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KOMPOSIT MULTIFUNGSI EMAS-SILIKA KE ARAH TERAPI KANSER 

KOMPREHENSIF 

 

ABSTRAK 

Pembasmian sel kanser yang tidak menyeluruh berdasarkan rawatan tunggal 

kemoterapi atau terapi radiasi seringkali dilaporkan. Justeru, peranti nano berasaskan 

nanokulit emas mula diminati kerana kebolehubahan teras dan lapisan biofungsi juga 

resonans plasmon permukaan tempatan (LSPR) daripada gelombang cahaya nampak ke 

inframerah (NIR) yang sesuai untuk aplikasi biomedikal. Dalam projek ini, nanokulit 

emas (GNS), yang berteraskan nanopartikel silika mesoliang (MSN) berisi doxorubicin 

(DOX) serta polietilina glikol (PEG) dan AS1141 aptamer (Apt) pada lapisan luar (DOX-

GNS-PEG-Apt), telah direka untuk terapi pengaktifan kimia dan fototerma menggunakan 

laser dua foton. Teras MSN disintesis melalui proses Stöber diikuti dengan pengisian 

DOX dan akhirnya tumbesaran lapisan emas pada permukaan MSN melalui proses 

pengantara pertumbuhan. Seterusnya, PEG dan Apt dikonjugat pada GNS. GNS yang 

disintesiskan dan pengubahsuaian permukaannya telah dicirikan menggunakan 

Transformasian Fourier Inframerah (FTIR), spektroskopi Ultraungu-Nampak (UV-Vis) 

dan Mikroskop Penghantaran Elektron (TEM). Keputusan menunjukkan 30.00  2.91 % 

doxorubisin (DOX) telah dimuatkan ke dalam MSN. GNS yang disintesis kemudiannya 

dianalisa menggunakan UV-Vis dan TEM, dimana nisbah 4:1 K-emas kepada bijian 

MSN-NH2 menghasilkan ketebalan emas yang sesuai. Nanopartikel dengan liputan emas 

lengkap pada teras silika mesoliang diperhatikan dan spektra penyerapan plasmon 

memuncak pada 800 nm. Berdasarkan data TEM dan Tenaga Penyebaran Sinar X (EDX), 



xvi 

filem emas yang disintesis melalui proses pengantara pertumbuhan adalah sekitar 10 - 15 

nm tebalnya. Kemudian, eksitasi dua foton (TPE) diperkenalkan untuk menilai 

keberkesanan terapi phototerma (PTT) sahaja dan terapi sinergi kimia dan fototerma. 

Kecacatan GNS berlaku selepas pendedahan selama 10 saat kepada TPE pada gelombang 

850 nm, lalu membolehkan pelepasan dadah kemoterapi terkawal dari rongga mesoliang. 

Kecacatan GNS dibuktikan dengan penganjakan puncak resonans plasmon dari 800 ke 

570 nm dan morfologi bagi GNS selepas TPE disahkan lagi dengan TEM. Menurut kajian 

in vitro, DOX-GNS-PEG-AS1141 melekat secara selektif pada sel MDA-MB-231 (kanser) 

tetapi tidak pada sel MCF-10A (bukan kanser), kerana sel-sel kanser mempamerkan 

banyak reseptor nukleolin yang boleh melekat pada AS1141. Penggunaan DOX-GNS-

PEG-AS1141 sahaja tanpa PTT juga tidak sitotoksik; kefahaman sel MDA-MB-231 

apabila dirawat sehingga 100 μg/mL DOX-GNS-PEG-AS1141 tidak jauh berbeza dengan 

kawalan negatif. Sebaliknya, sel MDA-MB-231 yang dikenakan terapi sinergi kimia-

fototerma terapi bersama DOX-GNS-PEG-Apt selepas TPE mempamerkan intensiti 

pendarfluor YO-PRO yang lebih tinggi, 8.38 ± 2.11 kali ganda apabila terdedah kepada 

TPE pada 850 nm dengan kuasa output 55 mW/μm2, berbanding rawatan PTT sahaja 

dengan GNS-PEG-Apt yang memaparkan kenaikan 6.89 ± 2.05 kali. Hasil ini 

menunjukkan terapi sinergi kimia-fototerma merupakan terapi yang berkesan. 

