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TINDAKAN RENCATAN TERHADAP PENGGALAK PENYINGKIRAN 

EKSON MENGGUNAKAN TUMBUHAN HERBA TERPILIH 

 

 ABSTRAK  

Kajian sebelum ini berjaya membuktikan penglibatan ‘isodiospyrin’ sebagai 

perencat kepada faktor penyingkiran dan penggunaan molekul sebatian kecil sebagai 

pencetus kepada proses penyingkiran ekson. Dengan cara merencat SR protin  

menggunakan ‘isodiospyrin’ dan homolognya, mampu untuk menyingkirkan exon dan 

secara tidak lansung mengembalikan jujukan protin. Pembinaan model novel minigen 

boleh digunakan bagi mengkaji kerumitan mekanisma penyingkiran ekson, yang mana 

berpotensi kepada identifikasi target terapi pada semua penyakit yang berkaitan seperti 

‘Duchenne Muscular Dystrophy’ dimana ‘dystrophin’ gen terlibat. Objektif kajian ini 

adalah untuk mengenalpasti  tindakan rencatan terhadap penggalak penyingkiran 

ekson menggunaka ‘isodisospyrin’ dan homolognya daripada tumbuhan herba terpilih 

bagi  menyingkirkan ekson di dalam minigen yang direka. Faktor pencetus pada proses 

penyingkiran ekson didalam dystrophin minigen di kenal pasti menggunakan perisian 

‘ESEfinder 3.0’. Dua jenis minigen yang direka bentuk iaitu minigen asli dan juga 

minigene buatan. Minigen asli termasuk ‘Gen-Ex45’, ‘Gen-Ex 51’ dan ‘Gen-Ex53’ 

manakala minigen buatan pula mempunyai ‘ESE’ yang spesifik iaitu ‘Art-SF2/ASF’, 

‘Art-SC35’, ‘Art-SRp40’, ‘Art-SRp5’5 dan ‘Art-NO ESE’. Semua minigen yang 

direka di klon kan sebelum disaring menggunakan proses penjujukan dan di masukkan 

ke dalam sel ‘HEK-293’ bagi proses penyingkiran tersebut. Proses tersebut kemudian 

disahkan menggunakan 2 kaedah iaitu pengujian signal ‘luciferase’ dan juga kehadiran 

band sasaran menggunakan kaedah ‘RT-PCR’, akhirnya akan disaring melalui analisa 
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penjujukan ‘DNA’. Di samping itu juga, 6 jenis ekstrak dari 5 jenis spesis sebatian 

semulajadi yang menyerupai ‘isodiospyrin’ di kenal pasti menggunakan perisian 

‘NADI’. Berdasarkan keputusan proses penjujukan  secara terus,  tiada penyingkiran 

ekson di temui dalam semua minigen asli. Manakala berbeza dengan minigen buatan 

yang mana menunjukkan penyingkiran di dalam semua minigen melalui keputusan 

‘RT-PCR’. Selepas analisa luciferase dilakukan, nilai penyingkiran tersebut masih 

jauh daripada nilai minigen rujukan yang mana secara tidak lansung menunjukkan 

kepekaan kaedah aktiviti luciferase berbanding ‘RT-PCR’. Lima jenis sebatian secara 

signifikan menunjukkan penyingkiran ekson berlaku selepas didedahkan terhadap 

minigen ‘Art-SRp55’, satu sebatian masing-masing terhadap ‘Art-SC35’ dan ‘Art-

SRp40’. Manakala, tiada sebatian yang menunjukkan keputusan yang signifikan 

terhadap penyingkiran ekson didalam Art-SF2/ASF. Walaubagaimanapun, keputusan 

yang signifikan tersebut juga tidak menunjukkan nilai penyingkiran yang sepenuhnya 

seperti yang berlaku didalam minigen rujukan yang bertindak sebagai petunjuk 

piawaian penyingkiran. Menariknya, ‘isodiospyrin’ dikenal pasti berpotensi sebagai 

sebatian penyingkir ‘ESE’ terhadap ‘Art-SRp40’ kerana ianya menunjukkan nilai 

signifikan yang sudah menghampiri kepada sempadan iaitu (p=0.049) walaupun 

dengan kehadiran motif perencat dan juga memiliki nilai ‘SP’ yang tinggi. 

Kesimpulannya, berdasarkan keputusan ‘luciferase’, Kesimpulannya, isodiospyrin 

dan sebatian yang menyerupainya mempunyai kebolehan sebagai pengaruh kepada 

penyingkiran ekson terhadap minigen buatan dengan atau tanpa kehadiran motif 

perencat dan juga ‘hnRNP A1’. Pendekatan ini sedikit sebanyak memberi gambaran 

kepada kajian yang berkaitan tentang penglibatan ‘ESE’ di dalam penyakit 

terutamanya yang berkaitan dengannya.   
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PUTATIVE INHIBITORY ACTIONS OF SELECTED MEDICINAL PLANTS 

