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PERANTI ANALITIK BERASASKAN KERTAS MIKROFLUIDIK (μPAD) 

BAGI PENGESANAN PANTAS KADMIUM DALAM AIR SUNGAI  

ABSTRAK 

 Dalam beberapa tahun kebelakangan ini, isu pencemaran air dengan ion logam 

berat tidak pernah berakhir sehingga mendapat perhatian yang luas dari seluruh negara. 

Logam berat ini melebihi had yang ditetapkan adalah toksik bagi manusia dan juga 

alam sekitar. Oleh itu, kaedah yang sangat mudah digunakan, mesra alam dan mudah 

alih menggunakan μPAD dibuat untuk menentukan cadmium (Cd) pada tahap ultra-

jejak menggunakan 1,5-diphenylthiocarbazone (dithizone) sebagai reagent 

kolorimetrik (λ = 500 nm) dalam cecair. Campuran bertukar warna koko/merah kepada 

oren dengan kehadiran Cd. Lilin paraffin dituangkan ke atas kertas penapis untuk 

membuat penghalang hidrofobik untuk saluran cecair. μPAD dibuat dalam masa 10 

minit dan memberi kebolehalangan dan kestabilan yang tinggi. Penggunaan lilin 

paraffin dengan cap getah pegangan ditunjukkan untuk pengesanan Cd menggunakan 

pengesanan kolorimetrik. Pendekatan pengecatan lilin yang diberikan memberikan 

kaedah fabrikasi yang ringkas, pantas dan menjimatkan kos untuk fabrikasi μPAD. 

Pekali linear (R2) adalah 0.9538 dan had pengesanan ion Cd menggunakan μPAD 

adalah 3.87 ppm. Hasil kajian menunjukkan bahawa had pengesanan yang diperoleh 

untuk kedua-dua kaedah tersebut lebih tinggi daripada had Cd yang dibenarkan iaitu 

0.005 ppm. Kaedah ini dilaporkan kurang sensitif untuk logam ultra-jejak seperti Cd. 

Namun, untuk analisis sampel sebenar, pemulihan sampel air diukur sebanyak 82.5% 

menggunakan μPAD. Ia mempunyai nilai pemulihan yang baik. Sebagai kesimpulan, 

μPAD digunakan sebagai ujian saringan sebagai langkah paling penting dalam ujian 

berdasarkan kertas untuk mengenal pasti kehadiran analit tetapi langkah pengesahan 

diperlukan untuk analisis lebih lanjut menggunakan instrumen yang canggih. 
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MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICE (μPAD) FOR 

RAPID DETECTION OF CADMIUM IN RIVER WATER 

ABSTRACT 

In recent years, the issue of contamination of water with heavy metal ion is 

never-ending, thus seeking extensive attention from all over the world. Heavy metal 

above a threshold limit is toxic to humans as well as the environment. Therefore, a 

very promising method using μPAD is presented for the rapid determination of Cd at 

an ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) as colorimetric 

reagent (λ=500 nm) in aqueous solution. The mixture turns from brownish-red to 

orange colour in the presence of Cd. The use of paraffin wax with the handheld rubber 

stamp was demonstrated for the detection of Cd using colorimetric detection. The 

paraffin wax was used onto the filter paper to create a hydrophobic barrier for fluidic 

channels. The μPAD was fabricated within 10 min and provided high reproducibility 

and stability. The rubber stamping method provides a simple, rapid and cost-effective 

in fabrication of uPAD. The calibration curves were constructed for developed method 

of μPAD. The linear coefficient (R2) was 0.9538 and the detection limits of Cd ion 

using μPAD was 3.87 ppm. The results demonstrate that the detection limits obtained 

for both methods were higher than the permissible limit of Cd which is 0.005 ppm. 

These methods were reported to be less sensitive for ultra-trace metal such as Cd. 

However, for real sample analysis, the recovery of Cd in the water samples was 

measured as 82.5% using μPAD. It has good recovery value. To conclude, the 

fabricated μPAD can be used as screening test which one of the most vital steps in 

paper-based assays to identify the presence of analyte but confirmation step is required 

for further analysis using the sophisticated instruments.  
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CHAPTER 1     

        

        INTRODUCTION 

 

1.1 Research Background  

The issue of heavy metals has pursued and received significant attention from 

all over the world from the last few years (Liu et al., 2017; Halkare et al., 2019; Tsai 

et al., 2018; Czolk et al., 1992). Population growth, urbanization and industrialization 

have a deleterious impact on the quality of water in most countries (Li et al., 2013). 

Water shortages are a major threat to human health in developing countries, and are 

frequently taken for granted and haphazardly consumed (Lin et al., 2016; Almeida et 

al., 2018). Due to the toxicity, non-degradability and bioaccumulation of heavy metal 

ions (Halkare et al., 2019; Liu et al., 2019; Zhao et al., 2020; Lin et al., 2016; Kim et 

al., 2012; Benounis et al., 2006), pollution of water with heavy metal ions has been a 

major concern in the world of industrial development. Heavy metals can simply be 

described as the metals that are relatively abundant in the earth's crust, undergo 

multiple processes, and are used in measurable amounts but highly toxic to human 

health and the environment (Jain et al., 2019; Hormozi-Nezhad and Abbasi-Moayed, 

2014; Vaughan and Narayanaswamy, 1998). 