Kesimpulannya, GNS adalah nanoplatform yang boleh menjanjikan gabungan teknik 

pelepasan dadah terkawal bersama-sama terapi fototerma. 
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MULTIFUNCTIONAL GOLD-SILICA COMPOSITE PLATFORM TOWARDS 

COMPREHENSIVE CANCER THERAPY 

ABSTRACT 

Incomplete cancer cells eradication with sole treatment of chemotherapy or 

radiation therapy was commonly reported. Therefore, gold nanoshells-based nanodevices 

have gained interests owing to the tuneablity of the localised surface plasmon resonance 

(LSPR) from visible to near infrared (NIR) wavelength, which is favourable for 

biomedical applications. In this work, gold nanoshell (GNS), of which has mesoporous 

silica nanoparticle core (MSN) filled doxorubicin (DOX) as well as polyethylene glycol 

(PEG) and AS1141 aptamer (Apt) at the outer layer (DOX-GNS-PEG-Apt), was designed 

for two photon laser-triggered chemo- and photothermal therapy. The results show 30.00 

 2.91 % of doxorubicin (DOX) was loaded into MSNs. The synthesised GNS was then

analysed by UV-Vis spectroscopy and TEM, of which 4:1 ratio of K-gold to MSN-NH2 

seed produced ideal gold thickness. The nanoparticles with a complete gold coverage on 

mesoporous silica core were observed.  Based on the TEM and Energy Dispersive X-Ray 

spectroscopy (EDX) data, the gold film synthesised via grow-mediated process was 

approximately 10 – 15 nm thickness. Then, two photon excitation (TPE) was introduced 

to evaluate the efficacy of photothermal therapy (PTT) alone and the synergistic chemo-

photothermal therapy. Deformation of GNS was evidenced by the blue shift of plasmon 

resonance peak from 800 to 570 nm and the morphology of the GNS after TPE was further 

confirmed with TEM. According to the in vitro study, DOX-GNS-PEG-Apt positive 

selectively bound to MDA-MB-231 cells (cancerous) but not MCF-10A cells (non-

cancerous). In this work, synergistic chemo-photothermal therapy with DOX-GNS-PEG-
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Apt treated MDA-MB-231 cells after TPE exhibited higher YO-PRO-1 fluorescence 

intensity，8.38 ± 2.11 folds with output power at 55 mW/µm2, as compared to PTT alone 

with GNS-PEG-Apt which only exhibited 6.89 ± 2.05 fold increment. This result 

demonstrated synergistic chemo-photothermal therapy exhibited a better therapy. Taken 

together, GNS is a promising nanoplatform for dual controlled drug release and 

photothermal therapy approach. 
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CHAPTER 1 

INTRODUCTION 

 

Nanotechnology opens a new avenue towards successful cancer diagnosis and treatment, 

and astounding results in clinical trials have been reported. There are several 

comprehensive reviews available on the challenges and opportunities of nanotechnology 

for cancer therapy (Friberg and Nystrom, 2015, Wicki et al., 2015, Kobayashi and Lin, 

2006, Kawasaki and Player, 2005). It is recognised that nanotechnology exhibits the 

potential in replacing current cancer treatments due to the ability for specific targeting 

(Climent et al., 2012, Li et al., 2012a). Antibody or short peptide conjugated on drug-

loaded nanoparticles selectively target specific cell surface receptor on cancer cells; 

ultimately, sufficient dosage of chemotherapeutic drug is delivered to cancer cells while 

limiting toxicity in healthy cells. Thus, a high dosage of drug is not required to exert the 

same or even better efficacy, which ultimately reduces the cost of treatment. Also, the 

ability of chemotherapeutic drug to be controlled released by external (light, magnetic 

field and ultrasound) (Rodzinski et al., 2016, Ge et al., 2012, Angelatos et al., 2005) or 

internal (pH, temperature) (Lee et al., 2010, Liu et al., 2010, Angelos et al., 2009, Du et 

al., 2009, Zhang and Misra, 2007, Huang et al., 2004) stimuli reduces the chances of 

premature drug release during its transport. Application of nanotechnology in curing 

cancer cells has other advantages over conventional cancer therapy including prolonged 

circulation time and enhanced solubility of chemotherapeutic drugs. 
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Several types of nanosystems including metallic nanoparticle (Baffou and Quidant, 2013, 

Ahmad et al., 2010, Kogan et al., 2007), polymer nanoparticle (Du et al., 2011, Tang et 

al., 2009, Mukerjee and Vishwanatha, 2009, Tong and Cheng, 2007), silica nanoparticle 

(Argyo et al., 2014, Zhang et al., 2012, Lee et al., 2011, Yu et al., 2011, Liu et al., 2009), 

quantum dot (Delehanty et al., 2009, Medintz et al., 2005, Michalet et al., 2005), liposome 

(Allen and Cullis, 2013, Chang and Yeh, 2012, Harris et al., 2002, Batist et al., 2001), 

dendrimer (Wolinsky and Grinstaff, 2008, Tomalia et al., 2007, Majoros et al., 2006, 

Majoros et al., 2005, Malik et al., 1999) and carbon nanotube (Kostarelos et al., 2009, Liu 

et al., 2008, Kam et al., 2005) were developed. Among the mentioned nanosystems, gold 

nanoparticles (AuNP) have drawn wide attention from numerous researchers due to their 

inherent attributes such as chemical stability and excellent optical properties. Also, AuNP 

has high photothermal efficiency thanks to localised surface plasmon resonance (LSPR) 

that make AuNP nanostructures as an attractive platform for biomedical applications (Jain 

et al., 2006, Link and El-Sayed, 2000, Elghanian et al., 1997). Au possesses an excellent 

oxidation resistance which does not interfere with its usability under atmospheric 

conditions thus making it an outstanding candidate for both in vitro and in vivo 

applications. Owing to the strong affinity of the gold-sulfur (Au-S) bond and physical 

absorption, Au offers ease of conjugation to various biological molecules (antibodies, 

DNA and peptide) that have been widely used in sensing, molecular imaging and drug 

targeting (Xie et al., 2010).   