AGAINST EXONIC SPLICING ENHANCERS 

ABSTRACT 

A previous study had demonstrated the successful use of isodiospyrin as an 

inhibitor of splicing factor and the use of a small-molecule compound as exon skipping 

inducer. Inhibition of serine and arginine-rich (SR) protein using isodiospyrin and their 

homolog results in exon skipping and indirectly restore the reading frame and protein 

product. Creating a novel minigene model can be used for studying the complexity of 

the splicing mechanism, potentially translatable into the identification of therapeutic 

targets in various related other conditions, such as Duchenne Muscular Dystrophy 

where the Dystrophin gene is affected. The objective of this study was to determine 

the inhibitory actions of isodiospyrin and isodiospyrin homolog of selected medicinal 

plant extracts for inducing skipping in the designed minigene against exonic splicing 

enhancers. Exonic splicing enhancers of dystrophin minigene was identified using 

ESEfinder 3.0 software. There are two subtypes of minigene which are genuine 

minigene and artificial minigene. Genuine minigene includes Gen-Ex45, Gen-Ex 51 

and Gen-Ex53 while artificial minigenes with specific exonic splicing enhancers 

(ESE) are Art-SF2/ASF, Art-Sc35, Art-SRp40, Art-SRp55 and Art-NO ESE. All 

minigenes were constructed before being subjected to the cloning process and targeted 

minigenes were validated using sequencing before to transfection into the HEK-293 

cell line for splicing assay. The assay was again validated using 2 methods which are 

luciferase assay by the fluorescent signal and another method by the presence of 

targeted size band after reverse transcriptase-polymerase chain reaction (RT-PCR) and 
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were then confirmed by sequencing analysis. Six extracts from 5 plants similar to 

isodiospyrin homolog were screened using NADI software. Direct sequencing further 

validated the absence of exon after compounds exposure to all minigene, results 

showed no skipping in all genuine minigene, different with artificial minigene which 

showed all skippings based on the RT-PCR results. After luciferase analyses, their 

skipping values were still far from mock minigene (standard skipping) which showed 

a higher threshold indicating that no skipping occurred and that luciferase assay was 

more sensitive than RT-PCR. Based on the result obtained, it was proven that fewer 

ESE sequences in the exon are unable to retain exon. Also, there was a higher potential 

of skipping to occur if there are few ESE in the sequence, the presence of a silencer 

motif as well as when that sequence consists of positive splicing potential value. Five 

of the compounds were shown significantly to induce skipping after exposure to the 

Art-SRp55 and one of each Art-SC35 and Art-SRp40, while no compounds showed 

significant skipping after exposure to the Art-SF2/ASF. However, it was shown that 

the skipping level was not as much as that which occurred in the mock minigene that 

acted as a skipping standard. Interestingly, isodiospryin showed to have a  high 

tendency to become ESE skipper when exposed to the Art- SRp40 minigene, because 

it showed a significant skipping value (p= 0.049) although with the presence of silencer 

motif 1 and higher SP value.  In a conclusion, isodiopsyrin and its homologs might 

have shown the capacity to induce skipping, although in an ESE-specific manner, even 

with or without the presence of silencer motif and hnRNP A1. This approach may 

provide a view to further study ESE on the disease-related conditions.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

1.1.1 DMD and splicing events 

 

Isodiospyrin is a natural product of Diospyros Morrisiana, within the genus of 

Diospyros, consisting of an asymmetrical 1,2-binaphthoquinone chromophore (Hou et 

al., 2015; Ting et al., 2003). They are commonly known as ebony or persimmon tree 

and mostly grow in the tropics, including South Africa, Malaysia and, India. The role 

of isodiospyrin as a potential exon skipping inducer remains largely unexplored. 

isodiospyrin is commonly used as an antibacterial agent in tuberculosis and other 

bacterial diseases as well as an antiproliferative agent for tumor cells (Adeniyi et al., 

2000; Das Sarma et al., 2007; Karkare et al., 2013). It was also known to induce exon 

skipping through kinetic inhibition against topoisomerase-I-related exon splicing 

enhancer (ESE). The assay was done within an isolated system of β-globin splicing 

without the presence of DNA, hence devoid of a real cellular assay system to reflect 

the dynamics of cellular components (Tazi et al., 2005; Ting et al., 2003). This is 

important as topoisomerase I was known to also bind to DNA (Karkare et al., 2013; 

Kurzwernhart et al., 2012; Mosad et al., 2012). It is unclear whether the presence of 

DNA in a real cellular setting interferes with the ability of isodiospyrin in exerting its 

inhibitory effects on ESE. Besides, considering the variability of splicing mechanisms 

such as splicing potential, the strength of splice site, and presence of silencer among 

different genes, although isodiospyrin has shown an effect on the isolated splicing 

system of β-globin, data pertaining to its effects towards the real cellular setting of 
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other genes commonly implicated in splicing-prone disorders such as Dystrophin gene 

remain elusive. 

1.1.2 Splicing and Exonic Splicing Enhancer (ESE) 

Splicing is the process where introns are removed and exons are ligated together which 

occurs in the nucleus. It can occur simultaneously during transcription or immediately 

after the transcription process. Splicing is important in eukaryote to create messenger 

ribonucleic acid (mRNA) and further translates into protein. Series of splicing events 

are catalyzed by spliceosomes which is a complex of small nuclear 

ribonucleoproteins (snRNPs) (Wahl et al., 2009). This is called constitutive splicing, 

and normally produce specific protein from single gene which differ from alternative 

splicing. 

