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HIDROLISIS MINYAK SAWIT MENTAH MENGGUNAKAN 
PERANTARAAN LIPASE REAKTOR MEMBRAN BERENZIM DAN 

PEROLEHAN KAROTENA DAN TOKOFEROL 
 

ABSTRAK 

 

Penghasilan asid lemak and gliserol daripada minyak merupakan proses 

penting terutama dalam industri oleokimia. Kini, para penyelidik memilih enzim 

dalam proses hidrolisis kerana penjimatan tenaga dan meminimumkan penyusutan 

produk akibat haba. Kelebihan penggunaan enzim dalam proses hidrolisis termasuk; 

penggunaan bioteknologi yang hanya memerlukan suhu sederhana, langkah operasi 

yang mudah dan kos yang rendah termasuk penggunaan tenaga. Kajian terkini 

menjurus kepada hidrolisis trigliserida untuk menghasilkan asid lemak bebas dan 

gliserol daripada minyak sawit mentah (CPO) bermangkinkan Candida rugosa 

lipase secara kelompok dan reaktor membran berenzim (EMR). Perolehan semula 

karotena dan tokoferol juga dikaji pada masa yang sama.  

 

Pengoptimuman proses hidrolisis secara kelompok telah menggunakan 

rekabentuk ujikaji yang lebih tertumpu kepada kaedah sambutan permukaan (RSM) 

untuk mendapatkan tindak balas hidrolisis yang optima. Pengaruh boleh ubah dalam 

proses yang diambil kira termasuk beban katalis, A (0.30 – 0.80 g), kepekatan 

minyak, B (0.15 – 0.35 g/ml), suhu tindak balas, C (40oC - 50oC) and pH larutan 

penimbal D, (6.5-7.5). Nilai optimum yang diperolehi untuk hidrolisis CPO 

berenzim adalah: 0.43 gram enzim, 0.15 g/ml minyak pada suhu 45oC dan larutan 

penimbal pH 7.0. Capaian dijangkakan untuk penghasilan asid lemak boleh 

mencapai 90.95% dengan nilai sebenar sebanyak 90.67% (5.59 x 10-5 mol  jam-1 g-1 

enzim). Tenaga pengaktifan dan penyahtabii untuk lipase telah dinilai melalui plot 



 xxi 

Arrhernius memberi bacaan masing-masing 23.4 kJ/mol (R2 = 0.92) dan 42.5 kJ/mol 

(R2 = 0.94). Penilaian untuk pemalar penyahtabii, kd menunjukkan kenaikan 

daripada 0.086 - 0.235 hari-1 dan nilai separuh-hayat (t1/2) iaitu 71.45 - 192.54 jam 

dengan peningkatan suhu daripada 60oC - 45oC.  

 

Nilai optimum untuk operasi berterusan menggunakan reaktor membran 

berenzim adalah menggunakan 3 g/l kepekatan lipase awalan semasa proses 

sekatgerak, dengan kepekatan minyak 0.2 g/ml, 40 ml/min kadar aliran fasa organik, 

30 ml/min kadar aliran fasa akuas, 40oC suhu tindak balas dan tekanan 

transmembran sebanyak 6 psi menghasilkan capaian menghampiri 50% (5.47 x 10-3 

mol jam-1 g-1 enzim)dengan nilai sebenar 346mmol/ml asid lemak. Percubaan untuk 

memperoleh semula karotena dan tokoferol daripada fasa organic unit EMR telah 

dilakukan melalui proses pemendakan secara berkelompok menggunakan Ca(OH)2 

sebagai agen pemendakan.  

 

Tindak balas hidrolisis CPO bermangkin lipase mematuhi sistem 

keseimbangan pantas bersama perencatan asid lemak (asid palmitic / asid oleic). 