 

Instead of the classic AuNP, many other forms of Au nanostructures have been reported 

such as nanorods (Cabada et al., 2012, Murphy et al., 2005), nanospheres (Daniel and 
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Astruc, 2004), nanoshells, nanoplate nanocages (Hu et al., 2006) and nanoframes. A great 

effort nowadays is done on gold nanoshells (GNS) as they offer tuneable LSPR from 

visible to near infrared (NIR) wavelength by adjusting the core-to-shell ratio. NIR, also 

referred to as “biological window”, allows deep penetration into soft tissues as the 

absorption of light in blood and water is limited and the magnitude of scattering in tissues 

is relatively low. In 2003, localised temperature increment to 37.4 ± 6.6°C with metal 

nanoshell silica core was first reported by Halas group and showed interesting positive 

results (Hirsch et al., 2003). Photothermal conversion upon laser irradiation contributes to 

the localised hyperthermia that causes irreversible cell death. This process is confined to 

nanoparticles distributed area via three potential mechanisms: damage to the cell 

membrane, prompt protein denaturation and induce production of reactive oxygen species 

(ROS). Exploration on metal nanoshell against cancer cells has been done by numerous 

researchers as this approach offers very little complications to the surrounding cells and 

fast recovery to the damaged site.   

 

Lately, multifunctional nanosystems that provide the combination of both chemo- and 

photothermal therapy with metal nanoshell were reported. Wu and colleagues designed a 

system conveying both chemo- and photothermal therapy using gold nanoshell silica core 

with liposome; the synergistic system had better as anticancer efficacy as compared to 

either treatment alone (Wu et al., 2011). Laser irradiation induces localised hyperthermia 

and simultaneously deforms the gold nanoshell. In turn, chemotherapeutic drug is released 

gradually, in controlled-release manner, into the cancer cells thus causing cell death. 

However, the said system by Wu and colleagues is not suitable for in vivo studies as there 



4 

was absence of target scheme such as antibodies or peptides. Instead of liposome, polymer 

nanoparticles with poly (lactic acid) and poly (lactic-co-glycolide) (Hao et al., 2015, Yang 

et al., 2009), which was synthesised as a core and template for chemotherapeutic drugs 

loading. Another multimodal treatment for cancer was done by Liu et al. with Au-coated 

silica nanorattles loaded with docetaxel (DTX), the treatment successfully induced a 

localised hyperthermia and delivered the drug into human liver carcinoma (HepG2) cells 

(Liu et al., 2011).  

 

To date, there was no known investigation on mesoporous silica nanoparticles (MSNs) 

coated with a thin layer of gold. MSNs have been suggested as a suitable platform for 

biomedical applications as they are biocompatible and biodegradable. Significant efforts 

have been dedicated to the development of MSNs as they offer numerous advantages such 

as a large surface area and ordered mesoporous channels, allowing higher payload of 

fluorescent dye, peptide and drug. Also, the well-defined surface chemistry of MSNs 

allows direct functionalisation and thus targeting specific site and prolonging the 

circulation time in the body (Figure 1.1). A major advantage of MSNs is they hold a 

sustained slow drug release property (Owens et al., 2016, Tang et al., 2014) and the rate 

of drug release can be tuned unlike liposome and polymer nanoparticles, which exhibit a 

burst release of drug. 
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Figure 1.1: Multifunctional and cargo loading of mesoporous silica nanoparticles (MSNs). 

Adapted from Oupicky, 2014. 

 

Many efforts have been made in designing nanodevices in recent years, however, most of 

the designed nanodevices offer only single cancer treatment that may lead to the 

incomplete eradication of cancer cells (Abbasian et al., 2017). Furthermore, traditional 

UV light-responsive nanodevices have been widely reported in literature but these 

nanodevices are not recommended for in vitro and in vivo applications. This owes to the 

UV light property that can cause the detrimental photochemical reactions and also has 

very limited tissue penetration depth (Olejniczak et al., 2015). 
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Herein, mesoporous silica nanoparticles (MSNs) coated with a layer of gold shell were 

synthesised for their multifunctionality including specific targeting, chemo- and 

photothermal therapy. Deformation of gold nanoshell upon two photon excitation (TPE) 

lead to localised temperature increment via photothermal conversion. At the same time, it 

allows the controlled release of the anticancer drug from the mesoporous silica core. 

Combination of both chemotherapy and photothermal therapy via multimodal 

nanoparticles promise a more comprehensive cancer treatment with minimal side effects 

on healthy cells.  

 

1.1 Objectives of the study  

1.1.1 General objectives  

1. To synthesise, functionalise and characterise MSNs coated with a layer of gold shell 

(GNS).  