A heavy metal such as cadmium (Cd) can be easily found in soil, water and air 

due to increased industrial and agricultural activities as well as inappropriate 

discharges of heavy metal ions from wastewaters or domestic effluents without proper 

treatment (Zhang et al., 2018; Radhakrishnan et al., 2020). Heavy metal above a 

threshold level is harmful to human health and causes many life-threatening diseases 

(Lin et al., 2016; Momidi et al., 2017; Priyadarshini and Pradhan, 2017; Wei et al., 

2012). The World Health Organization (WHO) and the Environmental Protection 
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Agency (EPA) have specifically specified the concentration limit for the identification 

of heavy metals in drinking water and food to ensure that their existence is within 

reasonable limits. The allowable exposure levels for Cd by the WHO and the United 

States Environmental Protection Agency (USEPA) are 5 ppb, respectively (Halkare et 

al., 2019). 

Cadmium is chosen because of various advantages such as simple detection 

without sophisticated instruments, high sensitivity and selectivity over colour shift for 

different species (Kaur et al., 2018). But, it is a carcinogenic, poisonous and non-

degradable heavy metal (Figure 1.1) (Momidi et al., 2017; Priyadarshini and Pradhan, 

2017; Rasheed et al., 2018; Ebralidze et al., 2019; Li et al., 2013). Therefore, they are 

potentially toxic when it is ingested by a person through inhalation, ingestion or 

absorption by skin. As a consequence, acute or chronic intoxication can lead to severe, 

or even worse it can cause diseases such as cancer, cardiovascular disease, brain 

damage and kidney failure (Idros and Chu, 2018; Lin et al., 2016; Tsai et al., 2018; 

Verma and Gupta, 2015; Radhakrishnan et al., 2020; Azmi and Low, 2017; Kim et al., 

2012). Hence, to overcome the problems that arose and the growing interest in 

environmental analysis, different techniques have been employed by many 

researchers. 

Recently, some physical, chemical, and biological methods have been used to 

detect polluted toxic metals (Priyadarshini & Pradhan, 2017). Many highly 

sophisticated techniques show excellent and reliable results for the monitoring and 

detection of heavy metals such as inductively combined plasma mass spectrometry 

(ICP-MS), atomic absorption spectroscopy (AAS), atomic emission spectroscopy 

(AES) and atomic fluorescence spectroscopy (AFS) (Devadhasan and Kim; 2018; Liu 

et al., 2017). For instance, these instruments have many advantages mainly highly 
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selective and extremely sensitive with detection limits of up to one in a billion (Li et 

al., 2013). However, they are bulky, complex pre-treatment procedures, time-

consuming sample preparation and need expensive tools and cannot be used for field 

monitoring which creates significant disadvantages for these tools (Liu et al., 2017; 

Idros and Chu, 2018; Śliwińska et al., 2019; Zhou et al., 2019; Guo et al., 2019; Zhang 

et al., 2020; Lin et al., 2016). Therefore, a promising and highly desirable technique 

has been developed to counteract previous methods by using the microfluidic paper-

based analytical device (μPAD) to detect heavy metal which is easy to prepare and can 

perform rapid inspection at the site (Guo et al., 2019). This method can be divided into 

three distinct techniques namely colorimetric, fluorescence and electrochemical (Lin 

et al., 2016; Busa et al., 2016; Liu et al., 2016; Almeida et al., 2018; Rasheed et al., 

2018; Ajay Piriya et al., 2017; Kim et al., 2012).  

Colorimetry is selected and commonly used due to its specificity, simplicity 

and compatibility with relatively low cost reporting systems, including smartphones 

and scanners and the most preferable detection technique to be combined with μPAD 

(Wu et al., 2019; Busa et al., 2016; Zhou et al., 2019; Morbioli et al., 2017; Kaur et 

al., 2018; Murdock, 2015). Colorimetric techniques also offered some advantages, 

such as high sensitivity, selective to different analytes, without complex spectroscopic 

instruments, rapid response and are particularly promising and non-destructive (Ajay 

Piriya et al., 2017; Zhou et al., 2019; Momidi et al., 2017; Kaur et al., 2018). It is an 

analytical method involving a colour change reaction which the naked eye can observe 

(Lin et al., 2016). This also defines the colour intensity of any interest-based 

compound based on the absorption of a given wavelength of light (Wu et al., 2019).  
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The intensity of the colour change is analysed using colour analysis software 

such as ImageJ (Sadollahkhani et al., 2014; Busa et al., 2016; Pathirannahel, 2018). 

Colorimetric sensors display excellent on-site detection capability of heavy metals 

(Idros and Chu, 2018). Besides, colorimetric readings are the most frequent-used 

method of detection in microfluidic devices which enable multiple analytes to be 

analyzed qualitatively, semi-quantitatively, and completely quantitatively (Morbioli et 

al., 2017). Many changes have been made to improve the efficacy of the method by 

combining with paper-based analytical devices (PADs) in many applications, 

particularly forensic detection, drug screening, water analysis, cell biology, food 

analysis and environmental monitoring (Ghosh et al., 2019; Busa et al., 2016; Wu et 

al., 2019). Besides, detection is one of the most vital steps in paper-based assays to 

identify the presence of analyte (Morbioli et al., 2017).  

Thus, microfluidic paper-based analytical device (uPAD) shows excellent 

features such as highly portable, disposable, fast, sensitive, cheap, environmentally 

friendly, highly desirable performance, simple, long shelf life and performing on-site 

detection of heavy metals in river water (Devadhasan and Kim, 2018; Ghosh et al., 

2019; Teepoo et al., 2019; Liu et al., 2017). In addition, microfluidic is the science 

and technology of devices that use fluid channels with dimensions ranging from tens 

to hundreds of micrometers to move and control tiny quantities of fluid. Microfluidics 

has undergone rapid growth with major impacts on analytical chemistry due to certain 

strengths including the ability to use small quantities of samples and reagents to 

perform separation and detection with high resolution and sensitivity (Busa et al., 

2016).                   
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Figure 1.1: The effects of Cd on human health (Idros and Chu, 2018; Rasheed et al., 

2018; Priyadarshini and Pradhan, 2017; Momidi et al., 2017). 