Nilai kadar tindak balas maksima (VMax) dan pemalar Michaelis (KM) untuk lipase 

bebas ialah VMax = 0.194 mol L-1 h-1 dan KM = 1.452 mol L-1. Nilai untuk lipase 

tersekatgerak dalam sistem EMR diperolehi adalah VMaxapp = 0.036 mol L-1 h-1 dan 

KMapp = 0.912 mol L-1. Satu model matematik berjaya dibangunkan dan pengaruh 

faktor nombor Bodenstein (Bo), pemalar Michaelis tak bermatra (Θ) dan modulus 

Thiele (Φ2) telah dibincangkan.   
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LIPASE MEDIATED HYDROLYSIS OF CRUDE PALM OIL IN 
ENZYMATIC MEMBRANE REACTOR AND RECOVERY OF 

CAROTENES AND TOCOPHEROL 
 

ABSTRACT 

 

Production of fatty acid and glycerol from oils are important especially in 

oleochemical industries. Nowadays, researchers prefer to use enzyme to conduct 

hydrolysis in order to reduce energy consumption and minimize thermal degradation 

of the products. The advantages of the enzyme hydrolysis technique include; the use 

of bio-route technology that only requires a mild temperature, simple operational 

procedure and low cost as well as energy consumption. The present investigation 

focuses on hydrolysis of triglyceride to produce free fatty acids and glycerol from 

crude palm oil (CPO) using Candida rugosa lipase in batch and enzymatic 

membrane reactor (EMR). At the same time, the recovery of carotenes and 

tocopherol was also studied. 

 

The optimization in hydrolysis of CPO for batch process was carried out 

using Design of Experiment that focuses on response surface methodology (RSM) to 

optimize the hydrolysis reaction. The process variables which were taken into 

account include; enzyme loading, A (0.30 – 0.80 g), oil loading, B (0.15 – 0.35 

g/ml), reaction temperature, C (40oC - 50oC) and pH of buffer solution D, (6.5-7.5). 

The optimum conditions found for the enzymatic hydrolysis of CPO under 

investigation are:  0.43 grams of enzyme, 0.15 g/ml of oil with temperature of 45oC 

and buffer solutions at pH 7.0. The yield predicted for fatty acids produced can 

reach up to 90.95% and the actual value was found to be 90.67% (5.59 x 10-5 mol  

hr-1 g-1 enzyme). Lipase activation and denaturation energy were predicted using 
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Arrhernius plot and gave a value of 23.4 kJ/mol (R2 = 0.92) and 42.5 kJ/mol (R2 = 

0.94), respectively. Prediction of denaturation constant, kd was found increasing 

from 0.086 - 0.235 day-1 and half-life (t1/2) of 71.45 - 192.54 hr with the increasing 

temperature from 60oC - 45oC.  

 

A setup of enzymatic membrane reactor have been design and fabricated. In 

continuous operation using enzymatic membrane reactor an optimum conditions of 

initial lipase concentration during immobilization using 3 g/l, with oil concentration 

of 0.2 g/ml, organic phase flow rate of 40 ml/min, aqueous phase flow rate of 30 

ml/min, reaction temperature 40oC and transmembrane pressure of 6 psi have 

resulted a yield of almost 50% and actual of 346mmol/ml of fatty acids (5.47 x 10-3 

mol hr-1 g-1 enzyme). An attempt of recovering carotenes and tocopherol from 

organic phase of EMR unit was done by precipitation process using Ca(OH)2 as 

precipitation agent in batch process.  

 

The study of lipase-catalyzed hydrolysis reaction of CPO obeys the rapid 

equilibrium system with inhibition of fatty acid (palmitic acid/oleic acid). The 

maximum reaction rate (VMax) and Michaelis constant (KM) values for free lipase 

were VMax = 0.194 mol L-1 h-1 and KM = 1.452 mol L-1, respectively. For 

immobilized lipase in EMR system the values were found to be VMaxapp = 0.036 mol 

L-1 h-1 and KMapp = 0.912 molL-1. In addition, a mathematical model was 

successfully developed and discussed taken into account the effect of Bodenstein 

number (Bo), dimensionless Michaelis constant (Θ) and Thiele Modulus (Φ2). 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Large-Scale Fatty Acids Production 

The production of fatty acids generally involves two separate operations; hydrolysis 

of fat or oil to produce a mixture of fatty acids and glycerol, followed by separation 

of the two products, separation and purification of fatty acid mixtures into two or 

more fatty acid products by simple or fractional distillations. Further processing of 

the compounds is required in order to obtain customer-tailored products. 