2. To demonstrate two photon laser triggered gold nanoshell deformation via UV-VIS 

spectroscopy and TEM.  

3. To evaluate the photothermal conversion efficacy of gold nanoshell.  

4. To determine cytotoxicity of gold nanoshell in in vitro studies. 
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1.1.2 Specific objectives 

1. MSNs, as a template for drug loading will be synthesised via Stöber process and it 

will then be covered by a layer of gold nanoshell by seed-mediated method to avoid 

premature release. 

2. GNS surface will be functionalised with polyethylene glycol (PEG) followed by 

aptamer conjugation. The specificity of aptamer will be evaluated with two cell types. 

3. GNS in aqueous solution will be excited with two photon laser and the final products 

will be collected and characterised.  

4. Different concentration of GNS solution will be prepared and irradiated with 800 nm 

continuous wave (CW) laser as a proof-of-concept for 15 mins. 

5. The toxicity of the DOX-GNS-PEG-Apt will be evaluated via cell meterTM 

colorimetric cell cytotoxicity assay kit. 

6. In vitro cytotoxicity effect of two photon excitation (TPE) induced gold nanoshell 

(GNS)-photothermal therapy (PTT) and control of drug release will be assessed. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, properties of gold nanoshell (GNS) followed by a brief introduction of the 

inner core, mesoporous silica nanoparticles (MSNs) will be introduced. The reasons 

behind MSNs gaining popularity for drug delivery will be discussed. Next, the target 

scheme on the GNS will be focused on aptamer. In addition, overview of doxorubicin 

(DOX) as well as the anti-tumour strategy will be described. Finally, the basic principle 

of two photon excitation (TPE) and its applications, such as controlled release and induced 

photothermal therapy (PTT), will also be reviewed. 

 

Nanotechnology has made significant contributions to cancer therapy over the past several 

decades. Several nanoparticles such as Doxil, DaunoXome, Marqibo and Abraxaxane 

have been approved by Food and Drug Administration (FDA) for cancer treatment 

however, these nanoparticles are non-targeted delivery nanosystem which may eventually 

cause off target toxic effects (Smith, 2013). Thus, a tremendous efforts have been devoted 

to develop targeted drug delivery nanosystem and a number of these nanosystems for 

instance MM-302, BIND-014 and MBP-426 have been developed and are now in clinical 

trials (2016, 2014, Hrkach et al., 2012). Although these targeted nanomedicines appear to 

be very promising, these systems have the potential to cause the incomplete eradication 

of cancer cells as the designed nanomedicines offer only single cancer treatment, which 

is chemotherapy (Abbasian et al., 2017). Novel nanoparticles with targeting property and 
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synergistic therapeutic effects are demanded for more intensive and effective cancer 

therapy and hence, targeted GNS with synergistic chemo-photothermal therapy was 

designed in this work. 

 

2.1 Gold nanoshells (GNS) 

To date, there is a surge of interest in using a single sophisticated nanodevice for both 

diagnostic and therapeutic purposes. Spherical gold nanoparticles (AuNP) with excellent 

biocompatibility and optical properties had been incredibly conceived as the ideal contrast 

agents for oncological imaging and delivery vehicle for centuries. However, a major 

drawback of the conventional AuNP is its inability to shift the surface plasmon resonance 

(SPR) over a broad wavelength, thus limiting the uses of AuNP in medical applications. 

SPR is a physical process occurs when incident light at a specific angle, called resonance 

angle, hits the metallic surface causing the generation of optical properties. At present, 

different shapes of gold nanostructure such as cube, rod, disk and shell have been designed 

to overcome the shortness of spherical AuNP, which is the inability to shift the SPR over 

a broad wavelength. In recent years, there is a growing interest in using gold nanoshells 

(GNS) for targeted cancer therapies (Zhao et al., 2014). GNS was first invented by Halas 

group consisting a dielectric core surrounded by a controlled thickness of gold layer 

(Averitt et al., 1997). Gold-coated dielectric core particles are biocompatible and have 

outstanding molecular properties. Likewise, the SPR band generated can be easily tuned 

from visible to near infrared (NIR) wavelength through adjustments of the core/shell size 

ratio.  
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The tunable SPR of GNS over a wide region spectrum was first theoretically calculated 

and proposed by Neeves and Birnboim in 1989 (Neeves and Birnboim, 1988). Based on 

the calculation, a red shift of the spectrum would be expected as the shell thinned (Figure 

2.1). This theory was then proved by Oldenburg et al. as 120 nm silica cores were prepared 

to generate GNS with shell thickness ranging from 20 to 33 nm ± 4 nm (Oldenburg et al., 

1998). The ability to tune SPR of GNS from 520 nm to 800 nm (NIR region) where the 

biological tissues transparent window is located, offers tremendous opportunity in medical 

fields, including bio-imaging, biomolecular sensing and cancer therapy (Zhao et al., 2014). 