 

1.2 Objectives 

The general objective of this study was: 

To fabricate microfluidic paper-based analytical device (μPAD) for rapid detection of 

cadmium (Cd) in a water sample. 

Specific objectives of this study were: 

1. To develop an optimized μPAD for measuring cadmium (Cd) concentration in 

the water sample.  

2. To determine the analytical performance of the developed μPAD. 

3. To validate the effectiveness of the developed μPAD for real sample analysis 

in comparison to the standard method. 

 

 

 

 

carcinogenic, toxic in nature, non degradable, 
nervous system syndrom, memory disruption, etc 

Cadmium
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1.3 Problem Statement 

The adverse effects on human health and environmental pollution was caused 

by heavy metal contamination in the water. A heavy metal such as cadmium (Cd) is 

extremely toxic even at low concentration, thus causing severe diseases to humans and 

could endanger long-term exposure to life (Hormozi-Nezhad and Abbasi-Moayed, 

2014; Lin et al., 2016; Rasheed et al., 2018; Priyadarshini and Pradhan, 2017; 

Ebralidze et al., 2019). This pollution is caused by the high metal ion content, which 

exhibits toxicity on accumulation. This heavy metal available to humans and the 

atmosphere by the burning of fossil fuels and other methods of combustion, the 

disposal of toxic waste, the leaching into natural water of metal ions due to acid rain, 

mining and agricultural activities (Jain et al., 2019). Therefore, many researchers have 

developed several techniques to detect the heavy metals, such as inductively coupled 

plasma mass spectrometry (ICP-MS), atomic absorption spectroscopy (AAS), atomic 

emission spectroscopy (AES) and atomic fluorescence spectroscopy (AFS) 

(Devadhasan and Kim, 2018; Śliwińska et al., 2019; Guo et al., 2019; Almeida et al., 

2018; Hofstetter et al., 2018). However, these current methods had several 

disadvantages that required expensive instruments, skilled operators, laborious 

operation and time-consuming (Liu et al., 2017; Zhou et al., 2019; Zhang et al., 2020; 

Lin et al., 2016). In addition, metal poisoning is a serious problem in the forensic field 

which could lead to death (Verma, 2018). Therefore, rapid identification of heavy 

metals is one of the most important characteristics to measure and classify the presence 

of the analyte of interest in paper-based assays (Morbioli et al., 2017). 
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1.4 Significance of the Study  

Many studies have been conducted by researchers to detect heavy metals. The 

established methods such as inductively coupled plasma mass spectrometry (ICP-MS), 

atomic absorption spectroscopy (AAS), atomic emission spectroscopy (AES) and 

atomic fluorescence spectroscopy (AFS) (Liu et al., 2017; Śliwińska et al., 2019; 

Almeida et al., 2018; Hofstetter et al., 2018; Priyadarshini and Pradhan, 2017; Li et 

al., 2013) possessed several disadvantages such as requires expensive instrument, have 

limits of hiring skilled operator, complex apparatus, high operating expenditures, 

sample preparation process become hard for real-time evaluations and it is time-

consuming (Idros and Chu, 2018; Zhou et al., 2019; Guo et al., 2019; Zhang et al., 

2020; Lin et al., 2016). To overcome these issues, efficient sensors are preferred to 

develop rapid, portable, low-cost, environmentally-friendly techniques is highly 

demanded that can be used in the detection of heavy metal ions for environment, 

aquatic and biotic life (Rasheed et al., 2018). Therefore, microfluidic paper-based 

analytical device (μPAD) is proposed in this study as a powerful analytical device that 

can satisfy these requirements (Devadhasan and Kim, 2018; Xie et al., 2019; Ghosh et 

al., 2019; Teepoo et al., 2019; Dindorkar et al., 2019; Yetisen et al., 2013). 
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CHAPTER 2     

        

   LITERATURE REVIEW 

 

2.1 Heavy metal occurrence  

According to previous research, a toxic element such as cadmium (Cd) is not 

needed for the normal functioning of living processes and its presence in the human 

body has not revealed any beneficial health effects (Nardi et al., 2009; Alam et al., 

2011; Liu et al., 2017; Fowler, 2009). Cd is most widely used in agriculture (phosphate 

fertilizers), metallurgy, plastics pigment, electroplating, etc. Subsequently, Cd 

accumulates easily in plants going through the food chain (Turdean, 2011; Lin et al., 

2016; Ebralidze et al., 2019; Priyadarshini and Pradhan, 2017).  

Many researchers have reported that this heavy metal has several 

disadvantages to human health and is regarded as pollutant to the environment 

(Rasheed et al., 2018; Verma and Gupta, 2015). For example, Cd accumulates in the 

kidney and liver for more than 10 years and affects a human body's physiological 

functions (Kim et al., 2012; Lin et al., 2016). The washed away fertilizers flow into 

the stream of the river and are quickly taken in by people as they drink the water. It is 

highly toxic and considered cancerous (Satarug et al., 2003; Zalups and Ahmad, 2003; 

Ozcan and Juhaimi, 2012). Cd is non-biodegradable and once consumed by humans, 

it will enter the human body and accumulate in the organs of the body, causing serious 

human health problems (Liu et al., 2017; McLaughlin et al., 2007). 