Conventionally, fatty acids are industrially produced from splitting of fats at high 

temperature and pressure, sometimes in the presence of chemical catalyst such as the 

Twitchell process in which the oils are heated by steam spargers and closed coils in 

open vessels (Anozie and Dzobo, 2006). Pugazhenti and Kumar (2004) reported that 

the conventional process for fats and oil hydrolysis (Colgate Emery process) required 

pressure of about 4.82 MPa and temperature of 250oC or higher. Thus, these methods 

are energy intensive and not environment-friendly as chemicals used are hazardous 

and toxic to human and environment. Furthermore, under these extreme conditions, 

polymerization of fat would also take place and unwanted by products could be 

formed. Destruction of minor valuable product cannot be prevented under these 

conditions.  
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1.2 Hydrolysis Products from Palm Oil  

1.2.1 Fatty Acids 

In general fatty acids are aliphatic carboxylic acid with varying hydrocarbon lengths 

at one end of the chain joined to terminal carboxyl (-COOH) group at the other end. 

The general formula is R-(CH2)n-COOH. Fatty acids composed of a mixture of 

saturated and unsaturated fatty acids with chain lengths varying from 12 to 22 carbon 

atoms (Chen and Chuang, 2002). They are predominantly unbranched and react with 

glycerol to form lipids (fat-soluble components of living cells) in plants, animals, and 

microorganisms. The typical fatty acid composition of palm oil from Malaysia 

consists of myristic (14:0), palmitic, stearic, oleic (unsaturated) and linoleic (18:2, 

polyunsaturated) (Sambanthamurthi et al., 2000). The saturated fatty acids have no 

double bonds, while oleic acid is an unsaturated fatty acid has one double bond and 

polyunsaturated fatty acids such as linolenic acids. It is reported that palm oil has 

equal amount of saturated and unsaturated fatty acids (Sambanthamurthi et al., 

2000). 

 

Lauric acid (also called dodecanoic acid) is the main acid in which hold about 

45 to 50 % in coconut oil and 45 to 55% in palm kernel oil. Nutmeg butter is rich in 

myristic acid (also called tetradecanoic acid) which constitutes 60 to 75% of the fatty 

acid content. Palmitic acid (also called hexadecylic acid) constitutes between 20% 

and 30% of most animal fats and is also an important constituent of most vegetable 

fats (35 – 45% of palm oil). Stearic acid (also called octadecanoic acid) is nature's 

most common long-chain fatty acids, derived from animal and vegetable fats. It is 

widely used as a lubricant and as an additive in industrial preparations. It is used in 

the manufacturing of metallic stearates, pharmaceuticals, soaps, cosmetics, and food 
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packaging. It is also used as a softener, accelerator activator and dispersing agent in 

rubbers. Oleic acid (systematic chemical name is cis-octadec-9-enoic acid) is the 

most abundant of the unsaturated fatty acids in nature. Mostly, fatty acids are 

feedstock in productions of oleochemical such as fatty alcohols, fatty amines and 

fatty esters. In addition fatty acids are raw materials for building the membranes of 

every cell in our body, including bones, nerves and brain. The micronutrients keep 

our body cells healthy and functioning properly (Fatty acids, 2010).  

 

1.2.2 Glycerol 

Glycerol is abundant in nature, since it is the structural component of many lipids. 