The ability of GNS to convert absorbed light into heat can kill cancer cells while addition 

of target scheme on the GNS promise nearby healthy tissues unharmed. Likewise, GNS 

is gaining popularity as it displays higher two photon induced photoluminescence (TPIP) 

which is appropriate for three dimensional in vivo fluorescence bio-imaging (Gao et al., 

2011). This statement was supported by Park et al., who found that a red shift of the 

spectrum would be expected as the shell thinned at brightness by TPIP of GNS is 140 

times than fluorescent beads but slightly lower than gold nanorod (GNR) under the same 

condition (Park et al., 2008). Overall, GNS has opened up a new frontier in medical 

research especially in bio-imaging and drug delivery application.  
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Figure 2.1: Theoretically calculated optical resonance of GNS over a range of core 

radius/shell thickness ratio. Adapted from Kim and Lee, 2015 and Loo et al., 2004.  

  

GNS comprising a silica dielectric core have been extensively researched owing to both 

materials that are bioinert materials (Fay et al., 2015, Bear et al., 2013). Moreover, silica 

nanoparticle is preferred for use as this material is inexpensive, environmentally friendly, 

and easy to synthesise and functionalise. However, in this study, mesoporous silica 

nanoparticles (MSNs) will be facilitated as inner core instead of solid silica nanoparticles, 

which is more suitable for drug loading. In particular, MSNs-based drug carriers have 

been extensively reported in literature and the details will be covered in the following 

section. 
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2.2 Mesoporous silica nanoparticles (MSNs) as drug carriers 

MSNs have gained substantial attention over the past few years. The synthesis, 

advantageous structural properties and recent progress in biomedical applications have 

been extensively discussed in literature, and is summarised in this subtopic.  

 

Unlike solid silica nanoparticles, MSNs are porous material hence making MSNs suitable 

for further physical and biochemical modifications MSNs were first generated in 1992 by 

Kresge and co-workers. At that time, MSNs were known as mobile crystalline material-

41 (MCM-41), which composed of a highly ordered pore arrangement and pore size 

ranging from 2 to 10 nm (Kresge et al., 1992). The invention of MSNs has overcome the 

shortcoming of the traditional formation of zeolite – the first known primitive porous 

material, which term coined in 1756 (Taboada et al., 2005). MSNs have been favourite 

raw materials in industry for several reasons: (1) large surface area whereby, > 700 m2g-1 

permits various modifications to be done (2) large pore volume enables high drug loading 

capacity for up to 200 - 300 mg in 1 g of silica (Bharti et al., 2015) (3) good 

biocompatibility (4) high chemical and thermal stability (5) low cytotoxicity (6) ease of 

functionalisation and (7) delivering variety of drugs in a controllable and sustainable 

manner. All these features make MSNs highly attractive for use in diverse biomedical 

applications: bioimaging, biosensing and drug delivery. MCM-41 introduced by Kresg et 

al. is not suitable for medical application due to the size of particle is too big and 

aggregation issue, which eventually hinder cellular uptake efficiency and causes vascular 

embolisation (Faraji and Wipf, 2009). Also, at cellular level, uptake of nanoparticle is size 

dependent with an optimum particle size of 100 nm is ideal for endocytosis (Xu et al., 
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2012). For these reasons, enormous efforts have been devoted to utilise MSNs over solid 

silica nanoparticles and to synthesise MSNs in the nanometer range that is suitable for 

multimodal drug delivery.  

 

In 2001, MSNs were employed as drug carrier by Vallet-Regi and coworkers for the first 

time (Vallet-Regi et al., 2001). In a particular study, ibuprofen which is a hydrophobic 

drug was loaded into the mesopores of MCM-41 with drug loading ratio of 30 % - by 

weight. It was also observed that 80 % of the loaded drug was released in a substantial 

manner within three days. Since then, delivering drug via MSNs has gained interests as 

reflected by an increase of research papers published while reporting MSNs as drug 

carriers. Another distinctive feature in supporting MSNs as drug carriers is the ability of 

MSNs to entrap both hydrophobic and hydrophilic drugs within their pores. Thus, the 

MSNs scaffold protect the encapsulated therapeutic drugs from direct enzymatic 

degradation in the process of drug delivery (Li et al., 2012b). At the same time, 

characteristics of on demand and time-controlled drug release are highly desirable. Hence, 

an MSN-based stimuli responsive system for controlling spatiotemporal release of drugs 

was designed to only exert an action at the desired target and time. In 2003, Lai and 

colleagues first proposed stimuli (chemical) responsive MSNs in which the opening pores 

were capped with cadmium sulfide (CdS) nanocrystals (Lai et al., 2003). The rapid release 

of drugs was observed only when the MSNs were exposed to thiol reducing agents 

(mercaptoethanol and dithiothreitol), both of which offset other pitfalls in the system and 

still cleaved the disulfide bond efficiently between MSNs and CdS (Figure 2.2). Likewise, 

zero premature release of drugs was recorded, thus the interaction between drugs and 
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normal healthy tissues during its circulation was minimised. This delivery system is 

particularly useful in delivering genotoxic drugs like chemotherapeutic drugs. Several 

stimuli other than chemical such as light, temperature and ultrasound, were also used to 

trigger drug release in a controlled manner. In this study, drug-loaded MSNs were covered 

by a layer of ultra-thin gold forming shell to avoid the premature release of drugs. 