Other than this, Cd can be introduced into the human body by smoking and 

breathing in the environment contaminated with cadmium-dust (Kim et al., 2012). The 

effects of Cd can damage the liver, the bones, the kidneys and can lead to diabetes, 

cancer and heart disease (Harris et al., 2003; Fowler, 2009; Ozcan and Juhaimi, 2012). 
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Therefore, Cd is a highly toxic metal that is used in manufacturing workplaces. The 

permissible Cd exposure limit is very low (Rasheed et al., 2018). As a result, long 

exposure to Cd fumes can lead fever and muscle ache and inhalation of Cd contributes 

to respiratory, kidney and liver disorders (Rasheed et al., 2018). Cd-containing 

compounds are also carcinogenic and harmful (Harris et al., 2003; Kim et al., 2012). 

Therefore, identification of heavy metals in drinking water and food is important to 

ensure that their existence falls within reasonable limits. The allowable exposure limit 

for Cd by the WHO and the United States Environmental Protection Agency (USEPA) 

is 5 ppb, respectively (Halkare et al., 2019). 

2.2 Introduction to colorimetric sensors  

Colorimetric sensing is one of the most frequently used approaches for 

laboratory testing and industrial applications such as heavy metal detection in 

wastewater (Lin et al., 2016; Kim et al., 2012). Sensing future is based on factors such 

as simplicity, cost-effectiveness and rapid response (Ajay Piriya et al., 2017; Kim et 

al., 2012). Colorimetric approach-based sensors are important when evaluating the 

ideal characteristics. A sensor is a device which converts information about a system's 

chemical or physical property into an analytically useful signal (Ebralidze et al., 2019). 

Previous sensors are used to be bulky and complex, requiring various functional tools 

such as transducer, processing unit, detection unit, resulting in a delayed sensor 

response (Ajay Piriya et al., 2017). 

Colorimetric sensors may be classified as chemical or biomolecules for types 

of molecules interactions, and are classified as chemical sensors and biosensors, 

respectively (Ajay Piriya et al., 2017). Colorimetric sensors are an important part of 

optical sensors that display distinguishable change in colour when reacted with the 

analyte (Narayanaswamy, 1993). It is used for instant analyte detection, which displays 
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a change in colour that can be visually observed by the naked eye (Busa et al., 2016; 

Ajay Piriya et al., 2017; Momidi et al., 2017; Lin et al., 2016). Colour analysis 

software such as ImageJ (Ebralidze et al., 2019) can generally be used to determine 

the change in intensity at a certain wavelength within visible (400–800 nm) range. 

2.2.1 Colorimetric techniques  

Heavy metal Cd ion poses a significant risk and violently harmful effect on the 

human health and environment, even at the level of trace elements, and identification 

in low concentration environmental samples is crucial (Turdean, 2011; Knecht and 

Sethi, 2009; Guo et al., 2019). Several heavy metal detection techniques have been 

used such as colorimetric, luminescence, and electrochemical (Idros and Chu, 2018; 

Lin et al., 2016; Busa et al., 2016; Liu et al., 2016; Rasheed et al., 2018). Current 

colorimetry-based technology is all about decreasing size, low cost, in-situ and without 

any additional tools (Ajay Piriya et al., 2017). In addition, the colorimetric reaction is 

the most widely used technique in μPAD due to its ease of use, high sensitivity, non-

destructive and clear signal readout (Momidi et al., 2017; Xia et al., 2016; Liu et al., 

2016). For instance, to detect the analyte, a colorimetric sensor is used and shows a 

colour change that can be visually detected (Lin et al., 2016; Momidi et al., 2017; Ajay 

Piriya et al., 2017; Kim et al., 2012). 

The development of an effective sensor presents many challenges. An ideal 

sensor should satisfy certain characteristics such as sensitivity, simplicity, robustness, 

accuracy, precision, minimal error, reproducibility and linearity (Ajay Piriya et al., 

2017). Laboratory on chip (LOC) is therefore one of the well-known platforms on 

which sensor technology is implied with high success (Whitesides, 2006). It involves 

simple and portable devices made of polydimethylsiloxane (PDMS) that are used by 

flowing liquid samples within a microchannel to detect analytes (Busa et al., 2016). 
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Due to its low footprint and lesser user of analyte-containing reagents, microfluidics 

has gained broad acceptance in sensor technologies. LOC technology using paper such 

as lab-on-paper (LOP) has become famous for its low-cost, rapid detection, and self-

sustainability (Ajay Piriya et al., 2017). LOP uses cellulose paper to trap the molecules 

in a targeted site and colorimetric method is used to detect them. Microarray with LOP 

can detect various samples at the same time (Whitesides, 2006). 

The hydrophobic region, detection zone and sample zone are three important 

regions / zones (Figure 2.1) (Idros and Chu, 2018; Pathirannahel, 2018). It involves 

the passive movement of the analyte solution (metal ions) to the detection zone under 

the capillary action effects by reacting to colour change with loaded reagents (Xie et 

al., 2019; Lin et al., 2016; Fu and Wang, 2018). Colour intensity can be recorded 

through a scanner or camera that transmits off-site digitized readings for quantitative 

analysis (Wu et al., 2019; Morbioli et al., 2017; Xia et al., 2016). The change of colour 

is due to a chemical reaction. When the analytes are lowered into the μPAD sample 

zone, the liquid flows towards the detection zone due to filter paper capillarity and 

barriers created using various techniques (Idros and Chu, 2018; Lin et al., 2016). The 

smartphone-installed apps can quickly detect the uniform and stable colour when the 

μPAD is dry (Busa et al., 2016; Murdock, 2015). Thus, multiplexed detection of heavy 

metals can be performed in one single experiment using a single μPAD without the 

need for external processing elements (Xia et al., 2016). 