The general properties of this compound are that it is colourless, odourless, a viscous 

liquid and very soluble in water because of the existence of the three hydrophilic 

hydroxyl groups.  Glycerol (1,2,3-propanetriol) or also known as glycerine is the 

principal by-product obtained during transesterification of vegetable oils and animal 

fats (Solomon et al., 1995; Barbirato et al., 1997a,b, 1998; Colin et al., 2001; da 

Silva et al., 2009). It can be produced either by microbial fermentation, chemical 

synthesis from petrochemical feedstock or recovered of by-product from soap 

manufacturing. Normally, glycerol is released as a by-product during the hydrolysis 

of fats (Da Silva et al., 2009). It is hygroscopic; i.e., it absorbs water from the air; 

which property makes it valuable as a moisturizer in cosmetics.  Glycerol has a sweet 

taste and insoluble in hydrocarbon. It boils at 290°C at atmospheric pressure and 

melts at 17.9°C. Its specific gravity is 1.262 at 25°C referred to water at 25°C, and its 

molecular weight is 92.09. It has a very low mammalian toxicity.  
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Glycerol is present in many applications, for instance; in cosmetic, paint, 

food, tobacco, pharmaceutical, pulp and paper, leather and textile industries. It is also 

is used as a feedstock for the production of various chemicals (Wang et al., 2001). 

New applications are being evaluated in the food industry, the polyglycerol and 

polyurethane industry, the field of wood stabilizers and production of small 

molecules, such as dihydroxyacetone, glyceric and hydroxypyruvic acids and 

glycerol carbonate (Da Silva et al., 2009). Glycerol has also been considered as a 

feedstock for new industrial fermentations in the future in the production of 

antibiotics and in medicine (Wang et al., 2001).  

 

1.2.3 Phytochemicals 

Palm oil contains about 1% of minor components such as carotenoids, vitamin E and 

sterols (Basiron and Weng, 2004). Carotenoids are natural chemical compounds that 

give crude palm oil its orangey-red colour. Unrefined palm oil and crude palm oil are 

nature's richest source of carotenoids as compared to the other vegetable oils; 15 

times more than carrots, and 30 times more than tomatoes. The most active and 

important form of carotenoids found in palm oil is carotene (beta-carotene). Beta-

carotene can be converted to Vitamin A which plays an important role in the visual 

process (Edem, 2002). Vitamin E is a powerful anti-oxidant, capable of reducing the 

harmful types of oxygen molecules (free radicals) in the body. It helps to protect 

human from certain chronic diseases, while delaying the body's ageing process 

(Edem, 2002). In hydrolysis reaction, phytochemical is not involved in the reaction 

but it can be destroyed by the method and conditions used in the process. Therefore, 

it is important to select the appropriate technology for hydrolysis process to ensure 

the valuable minor product is not destroyed. 
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1.3 Lipase and its Application 

Lipases (triacylglycerol acylhydrolases, E.C. 3.1.1.3) are ubiquitous enzymes that 

catalyze the hydrolysis of fats and oils. Lipase hydrolyzes lipids, the ester bonds in 

triglycerides, to form fatty acids and glycerol. Interfacial activation of lipases occurs 

at the lipid–water interface, a phenomenon that can be traced back to the unique 

structural characteristics of this class of enzymes (Reetz, 2002). Because of their 

wide range of applications, lipases remain as a subject of intensive study.  

 

In addition to their biological function in bacteria, fungi, plants and higher 

animals, lipases have received a great deal of attention as biocatalysts in numerous 

industrial processes including areas such as oils and fats, detergents, baking, cheese 

making, hard-surface cleaning as well as leather and paper processing (Schmidt and 

Verger, 1998; Jaeger et al., 1999; Villeneuve et al., 2000; Reetz, 2002). Moreover, 

lipases are the mostly used enzymes in synthetic organic chemistry, catalyzing the 

hydrolysis of carboxylic acid esters or the reverse reaction in organic solvents 

depicted by Equations 1.1 and 1.2. 