Deformation of GNS occurred upon two photon excitation and subsequently release the 

drugs in a control manner. This approach will further be discussed in the later part of this 

chapter. 

 

 

 

 

Figure 2.2: A controlled drug release nanosystem via chemical stimulus was designed. 

Adapted from Lai et al., 2003.  

 

Up to this point, the characteristics and advantageous of MSNs and GNS have been 

discussed. For that matter, this study generated drug loaded MSNs with a thin layer of 

gold. The GNS in this study was also bio-functionalised; hence, the following section 

aptly describes integration of biospecificity features and selection of target scheme. 
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2.3 Target scheme - antibodies, peptide & aptamer (Apt) 

The ideal goal of nanodevices for cancer therapy is to design a high target specificity and 

affinity delivery system, and to attain an effective therapeutic drug concentration to the 

tumour. Besides, untoward toxicity to the surrounding tissues, of which usually occur 

when utilising conventional chemotherapy, can be minimised with targeted delivery 

system. Thus, the use of targeted-nanodevices may increase the effectiveness of 

nanoparticle homing. Generally, there are two major targeting schemes: passive and active 

targeting mechanisms (Chakraborty et al., 2011). Passive targeting refers to the 

accumulation of nanodevice at cancer tissues based on the body’s natural biological 

response toward pharmacological physiological or physicochemical factors of the devices 

(Shahbazi et al., 2012). This passive targeting, however, lacks selectivity in the 

mechanism of action. Alternatively, active targeting nanodevices can efficiently bind to 

target sites over the surrounding tissues thus, avoiding undesirable toxicity issues (Choi 

et al., 2010). This approach facilitates specific interaction between target moieties 

(antibodies, peptides, aptamer (Apt), sugar and small molecules) with either receptors or 

antigens that are overexpressed on cancer cell surface (Kumari et al., 2015, Fenart et al., 

1999). Of these moieties, monoclonal antibodies with high affinity and specificity have 

been the gold standard in targeted cancer therapy (Zito et al., 2016). Nonetheless, 

numerous problems when using antibodies-based therapy include large size of the 

antibody, high production cost and undesired immunogenicity that limit their use in 

medical field (Chames et al., 2009). As a consequence, relatively new target binding 

technology called aptamer has becoming a valuable alternative in targeted cancer therapy. 
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2.3.1 Aptamer (Apt) 

Nowadays, aptamer (Apt) have been a major focus of interest for bio-imaging, gene 

therapy and drug delivery applications. This owes to Apt’s inherent similarities but with 

more advantages over traditional antibodies like high affinity and specificity to target 

receptors or antigens, but at a fraction of the size. In 1990, Apt was first discovered by 

Ellington & Szostak and Tuerk & Gold as RNA ligands that were designed to selectively 

bind to T4 DNA polymerase and organic dyes, respectively (Tuerk and Gold, 1990, 

Ellington and Szostak, 1990). Apt is made up of either single-stranded RNA or DNA and 

is folded into three-dimensional conformations (Figure 2.3).  

 

 

Figure 2.3: Schematic diagram of Apt folded into three-dimensional conformations. 

Adapted from Sun et al, 2014.  

 

They are more economical and easier to prepare as the recipes do not involve cell culturing 

and animals uses. Furthermore, unlike antibodies, which undergo denaturation easily at 

higher temperature, Apt is thermodynamically stable, making it suitable to use at varying 

temperature for in vitro and in vivo studies. Moreover, Apt which usually are 20 - 60 

nucleotides long, are 20 - 25 times smaller than monoclonal antibodies. At such size, Apt 

may perform better and penetrates tumour deeper thus becoming ideal therapeutic agent 
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against cancers (Xiang et al., 2015, Zhu et al., 2012). Additionally, it is nearly impossible 

to design antibodies with no immunogenicity as they are often derived from animals like 

mouse, rabbit, donkey or even with humanised antibodies. In contrast, Apt is synthetic 

oligonucleotides that are not recognised as foreign bodies by immune system, and 

therefore immune response is avoided.                  

 

In 2004, the first Apt-targeted drug delivery system was reported by Farokhzad et al. 

(Farokhzad et al., 2004). The drug-loaded nanoparticles (NPs) incorporated with A10 

prostate-specific membrane antigen (PSMA) Apt for targeting PSMA protein 

overexpressed on prostate cancer epithelial cells. After 16 hours incubation of A10 PSMA 

Apt conjugated NPs in both prostate LNCaP and PC3 cell lines, the binding of the NPs 

was clearly noticeable in LNCaP cell line but not in PC3 cell line as PC3 cell line does 

not express PSMA protein. For another example, an MUC1 Apt-doxorubicin (DOX) 

complex was designed by Hu and colleagues in 2012 for selectively delivering 

chemotherapy drugs to liver (HepG2) and lung (A549) cancer cells  (Hu et al., 2012). The 

reduction of cell viability to nearly 70 % and 80 % for HepG2 and A549 cancer cells 

respectively was witnessed in this particular study. Also, this study demonstrated that the 

MUC1 Apt alone was not cytotoxic towards either cell lines.  