 
Figure 2.1: Three distinct regions/zones on μPAD (Idros and Chu, 2018; 

Pathirannahel, 2018). 
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2.3 Historical timeline of μPAD  

Paper-based materials have been incorporated into rapid diagnostic assays for 

a wide range of point-of-care (POC) applications (Lepowsky et al., 2017; Wang et al., 

2012; Wu et al., 2019; Martinez et al., 2010; Xia et al., 2016; Murdock, 2015) and in 

different forms including dipsticks, lateral flow assays (LFAs) and microfluidic paper-

based analytical devices (μPAD) (Yetisen et al., 2013; Parolo and Merkoci, 2013). 

Paper has been used as a substrate for diagnostics for quite some time with urine 

dipsticks being introduced in 1850, followed by pH test strips in the 1920s, the first 

FDA-approved LFA-based based pregnancy test in 1976 (Murdock, 2015) and the 

introduction of 2-dimensional (2D) and 3-dimensional (3D) μPAD in 2008 

(Whitesides, 2013) (Figure 2.2).  

 

 

  

Figure 2.2: Evolution of paper-based assays (Murdock, 2015). 
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 The first paper-based diabetes dipstick test to quantify glucose in urine was 

proposed in the 1950s, followed by its commercial introduction to consumer markets 

in the 1960s (Yetisen et al., 2013). Dipstick assays were typically used for quick, one-

step reagent assays in which the analyte reacts directly to the substrate, such as pH 

detection, water chemical level detection or urinalysis (Yetisen et al., 2013; Murdock, 

2015). In the case of pH detection or other reagents, strips of either filter or 

chromatography paper are coated in pH indicator solutions. The strips are then dried 

and either used in a multiplexed assay, or mixed with multiple reagents on a single 

plastic strip (Murdock, 2015). Urinalysis test strips incorporate multiple analyte 

identification on one stripe, identifying as many as 10-12 different substances such as 

glucose, insulin, ketones, and bilirubin (Murdock, 2015; Roberts, 2007). 

Lateral flow immunoassays (LFAs) may be subdivided into two major types 

that are direct (double antibody sandwich assays) and competitive (inhibitive) formats 

(Murdock, 2015). LFAs are used if more bioassays are needed, such as when 

attempting to determine the presence of specific antigens or proteins in a sample, 

qualitatively or quantitatively (Murdock, 2015; Millipore, 2009). LFAs typically have 

five main components: a sample pad, a conjugate pad, a nitrocellulose membrane, a 

wicking pad and a plastic backrest (Millipore, 2009). These types of molecules may 

not react directly with a substrate and may require specific antibodies to act as capture 

molecules to trap them from the sample onto the surface of the paper-based diagnosis 

using several type assays (Murdock, 2015). 

According to their compactness, portability and simple analysis without 

external instrumentation, dipstick and lateral-flow formats have dominated rapid 

diagnostics over the last three decades. The lack of measurement quantitation has, 

however, questioned the creation of μPAD (Yetisen et al., 2013). μPAD has recently 
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emerged as a multiplexible point-of-care platform that could surpass current assay 

capabilities in resource-limited settings (Yetisen et al., 2013). However, μPAD may 

allow for fluid handling and quantitative analysis for potential applications in health 

care, veterinary medicine, environmental monitoring, drug screening, cell biology, 

food analysis, and water analysis (Wu et al., 2019; Xie et al., 2019; Ghosh et al., 2019; 

Teepoo et al., 2019; Almeida et al., 2018; Busa et al., 2016). The WHO has set seven 

diagnostic guidelines in resource-poor settings. These tests must be: (i) inexpensive, 

(ii) adaptive, (iii) accurate, (iv) user-friendly, (v) fast and reliable, (vi) equipment-free, 

and (vii) provided to those who need it (Yetisen et al., 2013). Therefore, μPAD is the 

best analytical tool that satisfies those requirements needed. 

2.4 The disadvantages of the existing method  

Usually, the presence of trace amounts of heavy metal ions (HMI) in 

environmental samples is determined by spectrophotometric techniques (Zhou et al., 

2019; Śliwińska et al., 2019; Guo et al., 2019; Hofstetter et al., 2018; Lin et al., 2016). 

However, the direct analysis of some complex samples like seawater presents some 

difficulties due to the high salt content, causing matrix interference and insufficient 

precision. In such cases, a typical dilution of the sample may be necessary before the 

analysis, which can create the problem and leads to poor results (Barton et al., 2015).  

Therefore, there are many techniques employed in metal determination such as 

electrochemical techniques, atomic absorption spectrometry, atomic emission 

spectrometry with inductively coupled plasma excitation, X-ray fluorescence, optical 

sensors (Devadhasan and Kim, 2018; Liu et al., 2017; Hormozi-Nezhad and Abbasi-

Moayed, 2014; Idros and Chu, 2018; Priyadarshini and Pradhan, 2017; Lin et al., 2016; 

Li et al., 2013). However, they possessed several disadvantages.  



15 

 

2.4.1 Comparison between existing methods in different sample 

The determination of heavy metal in airborne particulate matter is studied, 

sensitive and accurate methods are required for the analysis, as well as suitable 

pretreatment methods for the sample (Ochsenkühn-Petropoulou and Ochsenkühn, 

2001). Some of the pretreatment methods are very time-consuming. Most of the 

analytical multielement techniques used are inductively coupled plasma-atomic 

emission spectrometry (ICP-AES) and anodic stripping voltammetry (ASV). The 

capability of two analytical techniques which are ICP-AES and ASV have been 

compared for the determination of Cd in airborne particulate matter, collected on 

cellulose filters, from the atmosphere (Ochsenkühn-Petropoulou and Ochsenkühn, 

2001). Two methods were tested for the analysis of filters loaded with airborne 

particulates. ICP-EAS and ASV need leaching or digestion to transfer the elements of 

interest into the liquid form. As a result, the detection limits of Cd using ICP-AES and 

ASV have been compared (Table 2.1). The results revealed that ASV is to be 

preferable. 