Alternative splicing occurs when gene-coding regions work to produce alternative 

processed mRNA sequences and result in multiple proteins spliced from a single gene. 

It results in a variety or unique protein compositions (Havens et al., 2013) due to intron 

retaining or exon skipping or exon extension in the final mRNA transcript (Gupta et 

al., 2004; Kan et al., 2002; Sharp, 2005). Transcriptome analysis suggested that up to 

90% of human genes undergo alternative splicing (Pan et al., 2008; Wang et al., 2008) 

which directly contribute to the variety in species and organ specificities during the 

development and evolution process (Barbosa-Morais et al., 2012; Merkin et al., 2012; 

Nilsen and Graveley, 2010). 

Alternative splicing is regulated by trans-acting proteins (repressor and activator) that 

bind to the cis-acting elements which are silencer and enhancers acting on a premature 

https://en.wikipedia.org/wiki/Small_nuclear_ribonucleoprotein
https://en.wikipedia.org/wiki/Small_nuclear_ribonucleoprotein
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transcript (pre-mRNA). Figure 1.1 shows the differences in the mRNA processes in 

constitutive and alternative splicing. Serine-Arginine rich (SR) proteins bind to exon 

splicing enhancer (ESE) to promote exon splicing but when they bind to heterogeneous 

ribonucleoprotein particles (hnRNPs), they block exon splicing in a region with exonic 

splicing silencers (ESS) Figure 1.2.  

Several studies reported that mutations which disrupted normal splicing event 

comprised up to one-third of all disease-causing mutations. An estimated 15% of point 

mutations resulting in human genetic diseases arise from RNA splicing defects 

(Krawczak et al., 1992). Analysis of reconstructed mRNAs that are derived from 

chromosome 22 indicated that ~60% of genes are represented by two or more 

transcripts (Lander et al., 2001; Modrek and Lee, 2002). Though likely 

underestimated, such aberrant splicing is thought to account for over 50% of patients 

with mutations within NF1 (neurofibromatosis type 1) (Ars et al., 2000) and ATM 

(ataxia telangiectasia mutated) (Teraoka et al., 1999), 95% of Spinal Muscular Atrophy 

patients (Sasongko et al., 2009) and nearly 70% of Duchenne/Becker Muscular 

Dystrophy (Hoffman et al., 1987). Growing reports have correlated specific point 

mutations in coding regions with the skipping of the exon that harbors the mutation 

(Cieply and Carstens, 2015; Cooper et al., 2009).  

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Heterogeneous_ribonucleoprotein_particle
https://en.wikipedia.org/wiki/Heterogeneous_ribonucleoprotein_particle
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Figure 1.1: A diagram showing conceptual differences of spliced mRNA product in 

(a) constitutive and (b) alternative splicing when there are multiple protein isoforms 

are produced by alternative splicing as compared to constitutive splicing (Blencowe, 

2006). 
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Figure 1.2: A diagram showing the splicing process in the alternative splicing of the 

SMN2 gene. It shows the model of Sam68 (encoded by KHDRBS1) in the recruitment 

of hnRNP A1 which binds to the ESS and induce exon skipping. If there Sam68 is 

absent, TRA2β would bind to the ESE to maintain exon-7 inclusion and result in full-

length SMN2 mRNA (Pedrotti et al., 2010). 
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The mechanisms in which these mutations can disrupt splicing involve a direct 

inactivation or a splice site creation, either by activating a cryptic splice site or by 

interfering with splicing regulatory elements. Point mutations in the coding regions of 

genes had traditionally been assumed to exert their effects by altering single amino 

acids in the encoded proteins. However, some of these exonic mutations also affect 

pre-mRNA splicing. Nonsense, missense, and even translationally silent mutations can 

disrupt ESEs and cause the splicing machinery to skip the mutant exon, with the 

resulting dramatic effects on the structure of the gene product. ESEs are pre-mRNA 

cis-acting elements that are crucial for exon recognition during splicing (Wang et al., 

2005). ESEs participate in both alternative and constitutive splicing and many of them 

act as binding sites for members of the serine-arginine-rich (SR) proteins family 

(Blencowe, 2000; Graveley, 2000). There are four SR proteins mainly focused as a 

target in splicing research: SF2/ASF, SRp55, SRp40 and SC35 (Cartegni et al., 2003). 

1.1.3   Duchenne and Becker Muscular Dystrophy 

Duchene and Becker Muscular Dystrophy (DMD) is an X-linked recessive 

neuromuscular disorder characterized by repeated necrosis and skeletal muscle 

regeneration leading to the fibrosis and muscle weakness (Emery, 1987; Koenig et al., 

1987). The incidence of this Duchene and Becker is 1 in 3500-5000 newborns males 

(Helderman-van den Enden et al., 2013; Mendell et al., 2012; Moat et al., 2013; 

Muntoni et al., 2003).  It is caused by a deficiency of Dystrophin due to various 

mutational events of the gene. Exonic deletions of the Dystrophin gene that disrupts 

the open reading frame, resulting in the absence of a functional Dystrophin protein at 

the sarcolemma of muscle fibers (Hoffman et al., 1987), account for most cases seen. 