 

Among Apt, AS1411 Apt is the first to enter clinical trial (Bates et al., 2009). AS1411 

Apt, contains 26 bases with guanine rich sequence targeting nucleolin proteins, which is 

predominantly found on plasma membrane of most cancer cells. AS1411 Apt exerts anti-
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proliferative effect and does so by inhibiting the binding of nucleolin to bcl-2 mRNA 

(Aravind et al., 2012, Bates et al., 2009). Therefore, a number of nanocarrier systems 

conjugated with AS1411 Apt were designed as they promote cellular internalisation by 

interacting with nucleolin protein. This inhibition process matters because stabilisation of 

bcl-2 mRNA when bound to nucleolin stops cells from undergoing apoptosis, thus leading 

to the overproduction of cancer cells (Soundararajan et al., 2008, Otake et al., 2007, 

Derenzini et al., 1995). Interaction of AS1411 Apt with nucleolin at the plasma membrane 

and later endocytosed intracellularly would leave bcl-2 mRNA dangling, which eventually 

unlocking the apoptotic pathway (Fogal et al., 2009). 

 

2.4 Doxorubicin 

In the present study, combination of both chemo-photothermal therapy can be achieved 

with this synthesised gold nanoshell with mesoporous silica core (GNS) by co-loading 

chemotherapeutic drugs, doxorubicin (DOX) into mesoporous channel. DOX which is 

also named as Adriamycin, has molecular formula C27H29NO11 and molecular weight of 

543.52 g/mol. Figure 2.4 shows its chemical structure; it consists of four-membered ring 

systems and a link with an aminoglycoside via glycosidic bond at ring atom 7 (Cutts et al., 

2005).  
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Figure 2.4: Chemical structure of Doxorubicin (DOX). Adapted from Cacycle, 2018.  

 

DOX is isolated from actinobacteria called Streptomyces peucetius by mutating a 

daunomycin-producing strain and the produced DOX is then classified as a member of 

anthracycline family. Its chemotherapeutic potential for cancer treatment was first 

reported by Arcamone et al. in 1969 (Arcamone et al., 2000). In the meantime, Di Marco 

and co-workers proved DOX to have better therapeutic index when compared to 

daunorubicin, which is the precursor of DOX (DiMarco et al., 1969). In early 1970s, anti-

tumour efficiency of DOX had been evaluated in clinical trials and DOX was recognised 

as one of the most effective chemotherapeutic drugs (O'Bryan et al., 1973, Tan et al., 1973, 

Middleman et al., 1971). Within a few years DOX was approved by United States FDA 

for medical use. To date, DOX is still considered a mainstay chemotherapeutic drug due 

to its excellent anti-tumour efficacy against various type of cancers including Hodgkin’s 

lymphoma, breast-, ovarian-, lung-, liver- and thyroid cancer among others. Several 

mechanisms have been proposed for DOX-mediated anti-tumour effects: (1) intercalation 

between adjacent GC base pairs in DNA double helix, (2) inhibition of topoisomerase II 

activity and (3) induction of reactive oxygen species (ROS) production. These 
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mechanisms elicit DNA damage, leading to the activation of downstream targets that 

regulates apoptosis or cell cycle arrest.  

 

Despite DOX broad and promising applications in chemotherapy, the clinical use of 

doxorubicin is limited by indiscriminative toxic side effects as DOX is distributed into 

tissues and intracellular compartments via systemic circulation. Administration of DOX 

at cumulative doses ≥550 mg/m2 is associated with an increased incident of cardiac 

failure among cancer patients (Rahman et al., 2007). However, the exact molecular 

mechanism by which DOX inducing cardiomyopathy is still unclear. To overcome the 

indiscriminative toxic side effects associated with previous formulations, Doxil was 

developed and approved by United Stated FDA in 1995. Doxil, a formulation of 

doxorubicin encapsulated in liposomes was the first nanodrug used to treat several cancers 

including ovarian cancer, AIDS-related Kaposi's sarcoma, and multiple myeloma 

(Barenholz, 2012). This new formulation had a successful increased of the survival rate 

and at the same time, reduced toxicity to the surrounding tissues. Nonetheless, 

administration of this nanodrug did not show a pronounced clinical efficacy in cancer 

treatment (Seynhaeve et al., 2013). Furthermore, the surface of this nanodrug was not 

functionalised with any targeting ligand and thus, provide the possibility of delivering the 

DOX to the healthy cells (Gao and Jiang, 2017). In short, nanodrugs with specific target 

and controlled release properties are essential to improve the clinical efficacy while   

sparing normal healthy cells. 
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2.5 Principle of two-photon excitation (TPE) 