Table 2.1: Determined elements and detection limits for the ICP-AES and ASV 

(Ochsenkühn-Petropoulou and Ochsenkühn, 2001). 

Determined element Cd  

Methods ICP-AES     ASV 

Detection limits (ng/mL) 3.4 0.2 

 

According to Manzoori and Bavili-Tabrizi, although atomic absorption 

spectrometric methods used either in the flame or graphite furnace mode (FAAS and 

ET-AAS) are a powerful analytical tool for the determination of trace elements in a 

great number of samples, preconcentration and separation of the metals with different 

chelating agents are still necessary. Many elements have been used for the removal 

and preconcentration of trace Cd from various samples prior to their determination by 
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FAAS. However, these techniques are rather time-consuming, tedious and require a 

large amount of samples (Manzoori and Bavili-Tabrizi, 2002). 

The use of ICP-MS in food laboratory analysis is becoming more common 

nowadays compared to GFAAS or ICP-OES (Leblanc et al., 2005). This technique has 

some benefits including simultaneous measuring capacity of multielements, combined 

with very low detection limits (Parsons and Barbosa, 2007). In addition, it provides a 

wider linear dynamic range that enables the determination of major and trace elements 

at the same sample injection. Many researchers have reported that heavy metal such 

as Cd was detected using ICP-MS in various types of food samples. Results indicated 

that the detection limit (LOD) for Cd was 0.2 ng/g (Nardi et al., 2009). ICP-MS also 

provides simpler spectral interpretation and isotopic information compared to the ICP-

OES. But ICP-MS has certain limitations. The high concentration of organic matrix 

also results in matrix interferences and/or spectral interference from polyatomic ions 

for the analysis of food samples (Nardi et al., 2009). 

Besides, flow injection (FI) analysis system for on-line pre-concentration and 

determination of Cd in aqueous samples is described by ICP-AES with a charge-

coupled detector. The use of ICP-AES for the identification of trace elements in actual 

samples in FI systems has many benefits, such as the ability to simultaneously detect 

multiple trace metal ions, low detection limit and high repeatability, and the detection 

limit of the proposed Cd process was 1.0 ng/L (Karami et al., 2004). For this study, 

however, a new preconcentration method for chelation with sodium 

diethyldithiocarbamate (SDDTC) was created, which means that this method required 

sample pretreatment steps before evaluating heavy metal ions (Karami et al., 2004). 
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In short, many existing methods such as ICP-MS, AES and AAS are not 

suitable to do on-site detection due to many disadvantages. They are bulky, complex 

pre-treatment procedures prior to analysis, time-consuming sample preparation, need 

very expensive instruments and cannot be used for field monitoring which creates the 

major drawbacks of these instruments (Zhang et al., 2020; Śliwińska et al., 2019; Zhou 

et al., 2019; Rasheed et al., 2018). There are many forms of processes of pretreatment 

which have been clarified specifically in several scholars. Therefore, these current 

methods are not the best, the need to establish the most promising and highly desirable 

technique to overcome previous methods by using the microfluidic paper-based 

analytical tool (μPAD) to detect heavy metals that are easy to prepare and can be easily 

inspected on-site (Guo et al., 2019). 

2.5 The development of μPAD 

μPAD is not a recent technology but has been implemented since 2007 (Busa 

et al., 2016; Xia et al., 2016). This analytical tool offers quantitative analysis in many 

fields, including medicine, education, and environmental monitoring (Wu et al., 2019; 

Xie et al., 2019; Ghosh et al., 2019; Teepoo et al., 2019; Almeida et al., 2018). μPAD 

has a special characteristic consisting of microchannel hydrophilic and hydrophobic 

networks that allow the fluid to flow (Xia et al., 2016). μPAD's ability to conduct 

micro-scale laboratory operations using small equipment that enhances capability as a 

multiplexible point of care testing (POCT) platform provides important features of 

μPAD in many fields of research studies due to its affordable, easy-to-use and 

specifically designed for use in developing countries (Lepowsky et al., 2017; Wang et 

al., 2012; Wu et al., 2019). 

Many earlier studies have shown the benefits of using paper as an analytical 

substrate (Pathirannahel, 2018; Xia et al., 2016; Guo et al., 2019). For example, the 
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paper is readily available and cheap, using existing printing or cutting techniques, it 

can be easily designed into separate hydrophilic and hydrophobic zones. It is capable 

of wick fluids by capillary action without the need for external power sources, is 

lightweight and easy to transport, disposable and biodegradable (environmentally 

friendly) (Xia et al., 2016; Almeida et al., 2018). These characteristics of μPAD help 

to measure or identify the presence of the analyte in the sample (Morbioli et al., 2017). 

2.5.1 The advantages of μPAD 

A wide range of diagnostic tests are being performed for the construction of 

microfluidic devices using paper as a substrate. μPAD is built by patterning 

hydrophilic channels marked by hydrophobic barriers (Lin et al., 2016; Pathirannahel, 

2018). Unlike regular dipstick assays μPAD has different sample and reaction zones 

areas. This allows simultaneous reaction of the samples in different reaction zones with 

different reagents. Additionally, reaction times can also be altered by adjusting the 

features on the μPAD (Pathirannahel, 2018). The capillary flow rate depends on the 

size of the pores in the substrates, and the range of substrates with the need size of 

pores should be considered meeting the requirements of different applications (Lin et 

al., 2016). 