This is seen due to the loss of exonic sequences of the Dystrophin gene that disrupts 
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the reading frame such as aberrant post-splicing products, thus total dysfunction of 

protein. It occurs when the deleted nucleotide is not divisible by three then the wrong 

amino acid will be translated into the protein. After that, it can lead to the premature 

stop codon and generally cause complete loss of protein function (Kashima and 

Manley, 2003; Liu et al., 2001; Moseley et al., 2002; Pagani et al., 2003). However. A 

mutation that retains some function of the gene usually causes Becker muscular 

dystrophy, while mutations which cause complete loss of protein cause Duchenne 

muscular dystrophy. 

However, evidence showed that further skipping of adjacent exon(s) in the situation of 

exonic lost in DMD cases may restore the reading frame by partially restoring the 

splicing product, thus maintaining the function of the protein tend to change from 

severe DMD to the milder BMD (Pramono et al., 1996). In addition, a study by Rani 

and colleagues (2013) reported that skipping of exon 45 may reduce the phenotype 

severity in 24% of Malaysian DMD patients. Given its splicing pathophysiology, 

Dystrophin of DMD may serve as a gene model for studying the complexity of splicing 

mechanisms that potentially translatable into the identification of therapeutic targets 

in various related other conditions. 

1.2 The rationale of the study 

Exon skipping is known as one of the potential molecular approaches for the therapy 

of diseases where the splicing of exon plays a central pathology such as NF1, cystic 

fibrosis and DMD/BMD (Aartsma-Rus et al., 2009a; Aznarez et al., 2007; 

Tanganyika-de Winter et al., 2012; Zatkova et al., 2004). Isodiospyrin has been shown 

to have an exon-skipping property. A previous study demonstrated that isodiospyrin 
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induced exon skipping through kinetic inhibition against topoisomerase-I-related ESE. 

The assay was, however, done within an isolated system of β-globin splicing without 

the presence of DNA, hence devoid of a real cellular assay system to reflect the 

dynamics of cellular components (Ting et al., 2003; Tazi, 2005). This is important as 

topoisomerase I was known to also bind to DNA. It is unclear whether the presence of 

DNA in a real cellular setting interferes with the ability of isodiospyrin in exerting its 

inhibitory effects on ESE.  

The Dystrophin gene is highly conserved; homologs have been identified not only in 

vertebrates (mammals, birds and fish) but also in the popular invertebrate laboratory 

models Caenorhabditis elegans and Drosophila melanogaster. The dystrophin gene is 

chosen as the study model because it is high conserved in vertebrates (birds, fish and 

mammals) and popular invertebrate models such as Caenorhabditis 

elegans and Drosophila melanogaster (Collins and Morgan, 2003). Then, it gives a 

high possibility of identifying successful treatment through the integration of studies 

in multiple different species to addressing particular research questions. Besides that, 

the Dystrophin gene with largely splicing pathology in DMD/BMD contains a unique 

frame rule. The splicing pathology in DMD/BMD can be corrected through exon 

skipping. Thus, these characteristics of the Dystrophin gene provide the researcher 

with a useful model for testing out compounds with potential skipping properties. 

A previous study showed that skipping of exon 45 may rescue at least 24% of the 

DMD phenotypes (Rani et al., 2013). Exons 45, 51 and 53 of the Dystrophin gene were 

selected as skipping models in this study because these exons represent the major 

hotspot mutant region of the gene.  Theoretically, up to 63% of the patients could be 

treated by skipping the entire exons 45-55 region (Beroud et al., 2007; Koenig et al., 
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1987; Rani et al., 2013).  Based on the previous studies, deletion of exons 45-55 were 

normally associated with mild clinical phenotypes and sometimes almost 

asymptomatic (Nakamura et al., 2008).  

This study opens a new approach where natural compounds may be exploited for 

inhibiting ESE to induce exon skipping as a potential therapeutic approach in splicing-

prone disorders. 

1.3 Research Questions 

1. Is isodiospyrin able to inhibit ESE in genuine minigene or artificial specific 

minigene or both minigene and cause exon skipping? 

2. Can isodiospyrin homolog compound act as an ESE inhibitor similar to 

isodiospyrin and cause exon skipping? 

1.4 Objectives of the research 

1.4.1 General Objective 

 

To determine of the inhibitory actions of isodiospyrin by inducing skipping in the 

designed minigene against exonic splicing enhancers.  

 

1.4.2 Specific objectives 

1. To design artificial minigene with ESE specific splicing activity (Art-ESE 

specific minigene). 
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2. To determine the inhibitory effects of isodiospyrin against splicing of the Art-

ESE specific minigenes. 

3. To characterize the exonic splicing enhancer motifs contributing to splicing of 

Gen-Ex45, 51 and 53 of the Dystrophin gene. 

4. To determine the inhibitory effects of isodiospyrin against splicing of Gen-

Ex45, 51 and 53 of the Dystrophin gene. 