 

 OH  R'RCO   OHR'  HRCO 22
lipase

2 + →←+          (esterification)          (1.1) 

OHR'  'R'RCO    OH'R'  R'RCO 2
lipase

2 + →←+   (transesterification)     (1.2) 

 

The development of lipase based technologies for the synthesis of novel 

compounds is rapidly expanding the application of these enzymes has drastically 

increased (Liese et al., 2000). Their advantages of the enzyme-catalyzed reaction 

versus the classical chemical catalysts are that they exhibit improved substrate 

specificity and operate in milder reaction conditions. Moreover, the fact that they 



 6 

retain their activities in organic solvents and their catalytic promiscuity extend their 

range of application (Villeneuve, 2007). Due to their abilities to hydrolyze fats, 

lipases are widely used as additives in oil and fat-based industries and also in the 

production of household detergents. In food industry, lipases are used to modify the 

properties of lipids by altering the location of fatty acid chains in the glyceride and 

replacing one or more of the fatty acids with the new ones. This way, a relatively 

inexpensive and less desirable lipid can be modified to a higher value fat (Colman 

and Macrea, 1980; Pabai et al., 1995a,b; Undurraga et al., 2001; Sharma et al., 

2001).  

 

1.4 Enzymatic Membrane Reactor 

1.4.1 Membrane 

Membrane can be defined as a thin pliable sheet of material that is permeable to 

substances in liquid solution. There are many types of membrane configuration such 

as a flat-sheet, assembled in a plate-and-frame module (Fig. 1.1a) or a spiral wound 

module (Fig. 1.1b), or tubular-like, assembled in tube-and-shell modules (Fig. 1.1c); 

it can also have a symmetric (Fig. 1.1d) or an asymmetric (Fig. 1.1e) structure. 
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Figure 1.1: The different types of membrane and membrane modules: flat-sheet 
membranes assembled in (a) plate and frame, and (b) spiral wound modules; (c) a 

hollow fibre membrane assembled in a tube-and-shell module; (d) a symmetric 
membrane: a cross section of a flat membrane made of polyetheretherketone (PEEK-

WC); and (e) an asymmetric membrane: a cross section of a capillary membrane 
made of polyamide. (Giorno and Drioli, 2000) 

 

1.4.2 Enzymatic Reaction 

The usage of enzyme in many chemical reactions is one the best solutions to 

overcome environmental pollution and diminishing of natural sources of raw 

materials in order to maximize productions. Although columns and other traditional 

type of reactors have been extensively use in the chemical industry for decades, an 

important disadvantage is the interdependence of two fluid-phases to be contacted, 

which sometime resulted in difficulties such as; emulsions, foaming, unloading and 

flooding. In order to overcome these disadvantages; the membrane reactor offers 

substantially more interfacial area than the conventional approaches with non-

dispersive contact using a microporous membrane (Gabelman and Hwang, 1999; 

Giorno et al., 2006). Therefore, by combining membrane technology with biocatalyst 
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will further improve the usage of expensive enzymes and solvent and thus, reducing 

the cost of production.  

 

1.4.3 Membrane Bioreactor 

In a membrane bioreactor, enzymes is confined in a well-defined region of space by 

means of a selective membrane or immobilized by adsorption or entrapment within 

the membrane matrix itself. In additions, the possibility of simultaneously carry out a 

desired biological reaction and product separation in one device is the best 

motivation for choosing enzymatic membrane reactors. Among those membrane 

configurations shown in Figure 1.1, hollow fiber membrane is more favorably used 

for membrane reactors due to its high surface-to-volume ratio that permits high 

biocatalyst density in a small reactor volume (Trusek-Holownia, 2005). Although 

there are relatively few disadvantages of using membrane such as membrane fouling 

and pressure drop constraints however, the numerous advantages that will be 

explained further in the next chapter eventually attracted the attention of many 

parties from both academia and industry for a diverse range of applications.  