Furthermore, μPAD needs only small amounts of fluid and little to no external 

supporting equipment to strength, since the fluid movement in μPAD is largely 

regulated by capillarity and evaporation (Martinez et al., 2010). μPAD flow is a 

passive process which is governed by capillary fluid transport. Capillary action is the 

result of interaction between adhesive and cohesive forces and is driven by 

intermolecular forces at the liquid-air interface between the fluid particles (surface 

tension, cohesive force) and the liquid-porous fiber interface (van der Waals force, 

adhesive force) (Lepowsky et al., 2017). Therefore, the flow rate through a paper 
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channel can be managed by controlling the cross-sectional area, paper permeability, 

channel length or viscosity of fluid (Lepowsky et al., 2017). Accordingly, these 

devices are designed to achieve four simple capabilities in one analytical device (Xie 

et al., 2019; Yetisen et al., 2013). These capabilities are: 

1. The distribution of a sample into multiple regions allowing for numerous 

analyses or replicating one analysis multiple times 

2. The samples move through capillary action without the need of a pump or other 

external forces 

3. The capability of analysing with small volumes 

4. The minimal generation of hazardous waste  

Further, developing μPAD does not necessarily require complex machinery. 

Therefore, the cost of developing μPAD is very minimal and the fabrication of this 

device is relatively simple (Pathirannahel, 2018). One of the greatest advantages of 

this device is the versatility of its potential applications. With simple modifications of 

the reagents and without any external modifications, μPAD can be utilized for a variety 

of purposes depending on the researches (Pathirannahel, 2018). 

2.5.2 Selection of the paper as a substrate for μPAD 

As the most abundant biopolymer on the Earth, the paper is recognized as user-

friendly for the construction of microfluidic devices (Priyadarshini, 2017; Xia et al., 

2016). Paper has several additional advantages as a material for making diagnostic 

devices such as paper is thin, lightweight (~10 mg/cm2), available in a wide range of 

thicknesses (0.07-1 mm) and easy to stack, store and transport (Wang et al., 2012). 

Paper is usually white (because it scatters light) and is a good medium for colorimetric 

tests because it provides a strong contrast with a coloured substrate. Additionally, the 
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paper is flammable, so μPAD can be disposed of by incineration easily and safely after 

use. It is flexible and compatible with a host of existing printing technologies that 

could be used to fabricate μPAD. 

However, most importantly, the paper consists of cellulose fibers and cellulose 

can be extracted from a broad range of plants and animals and there is a wide range of 

cellulose particle types that are being studied for many purposes (Moon et al., 2011). 

Cellulose-based materials such as paper and nitrocellulose membranes are commonly 

used as the substrate for point-of-care diagnostic devices (Lepowsky et al., 2017). 

These cellulose fibers are hydrophilic and allow aqueous solutions to flow easily 

through capillary action (Xie et al., 2019; Busa et al., 2016), a high surface area to 

volume ratio that improves detection limit for colorimetric methods (Priyadarshini, 

2017; Sahin and Arslan, 2008; Pathirannahel, 2018).  

The high porosity (fibrous structure), negative surface charges and high 

specific surface area of cellulose are beneficial for adsorbing and gathering heavy 

metal ions (Zhou et al., 2019). This important concept has made paper as a substrate 

of interest in the field of microfluidics. Cellulose is made up of polymer of glucose 

which composed of hundreds to thousands of linearly arranged D-glucose units (Figure 

2.2). The repeat unit, n is linked together through oxygen covalently bonded to C1 of 

one glucose ring and C4 of the adjoining ring (1 ⟶ 4 linkages) and so-called the β 1-

4 glucosidic bond (Pathirannahel, 2018). The degree of polymerization depends on the 

extraction method and source of the material (Moon et al., 2011).  

 
Figure 2.2: The structure of cellulose (n = degree of polymerization) (Moon et al., 

2011; Pathirannahel, 2018). 
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For example, the degree of polymerisation of cotton may vary from 800 to 

1000 monomer units depending on the treatment method (Klemm et al., 2005). In 

paper-based products, the primary structural factor typically consists of 90-99% 

cellulose fibers (Sahin and Arslan, 2008; Pathirannahel, 2018). Cellulose fibers are 

hollow tubes consisting of approximately 1.5 mm, 2.0 μm and 2 μm in length, width 

and wall thickness (Pelton, 2009), respectively. Because of its polyfunctionality, 

cellulose is different from other polymers. Compared to other polymers, the long 

chains provide greater stiffness (Klemm et al., 2005). 

The cellulose network creates pores in paper. These pores allow for the 

penetration of liquids into the paper. Liquids move from large pores to smaller pores, 

depending on the capillary pressures (Sahin and Arslan, 2008). The special features of 

cellulose found in the paper make paper unique and suitable as the substrate in 

microfluidic paper-based analytical devices and it is used as an inexpensive, easily 

available, sustainable and recyclable tool because of certain qualities like paper. The 

paper is then quickly printed and coated, and is a successful filter. It is easy to store, 

hold, biodegradable and quickly burned. The porous structure allows lateral-flow 

assays and inexpensive microfluidic tools (Wang et al., 2012; Guo et al., 2019; 

Almeida et al., 2018; Busa et al., 2016; Leung, 2011; Martinez et al., 2010). 