5. To validate the inhibitory effects of isodiospyrin using different natural 

substances of similar structure. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Duchenne muscular dystrophy (DMD)   

DMD is caused by a mutation in the Dystrophin gene which is complicated due to the 

larger size of the gene in the human genome with 79 exons. Mutation normally was 

observed at the major hot spot region which is the distal hot spot. Dystrophin is 

important to maintain muscle fiber (Koenig et al., 1987). Muscle loss normally affect 

s the pelvis and thigh followed by the arms, leads to difficulty in standing up.  About 

95% of the DMD can be detected by genetic testing during pregnancy (Helderman et 

al., 2013). Even though there is no cure for this disease, however braces, physical 

therapy and some corrective surgery may help in certain symptoms. Besides that, 

ongoing medical treatment normally aimed to control the onset of symptoms and give 

better lifestyle example like AON, natural substances, chemical compound and 

splicing modified compounds to reduce the severity of the DMD to the BMD (Jarver, 

P and Gait, 2014; Flagilan et al., 2011; Lunn and Wang, 2008; Aartsma-Rus et al., 

2006a). 

 2.2 Splicing Mechanism 

 

In molecular biology, mature messenger ribonucleic acid (mRNA) is transcribed from 

precursor (Pre) mRNA by removing the introns resulting in ligation of the exons. The 

word “Intron” is derived from the term “intragenic region” which is the intervening 

segment of DNA between two exons (Will and Luhrmann, 2001). Introns are found in 

most organisms including many viruses and can generate ribosomal RNAs (rRNAs), 
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proteins and transfer RNAs (tRNAs) (Roy and Gilbert, 2006). Splicing normally takes 

place inside the nucleus either co-transcriptionally or right after the transcription 

process (Tilgner et al., 2012). Splicing is important to create mRNAs that can be 

translated into proteins via the translation process. Most of the intron splicing 

processes in eukaryotes are carried out by the catalysis of spliceosomes. 

2.2.1 Spliceosome 

The spliceosome is a large and complex molecule consisting of small nuclear 

ribonucleoproteins (snRNPs) found in the nucleus of eukaryotic cells. The 

spliceosome removes the introns from the transcribed pre-mRNA to convert into 

mature mRNAs – known as splicing (Will and Luhrmann, 2011). Spliceosomal introns 

normally reside within the eukaryotic protein-coding genes. Three sites are important 

for a splicing event to take place namely - 1) donor site (5’ end of intron), 2) branch 

site (near the 3’ end of the intron) and 3) acceptor site (3’ end of the intron). An 

invariant GU sequence is observed at the 5’ end, whereas, AG sequence at the 3’ end 

of the introns.  5’ upstream of the invariant AG sequence, there is a region with high 

pyrimidine tract (C and U nucleotides) known as branchpoint which includes an 

adenine nucleotide-associated lariat formation (Black, 2003). 

As regards to the consensus sequence from the UIPAC nucleic acid notations, reported 

G-G-[cut]-G-U-R-A-G-U (donor site) then intron sequence followed by Y-U-R-A-C 

(branch sequence about 20-50 nucleotides upstream from the acceptor site), then Y-

rich-N-C-A-G-[cut]-G (acceptor site). It is noted that specific sequence within the 

intronic element and the number of nucleotides between branch point nearest to 3’ 

acceptor site can affect the splice site selection  (Figure 2.1) (Taggart et al., 2012). 
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Besides, point mutations also may cause an error during transcription by activating the 

cryptic splice sites in part of a transcript and resulting not spliced out with missing 

parts of an exon. Each of the spliceosomes is normally composed of five small nuclear 

RNAs (snRNA) and when combined with protein factor it is formed an RNA-protein 

complex known as snRNPs. 

There are two types of spliceosomes 1) major and 2) minor which contains different 

snRNPs. Major spliceosomes splice those introns which consist of AT the 3’ end and 

GU at the 5’ splice site while U1, U2, U4, U5 and U6 snRNPs active in the nucleus 

(Qian and Liu, 2014). This type of splicing is called canonical splicing or lariat 

pathway which occurs more than 99% of the splicing events. However, if intronic 

flanking sequences do not follow the GU-AG rule, then noncanonical splicing occurs 

(Ng et al., 2004). At least 70% of the human genes undergo alternative splicing that 

can create evolution in the composition of the same mRNA either by extending, 

skipping or retaining intronic regions (Johnson et al., 2003; Cartegni and Krainer, 

2002). Based on the study comparison between expressed sequence tag (EST) with 

genomic or complementary DNA (cDNA), about 35-60% of the human gene produces 

multiple transcripts which explained the choice of splice site (Brett et al., 2002; Lander 

et al., 2001; Modrek et al., 2001; Croft et al., 2000). 
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Figure 2.1: Diagram showing pre-mRNA lariats in human transcripts (Taggart et al., 

2012) 
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2.2.2 Exonic splicing enhancer and silencer 

Splicing is regulated by trans-acting protein as activators/repressors and corresponds 

with the cis-acting regulatory site such enhancer/silencer which present on the pre-

mRNA sequence (Qian and Liu, 2014; Cartegni et al., 2002). Trans-acting components 

include spliceosome which is made up of 5 small nuclear ribonucleoproteins 

(snRNPs), heterogeneous nuclear ribonucleoproteins (hnRNP) and also regulatory 

complex as Figure 2.2 (Jian et al., 2014). There are several types of cis-acting element 

components including 5’ splice site (5’ ss) which is the junction between an exon and 

intron while 3’ ss junction between intron and exon. Splicing silencer plays a role as 

splicing repressor protein which binds and reduces the chance of a nearby site to be 

used as a splice junction while splicing enhancers work oppositely. Splicing enhancers 

present in both intronic and exonic parts; splicing enhancers in intronic as known as 

intronic splicing enhancer (ISE), whereas the exon splicing enhancer (ESE) are in the 

exons. Moreover, for the splicing repressors, they are called as intronic splicing 

silencer (ISS), exonic splicing silencer (ESS). Another component is the branch point 

which is 10 of the nucleotide sequences located upstream of 3 ss (Jian et al., 2014). 
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chematic ilustration of pre-mRNA splicing. 5′ ss and 3′ ss are recognized by the  