The foundation of two-photon excitation (TPE) ideation was first proposed by Maria 

Goppert-Mayer in 1931 (Göppert-Mayer, 1931) however, this photophysical properties 

had not been practically tested until 1960s when laser with high photon intensities was 

invented (Kaiser and Garrett, 1961). Prior to further explanation about TPE, the 

knowledge on conventional single photon excitation needs to be understood. Single 

photon excitation is a linear process as it involves the direct transition of electron from 

fluorophore between ground and excited state by single photon in the Ultraviolet 

illumination. In contrast, TPE fluorescence accomplished the transition of electron from 

fluorophore between two electronic states by the almost simultaneous absorption of two 

photons (Oheim et al., 2006). Two photon absorption is considered as a nonlinear process 

where the first photon promoted an electron to virtual state and eventually brought to the 

excited state by the second photon (So et al., 2000). These can be explained using quantum 

theory, the energy of a photon is inversely proportional to its wavelength, thus, two photon 

should have a wavelength increased by a factor of two, to attain equivalent transition state 

excited with single photon (Benninger and Piston, 2014). As a result, fluorophore can be 

excited with long wavelength (infrared region) too other than short wavelength (ultraviolet) 

(Rocheleau and Piston, 2001). These concepts are summarised in Figure 2.5.    
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Figure 2.5: Jablonski (energy level) diagram of (a) single photon excitation and (b) two 

photon excitation. Adapted from So, 2002.  

 

In the present study, two-photon laser was employed to induce localised photothermal 

therapy (PTT) and simultaneously deforms the gold nanoshell (GNS) for the controlled 

release of DOX. Two photon laser is highly recommended in biological experiments as 

low average excitation power is needed and therefore, the degree of photodamage on 

biological specimen can be reduced (Hopt and Neher, 2001). Moreover, TPE exerts a 

deeper tissue penetration making it as a superior alternative to single photon laser. 

Additionally, the nonlinearity photon absorption of TPE permits the activation of GNS 

restricted to the focal point of the laser beam (Shen et al., 2016). This offers precise spatial 

control of GNS activation during cancer treatment, eventually minimising the off-target 

drift damage to the surrounding normal healthy tissues.  
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2.5.1 Photothermal therapy (PTT) 

One of the key elements in regulating the fate of biological systems ranging from single 

cell to tissues and organisms is temperature. Elevation of temperature above normal body 

temperature could lead to irreversible cell damage, and even vital organ dysfunction. On 

the brighter side, increase of temperature above normal (hyperthermia) in a control 

manner could be applied to get rid of undesired cancer cells. Thus, extensive efforts have 

been devoted to the development of novel nanoplatforms for controlled and localised 

hyperthermia in target area, while leaving nearby healthy tissues unharmed (Tsai et al., 

2018, Pattani and Tunnell, 2012, Gutwein et al., 2012). A promising technique to achieve 

controlled and localised hyperthermia is laser-induced photothermal therapy (PTT) 

(Mendes et al., 2017). Among all nanoparticles, gold nanoparticles (AuNP) are the most 

studied PTT materials due to excellent heat generation via non-radiative processes 

(Abadeer and Murphy, 2016). Non-equilibrium heat is established when electron of AuNP 

was photoexcited at incident photon. The relaxation of excited electron via electron-

electron scattering leading to the rapid temperature increment at the AuNP surface. The 

heat energy from electron is transferred to photon as a consequence of electron-photon 

collision and thermal equilibrium is reached (Link and El-Sayed, 2000). Lastly, AuNP is 

cooled down by dissipating the heat to surrounding medium via photon-photon interaction. 

The overall process of light induced thermal effect is summarised in Figure 2.6. 
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Figure 2.6: The overall process of photo-thermal conversion upon laser irradiation. 

Adapted from Webb and Bardhan, 2014.  

 

Gold nanoshells (GNS) are especially attractive for PTT because of their tunable plasmon 

resonance fall into the near infrared (NIR) region, where most of the biological tissues are 

relatively transparent to light in NIR region. The GNS mediated PTT in breast cancer cells 

was first performed by Hirsch et al. in 2003 (Hirsch et al., 2003). The loss of Calcein AM 

fluorescence in GNS treated group indicates cell damage after NIR laser irradiation. This 

phenomenon was not observed in control group with laser irradiation alone. The same 

group carried out a study in 2005 demonstrating dual imaging and NIR thermal therapy 

approach with GNS (Loo et al., 2005). This time, GNS was conjugated to either non-

specific antibodies or anti-HER2 antibodies and subsequently incubated in HER2-positive 

SKBr3 breast cancer cells. SKBr3 breast cancer cells incubated with anti HER2-

conjugated GNS underwent apoptosis within laser spot after NIR (820 nm) irradiation 

treatment for 7 minutes with output of 0.008 W/m2.  

 

In the following year, two cell types, SKBr3 breast cancer cells and HDF human dermal 

fibroblast (HER2 negative) were seeded side by side followed by incubation with HER2-