Whatman filter paper grade 1, 3, 4 and nitrocellulose membranes are the 

commonly used papers for patterning the hydrophilic channels. Of all, Whatman filter 

paper grade 1 has demonstrated excellent colorimetric detection accuracy and 

sensitivity (Priyadarsini, 2017). It is also a smooth and uniform surface on both sides, 

with a medium flow rate and a thickness of 0.18 mm which allows printing in 

commercial machines (Idros and Chu 2018). Grade 1 paper consists of 98% α-cellulose 

with no additives used such as reinforcing agents, thus reducing the potential for 



22 

 

intervention (Idros and Chu, 2018). Grade 2 cellulose chromatography paper has a 

slower flow rate but is ideally suited for higher resolution particularly when using 

optical scanning (Lepowsky et al., 2017). But paper towels available for domestic use 

are also being experimented for use in μPAD but show lower dimensional accuracy 

(Priyadarsini, 2017). 

2.5.3 Portability, user-friendliness and on-site analysis of μPAD 

One of the main features of μPAD is portability. Since μPAD is considered 

portable to the field, the risk of contamination or degradation of the analyte is 

considerably reduced and sample preservation needs are avoided (Pathirannahel, 2018; 

Almeida et al., 2018). Thus on-site analysis allows for faster results response at a lower 

analytical cost (Almeida et al., 2018). Many of the methods developed for making 

μPAD user-friendly include smartphones, portable cameras and portable scanners 

(Yetisen et al., 2013; Lepowsky et al., 2017; Wu et al., 2019; Busa et al., 2016; 

Jayawardane et al., 2015; Murdock, 2015; Martinez et al., 2008). 

When photographing a detection area of a μPAD using a cell phone camera, 

care must be taken to ensure appropriate light exposures. For example, place the phone 

(with the flash switched off) inside a wooden box containing two LEDs used to track 

light exposure (Ortiz-Gomez et al., 2016). It has been shown that the smartphone can 

be used with or without a flash and without light-tightened enclosure by using a control 

zone next to the detection zone while taking the image (Busa et al., 2016; Almeida et 

al., 2018; Lopez-Ruiz et al., 2014; Sicard et al., 2015; Murdock 2015). 

However, the importance of a smartphone goes beyond the simple use of its 

camera to capture the image of a μPAD and calculate a concentration (Busa et al., 

2016; Roda et al., 2016; Murdock, 2015), but it can also be used to collect, store and 
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exchange data online in real time (Pathirannahel, 2018). It also created a QR (Quick 

Response) code with analyte information that enabled the smartphone to read μPAD 

and output data (Busa et al., 2016; Santhiago et al., 2014; Pathirannahel, 2018; 

Murdock, 2015). While μPADs are meant to be portable, very few μPAD-based studies 

have been recorded on field tests (Jayawardane et al., 2014; Karita and Kaneta, 2014). 

In some cases, different ambient conditions (laboratory vs field) can affect the 

performance of the device.  

For example, when the μPAD was tested outdoors for reactive phosphate 

determination, the reaction zone turned blue before the water sample was added due 

to the UV photo-reduction of molybdate at exposure to sunlight (Jayawardane et al., 

2014; Pathirannahel, 2018). A UV-resistant laminating pouch was used to shield the 

μPAD from severe light exposure and hence prevent this problem. In another case, a 

3D printed support was required to ensure reproducible flow conditions for the 

detection of microorganisms in the field (Kim and Yeo, 2016). Such examples help to 

demonstrate the value of testing μPAD under both laboratory and field conditions. The 

storage stability of the proposed μPAD also needs to be applied outside the laboratory 

(Almeida et al., 2018). 

2.5.4 Using μPAD for water analysis 

Microfluidic paper-based analytical devices (μPADs) are recognised as a 

potentially efficient analytical platform because of many advantages such as they are 

readily available and cheap, can be easily designed into discrete hydrophilic and 

hydrophobic zones using existing printing or cutting technologies, can wick fluids 

without external power sources by capillary action, is lightweight. Although most of 

the work on μPAD focussed on the point-of -care diagnostic method (Xie et al., 2019), 

other applications including environmental analysis, drug screening, cell biology, food 
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analysis, and water analysis are commonly used (Wu et al., 2019; Xie et al., 2019; 

Ghosh et al., 2019; Teepoo et al., 2019; Almeida et al., 2018; Busa et al., 2016; Yetisen 

et al., 2019).  

Today, water pollution is a major environmental issue affecting millions of 

people, and regular monitoring of water quality is on the rise (Almeida et al., 2018). 

While living organisms need a few to trace amounts, at higher concentrations, they are 

toxic. Even they are not biodegradable and can persist in the aquatic environment 

(Almeida et al., 2018). Therefore, many studies have been developed and applied to 

water analysis, and rapid identification of heavy metals is important to identify and 

analyse the heavy metal materials. Thus, μPAD is recognised as a good analytical 

method capable of meeting these requirements (Guo et al., 2019; Pathirannahel, 2018; 

Xia et al., 2016; Leung, 2011; Pelton, 2009). 

2.6 Fabrication methods of μPAD 

The fabrication of μPAD is generally based on the creation of hydrophilic 

zones on paper, patterned by hydrophobic or physical barriers using various 

hydrophobic agents or cutting methods, respectively (Almeida et al., 2018). The μPAD 

can be fabricated by using two-dimensional (2D) or three-dimensional (3D) lateral-

flow system (Yetisen et al., 2013; Lepowsky et al., 2017) to transport fluids in both 

horizontal and vertical dimensions depending on difficulties of the diagnostic 

application (Almeida et al., 2018; Xia et al., 2016). Previous studies have been 

discussed that there are numerous methods available for fabricating μPAD. However, 

each technique portrays its benefits and drawbacks.  
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