Figure 2.2: Diagram showing pre-mRNA splicing. 5′ ss and 3′ ss are recognized by 

the spliceosome and the intron is excised and exons are spliced. The overall process is 

regulated by trans-acting elements such as hnRNPs, SR proteins and the regulatory 

complex (Jian et la., 2014). 
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2.2.3 SR protein 

Splicing is also involved in the interference of intricate pathways, in initiating signals 

and stimuli to the cells to integrate serine and arginine-rich proteins (SR protein) 

(Bourgeois et al., 2004). SR protein is one of the splicing factors which play a pivotal 

role in the alternative splicing process to fine-tune the gene expression at the post-

transcriptional level (Yin et al., 2012). SR proteins intervene very early during 

spliceosome assembly and stabilize to form complex A by UI snRNP particles bind to 

5’ GU splice donor and U2 with the assistant of the U2 snRNP auxiliary factor (U2AF) 

binds with branch point A within the 3’ branch site (Sanford et al., 2003; Graveley, 

2000). Indeed, the formation of the complex A is a key step to determine the end of 

the exon to be retained while ends of the intron to be spliced out (Matlin et al., 2005). 

Other spliceosome proteins including U4, U5 and U6 complex binds and U6 and 

replaces U1 position. Then, U1 and U2 cleaves and another complex initiate two 

transesterification reactions - a) at 5’ end, the intron is cleaved from an upstream exon 

and bind with the branch site A via 2’,5’-phosphodiester linkage and b) at 3’ end, the 

intron is cleaved from the downstream exon. Finally, two exons are joined together 

through a phosphodiester bond and the intron is released as lariat form and degraded 

(Black, 2003). 

Most of the splicing repressors are from hnRNPs including hnRNPA1 and 

polypyrimidine tract binding protein (PTB). Most of the activator protein binds to 

ISE/ESE are from SR protein members (Wang and Burge, 2008). However, predicting 

of ESE is difficult because of two reasons, firstly SR protein may degenerate RNA-

binding specificities (Tacke et al., 1997; Tacke and Manley, 1995) and secondly, SR 

protein and others positive acting factor normally recognize exonic elements 
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cooperative. Therefore, studies of SR protein function separately might fail to predict 

the real function of specific exon in-vivo (Li et al., 2000). 

ESE acts as a specific recognition of the splice sites in both constitutive and alternative 

splicing processes (Fairbrother et al., 2002; Liu et al., 1998; Tian and Kole, 1995). 

Important of ESE in splice-site recognition was first reported in an artificial 0–globin 

RNA study in which the selection of two competing splice sites is dependent on the 

adjacent exonic sequences (Reed and Maniatis, 1986). A study by Cooper and Mattox 

(1997) recognized the best-defined ESEs and alteration or deletion of that sequence 

might lead to the change of the specific splice site recognition. ESEs have been 

extensively studied in many of the contexts including alternative splicing (Black, 

2003) as well as constitutive splicing (Cartegni et al., 2002; Mayeda et al., 1999; 

Schaal and Maniatis, 1999). ESEs are normally located in the splicing site vicinity 

(Bailey et al., 2002) and unlike transcriptional enhancers, it functions as a strong 

position-dependent manner because it enhances splicing when present downstream 3 

ss and/or upstream 5 ss (Edelmann et al., 1999), but represses when present at the 

intronic regions (Lupski, 1998; Mazzarella and Schlessinger, 1998).  

Thus, it is suggested that strong ESEs are crucial for constitutively spliced exons in 

avoiding the presence of intronic sequence near splicing sites (Fairbrother et al., 2002). 

There are computational methods for identifying ESE including ‘Relative Enhancer 

and Silencer Classification by Unanimous Enrichment’ (RESCUE) which can predict 

splicing phenotypes on the mutant exons (within ESE activity sequence) by statistical 

analysis based on the exon, intron and splice site composition (Fairbrother et al., 2002). 

