

C6

EFFECTS OF POST-DEPOSITION ANNEALING IN OXYGEN AMBIENT OF RF MAGNETRON SPUTTERED Ga₂O₃ THIN FILM

Puteri Haslinda Megat Abdul Hedei¹, Zainuriah Hassan¹, Hock Jin Quah^{1,*}

¹Intitute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 Penang, MALAYSIA.

*Corresponding Author: hock_jin@usm.my

ABSTRACT- In this work, the gallium oxide (Ga₂O₃) thin films were deposited on silicon substrate using radio frequency (RF) magnetron sputtering and these Ga₂O₃ thin films were subjected to post-deposition annealing in oxygen ambient at different temperatures of 400, 600, 800, and 1000°C for 60 minutes. The structural properties of post-deposition annealed Ga₂O₃ thin films were characterized using grazing incidence X-ray diffraction (GIXRD). Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to attain the three-dimensional surface topographies and morphologies, respectively, for the investigated Ga₂O₃ thin films. In additional, elemental composition of these thin films were characterized using energy-dispersive X-ray spectroscopy and thickness of the investigated Ga₂O₃ thin films were estimated based on the cross-sectional FESEM images. Current-voltage characteristics of the Ga₂O₃ thin films subjected to different post-depositional annealing temperatures were also presented in this work.

Keywords: Gallium oxide, Silicon, Sputtering, Grazing incidence X-ray diffraction, Annealing.