with other 

transcription factors that could be involved in the promoter activity (Aoyama et al., 

2004). In contrast, no distal promoter sequence has been found in 5’ flanking region of 

ckβ gene indicating the absence of any responsive elements in its regulatory region 

(Figure 2.4) (Aoyama et al., 2004).  

 

2.5 Epigenetics 

Epigenetics is a study of heritable changes in gene expression that occur without any 

changes in DNA sequence (Bird, 2007). The term epigenetics was first coined by 

Conrad Waddington in 1942 to describe the influence of internal and external 

interactions between genes and the microenvironment towards the development of 

phenotype (Goldberg et al., 2007). Epigenetic modifications are required for normal 

development and are involved in a variety of cellular differentiation, morphogenesis and 

variability of an organism. This process influences gene activity at the transcriptional 

and post-trasncriptional level as well as at the translational and post-translational protein 

level (Halušková, 2010). Dysregulated epigenetics processes have been found to be 

involved in various diseases, particularly cancers, immune disorders and mental 

retardation associated disorders. 
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Figure 2.4 Schematic structure of murine ckα and ckβ promoters. The predicted 

contribution of AP-1 and XRE sites of ckα gene in CCl4 and PAH-

induced in mouse liver. Adapted from Aoyama et al. (2004). 
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Back in 1983, cancer was the first human diseases to be linked to epigenetics (Feinberg 

and Vogelstein, 1983). Cytosine methylation of hMLH1 promoter was reported in four 

colorectal tumor cell lines but absent in adjacent normal tissue that expressed hMLH1 

which results in silencing of the gene encoding MLH1 (Kane et al., 1997). The most 

characterized epigenetic modifications include DNA methylation, chromatin 

remodeling, modifications of histones, non-coding RNA mechanisms and positioning of 

nucleosome along the DNA (Kulis and Esteller, 2010). These epigenetic signals work 

synergistically to ensure proper transcriptional activity and repression by chromatin-

modifying activity.  

 

2.6 DNA methylation  

DNA methylation is the most common epigenetic modifications in vertebrates and is 

originally proposed as a silencing epigenetic mark in 1970s (Holliday and Pugh, 1975; 

Riggs, 1975). In mammals, DNA methylation occurs exclusively at cytosine residues 

that precede a guanine nucleotide or known as CpG sites (Feltus et al., 2003). The ‘p’ 

indicates cytosine (C) and guanine (G) are connected by a phosphodiester bond. 

Approximately 5 x 10
7
 of total cytosines are methylated per diploid nucleus. Although 

all methylated cytosines are present within CpG dinucleotides, only 70-80% of these 

potentially methylated sites are actually in a methylated form (Antequera and Bird, 

1993). 

 

DNA methylation involves the covalent addition of a methyl group (CH3) at the 5-

carbon of the cytosine ring which results in the conversion of cytosine to 5-

methylcytosine (5-mC). The methyl groups protrude into the major groove of DNA and 
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provides molecular interactions within major grooves of DNA double helix (Fatemi and 

Wade, 2006). The modified cytosine was first discovered during the separation of DNA 

nucleosides by paper chromatography (Hotchkiss, 1948). However, it was not until two 

decades later that DNA methylation was demonstrated to be involved in cellular 

differentiation and regulation of gene expression at the transcriptional level (Holliday 

and Pugh, 1975; Compere and Palmiter, 1981). 

 

DNA methylation patterns are established during early embryonic development and 

stably maintained throughout an individual’s life. Several hours after conception, sperm 

DNA is exposed to methylation in the single-celled embryo. The cells begin to 

differentiate into various tissue types as the embryo started to develop and divide, 

gradually establishing the methylation pattern. However, an active demethylation occurs 

mostly in paternal genomes during the early steps of embryo development immediately 

after fertilization and in pre implantation embryos (Geiman and Robertson, 2002). This 

process is followed by the establishment of global de novo methylation patterns 

following implantation (Almouzni and Cedar, 2016) that will be maintained 

predominantly in somatic tissues (Chen and Riggs, 2011). 

 

2.6.1 DNA methyltransferases family 

DNA methylation is regulated by a group of DNA methyltransferase (DNMT) protein 

family; DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L (Espada and Esteller, 

2007; Cheng and Blumenthal, 2008). These enzymes work synergistically for the 

establishment, recognition and removal of DNA methylation throughout the genome 

(Moore et al., 2013). DNMT3A and DNMT3B are de novo methyltransferases that are 
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highly expressed in developing embryo, responsible for the establishment of DNA 

methylation profile during embryonic stage (Heerboth et al., 2014). On the other hand, 

DNMT1 is a maintenance methyltransferase that is found abundantly in somatic cells, 

and has 30 to 40~folds preference to methylate hemimethylated DNA and maintaining 

methylation pattern from the parental to the daughter strand during DNA replication 

(Jeltsch, 2006; Espada and Esteller, 2007). A strong preferential binding to 

hemimethylated CG sites is shown by a multidomain protein UHRF1 as it interacts and 

colocalizes with DNMT1 for stable association of DNMT1 to chromatin. This particular 

protein contains a methyl DNA binding domain, SRA (SET and RING associated) 

domain which involved in the recruitment of DNMT1 to hemimethylated DNA in order 

to facilitate efficient maintenance of DNA methylation (Bostick et al., 2007). In some 

cases, de novo methyltransferases, DNMT3A and DNMT3B act as maintenance of DNA 

methylation patterns by methylating the hemimethylated CG dinucleotides (Chen and 

Riggs, 2011).  

 

Unlike the aforementioned DNMT family members, another member of DNMT3 family, 

DNMT3L lacks conserved motif and is catalytically inactive. It has been postulated that 

DNMT3L functions as regulatory factors in germ cells by recruiting DNMT3A isoforms 

to nucleosome that contain unmethylated H3K4 to trigger de novo DNA methylation 

(Chen and Riggs, 2011). Owing to its role as the only DNA methyltransferase family 

that is expressed in germ cells, DNMT3L is crucial for the establishment of methylation 

patterns in both male and female germ cells (Bourc'his et al., 2001). 

 