Researchers have predicted 10 ESE motifs and confirmed by reporter experiment that 

those 10 sequences display enhancer activity in vivo and mutant sequence exhibit 
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reduced activity. Furthermore, Fairbrother and colleagues (2004) identified 238 ESE 

candidates in the human genome which is served as n ESE indicator for the ESE quality 

which might cause variant to biological phenotype. The selection of those ESE 

candidates is based on the two criteria which are found significantly in human exon 

rather than intron. The second criterion is significantly found in exon with weak (non-

consensus) splice site than exon with a strong (consensus) splicing site. Those 238 

ESE from out of 4096 possible hexamers were then clustered into 10 groups, 2 groups 

of ESEs that present in 5’ splice site, 5 groups in 3’ splice site and another 3 present 

in both the groups. In vivo test on 10 non-redundant ESE motifs were chosen of 

splicing enhancer confirmatory step. Results were then confirmed for that 10 cases and 

when predicted ESE is disrupted by selected point mutation, reduce exon inclusion by 

more than 2 times in 9 out of 10 cases (Fairbrother et al., 2002) 

 

2.2.4 Post-translational modifications  

 

Thus, implied that those variations cause exons skipping and synonymous mutation 

presumed with no effect to the human need to be reconfirmed, because it may also 

change splicing phenotypes. The key step in understanding the splicing enhancer 

function is ESE being recognized by SR binding protein groups. Three types of 

posttranslational modifications occur in SR protein including methylation, acetylation 

and phosphorylation respectively (Zhou and Fu, 2013; Wang and Cooper, 2007). 

Many of the arginine methylations are observed in RNA binding sites especially 

hnRNP protein (Liu and Dreyfuss (1995). A study on arginine methylation was first 

reported on Np13p in the budding of yeast (Siebel and Guthrie, 1996). It is located 
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near the end of the protein adjacent to the phosphorylation site. Np13p plays an 

important role in transcription and also splicing within the nucleus (Moehle et al., 

2012; Kress et al., 2008). However, stable of arginine methylation blocks 

phosphorylation that requires Np13p to interact with nuclear import Mtr10p receptor 

and results in hypermethylation of Np13p and causes defect on the phenotype of 

nuclear import (Yun and Fu, 2000). A study by Sinha et al. (2010) reported that three 

methylated arginines were identified in the mammalian SR protein as well as SRSF1 

which play a positive role in promoting the nuclear import of SR protein. Defective 

SRSF1 enhanced translational SR protein in the cytoplasm is observed and reduced in 

the nucleus such as regulation of alternative splicing and coupling with nonsense-

mediated mRNA decay. Choudhary and coworkers (2009) revealed extensive lysine 

acetylation in SR protein and SR protein-specific kinases represent an important class 

of non-histone substrate that is recognized by various histone acetyltransferases 

(HATs) within mammalian cells. HAT Tip60 was reported to modify SRSF2 and 

counter-regulation by deacetylase HDAC6 (Edmond et al., 2011). This finding 

indicates the possibility of different SR proteins and regulators may be controlled by 

the different combinations of HATs and HDACs resulting in a complex regulatory 

network in modulating splice site selection in mammalian cells. 

Phosphorylation of SR proteins is catalyzed by multiple kinases that belong to the 

CMGC family (Kannan and Neuwald, 2004). Discovery of SR protein 

phosphorylation was a coincident during the discovery of the SR protein family 

because of antibodies against endogenous SR proteins known as phosphoepitopes in 

their RS domain which automatically retard migration of the SR protein in the sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Zahler et al., 1992; 
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Roth et al., 1991). Only SR protein kinases 1 (SRPK1) family in yeast known as Sky1p 

shown to phosphorylate several SR proteins such as Np13p and Hrb1p (Porat et al., 

2006; Siebel and Guthrie, 1996). In the case of Np13p, Sky1p-mediated 

phosphorylation appears to regulate and facilitate protein-protein and protein-RNA 

interactions which is highly related to those mediated by SRPKs in mammalian cells 

(Gilbert et al., 2001; Yeakley et al., 1999). Interestingly, SRPK1 is ubiquitously 

expressed including in the nervous system while SRPK3 largely in muscle cells 

(Nakagawa et al., 2005; Wang et al., 1998a) indicating each of the SRPK family 

members has a unique function in different types of cell development. Besides SRPKs, 

others kinases also were shown to be able to transfer a phosphate group to the SR 

protein in vitro including protein kinase C (PKC) and cAMP-dependent protein kinase 

A (Colwill et al., 1996b), Akt (Blaustein et al., 2005; Patel et al., 2005), topoisomerase 

I (Rossi et al., 1996), dual-specificity tyrosine phosphorylation regulated kinases 

(DYRKs) (Aranda et al., 2011; de Graaf et al., 2004) and cyclin-dependent like kinases 

(Clk1–4) (Colwill et al., 1996a; Duncan et al., 1998). However, only SRPKs and Clks 

were shown to be directly responsible toward SR protein phosphorylation in-vivo 

either by genetic ablation or chemical inhibition (Zhong et al., 2009; Yomoda et al., 

2008; Fukuhara et al., 2006; Hayes et al., 2006). Cytoplasmic SRPKs may responsible 

for initiating phosphorylation to facilitate SR protein in nuclear import, whereas Clks 

may fine-tune the phosphorylation in the nucleus. Therefore, these 2 families of protein 

kinases may work synergistically and/or complementary in regulating splicing, RNA 

export as well as other RNA metabolism process in mammalian cells (Zhou et al., 

2013). 
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There are several studies reported on the manipulation of the SR protein able to 

improve or treat some diseases including human immunodeficiency virus (HIV)-1 by 

inhibition SRp55 (Tranell et al., 2011; Tranell et al., 2010) and by inhibiting the 

phosphorylation of SC35 may treat high risk-human papillomaviruses (HR-HPVs) 

(McFarlane et al., 2015), upregulation of Bim and SRp55 may treat patients with 

melanoma cells with selective BRAF inhibitors (Lai et al., 2012) and regulation of 

SRp55 in the eye development especially in eye organogenesis and size (Fic et al., 

2007). Upregulation of SF2/ASF in adult and fetal cells may increase the expression 

of a human neurotropic virus, JC virus (JCV) and control reactivation of JCV in the 

brain (Sariyer and Khalili, 2011). Moreover, manipulation of SR protein also may 

involve in combination forms such as SRp30 with SRp55 responsible for 

misregulating Tau exon 2 and 10 to form neurodegenerative diseases such as 

Alzheimer’s, Parkinson and amnesia (Wang et al., 2005b). Then, SF2/ASF and SRp55 

participate in modulating the splicing of tissue-factor (TF) in the biosynthesis of 

human monocytic cells (Tardos et al., 2008). 

Pre-mRNA is an immature single-stranded RNA that is involved in gene expression to 

remove or splice out the introns. When the pre-mRNA completes their process, then it 

is termed as mature messenger RNA or simply messenger RNA which consists only 

exons attached through the splicing process (McManus and Graveley, 2011). Pre-

mRNA splicing is an important step for gene expression in higher eukaryotes group 

which is controlled by multiples splicing factors such as cis-acting elements, basal 

splicing machinery (spliceosome) as well as auxiliary regulatory factor element (Wang 

and Burge, 2008). There are different elements in recognizing alternative and 

constitutive splicing processes for exon usage determination. 
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Normally alternative splicing is regulated by cell-specific patterns and their regulation 

also based on the specific sets of cis-acting and trans-acting factors (McManus and 

Graveley, 2011). If removal of the intronic part within the same pre-mRNA molecule 

is referred to RNA cis-splicing, while in two different molecules it is called RNA trans-

splicing. Other cis-acting elements including exonic splicing silencers, exonic splicing 

enhancers, intronic splicing silencers and intronic splicing enhancers also play 

important roles either direct or indirect for alternative RNA splicing (De Conti et al., 

2013; Garcia-Blanco et al., 2004). However, RNA-trans splicing is rarely found in 

mammal although separate forms of trans-splicing have been reported in others species 

including rodents and human (Dorn and Krauss, 2003; Labrador and Corces, 2003; 

Finta and Zaphiropoulos, 2002; Flouriot et al., 2002; Caudevilla et al., 1998; Bruzik 

and Maniatis, 1992; Rajkovic et al., 1990; Murphy et al., 1986; Sutton and Boothroyd, 

1986). 

2.3 Alternative Splicing and Disease 

The majority of the protein-coding genes are from alternatively spliced products which 

increase the capacity of the human genome. Human protein-coding genes have an 

average mean of 8.8 exons with a mean size of 145 nucleotides. The mean of introns 

is 3365 nucleotides and 5’ and 3’ UTR is 770 and 300 nucleotides for each and result 

in gene spans about 27 kilobase pairs (kbp). After the pre-mRNA process, the average 

mRNA exported into the cytosol is 1340 nucleotide coding sequence, 1070 nucleotide 

UTR and also a poly-A tail (Lander et al., 2001). Thus, shows that more than 90% of 

the total of pre-mRNA is removed as intron during the transcription process and only 

10% of average pre-mRNA is joined as exonic sequences. Exon usage in often 

alternative because the cell decides whether to remove it as part of the intron or remain 



 

24 
 

as mature mRNA as an alternative exon (Ben-Dov et al., 2008). Alternative splicing 

normally creates protein isoforms which differ biological properties normally in the 

aspect of protein-protein interaction, catalytic ability as well as subcellular localization 

(Stamm et al., 2005). More than a quarter of alternative exons results in a premature 

stop codon in mRNAs and causes truncated proteins or mRNA degradation in 

nonsense-mediated decay. Then it is not surprising that disturbance in alternative 

splicing is frequently associated with human disease (Tazi et al., 2009). Various 

diseases have been reported to be associated with changes in alternative splicing (Love 

et al., 2015; Fan and Tang, 2013; Lara-Pezzi et al., 2013; Buratti et al., 2006; Faustino 

and Cooper, 2003). Another example is non-syndromic deafness in humans after G to 

T substitution in the DFNA1 gene located at position 1 in intron 25 disrupted splice 

donor sequence and result in premature truncated 32 amino acids of protein (Lynch et 

al., 1997).  

Moreover, several studies illustrated by the survival of motor neuron (SMN) 2 gene 

models that the defect of the SMN2 splicing process can develop different diseases 

(Cartegni et al., 2006; Cartegni and Krainer, 2002). Spinal muscular atrophy (SMA) is 

an autosomal recessive neuromuscular disorder caused by a mutation in SMN 1 (Wirth 

et al., 2006; Lefebvre et al., 1995). SMN plays important role in mRNA biogenesis 

and important for spliceosomal snRNP assembly in cytoplasm especially in the 

recycling of snRNPs and other splicing factors (Pellizzoni et al., 1998). Interestingly, 

there is a similarity between SMN1 and SMN2 genes, where, only 1 nucleotide is 

different in the exon 7 and 8. Besides, more than 32 (kilobase) kb regions is > 99% 

homolog between these two genes. However, the full transcript of cDNA is produced 
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