 

1.5 Problem Statement 

The current industrial hydrolysis of oils and fats employed alkaline high pressure 

steam splitting also known as Twitchell process (Gan et al., 1998). Additionally, 

Colgate Emery process caused polymerization of fat and byproduct which gave an 

extremely dark fatty acids and discolored aqueous glycerol solution (Pugazhenti and 

Kumar, 2004). These methods involve high energy utilization and yield a product 

that required a costly purification step. This has then turned the researchers’ 

attentions to enzymatic hydrolysis as it is carried out under mild conditions, allowing 
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energy saving and producing better quality products. Enzyme hydrolysis of oil seems 

to be a promising alternative to a classic, high temperature and high pressure 

technology used in industries. Oil hydrolysis by lipase has been paid great attentions 

as a reaction that saves energy, does not create waste materials and is also available 

for food processing industry. Lipases are now available at a reasonable cost (Hasan 

et al., 2006). Further reduction in cost of the enzyme is expected due to genetic 

manipulation of the microbe in producing the enzymes. This would have made the 

enzymatic hydrolysis of oils and fats an important reaction for industrial hydrolysis 

industries. 

 

Conventionally, fatty acids and glycerol produced from energy intensive fat 

splitting process is separated using distillation method to obtain pure product. As an 

alternative, with membrane bioreactor, hydrolysis reaction and separation process 

can be undertaken simultaneously and therefore, reduced some downstream unit 

operations compared to other type of reactors. The advantages of enzymatic 

membrane reactor include; simplified product recovery, the ability to recycle the 

enzyme, possibility to run under continuous-mode operation and improved stability. 

In addition, the present study includes theoretical modeling to observe the controlling 

transport in the reaction mechanism inside the membrane reactor. 

 

Colgate Emery process or chemical process using Twitchell reagent can only 

be conducted at a very high temperature and pressure. In this work crude palm oil 

(CPO) is used as raw material for this hydrolysis process. CPO consist of 500-700 

mg/L carotenoids and some traces of phytochemical such as tocopherol and 

tocotrienols (Edem, 2002) which are eventually destroyed if conventional process for 
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production of fatty acids is being used. Moreover, the recovery of phytochemicals 

which are present in CPO is not possible due to the heat sensitive nature of 

phytochemicals compounds (Nakajima, et al., 2000). Thus, enzymatic approached is 

the best solution to resolve this issue because of its simple and milder operation 

conditions.  

 

There are many reports published on the topic of oil and fat hydrolysis using 

lipases but none are available specifically on the hydrolysis of CPO. The present 

study chooses CPO as starting materials because cost of CPO is much lower than 

using refined oil that has undergone stages of refinery and can easily be available in 

the store nearby. Although refined oil is clean from debris and other materials and 

produce high yield of fatty acids, but the main aim is that the technology suggested is 

a bio-route, an environmentally friendly process (minimize waste produce) and the 

raw material used is low in cost compared to refined oil. This study on the 

production of fatty acids and glycerol via enzymatic reaction in membrane reactor 

also attempt to overcome the disadvantage of Colgate Emery and Twitchell method 

which involves high temperature and pressure reactors commonly used in industries. 

In addition, work is carried out to recover the phytochemical in CPO via 

precipitation process. This will ensure that all minor valuable products in CPO are 

not wasted but recovered from the process. 
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1.6 Objectives 

The overall objective of this research is to investigate the parameters 

effecting hydrolysis reaction of crude palm oil in batch and enzymatic 

membrane reactor including the recovery of carotenes and tocopherol. The 

specific objectives are; 

 

i. To study the effect of process parameters in batch configuration, 

optimization, kinetics and thermodynamics of lipase-catalyzed hydrolysis of 

CPO using free lipase. 

 

ii. To design and fabricate an enzymatic membrane reactor (EMR) system 

suitable for hydrolysis of crude palm oil (CPO) using lipase-catalyzed 

reaction. 

 

iii. To optimize the process parameters to improve the performance of EMR for 

hydrolysis reaction of CPO simultaneously with separation of fatty acids and 

glycerol and the kinetics of immobilized enzyme. 

 

iv. To study the process parameters affecting the precipitation process for 

phytochemical recovery. 

 

v. To develop and simulate a mathematical model taking into accounts the 

enzymatic reaction and mass transfer in the EMR unit and compared with 

experimental values. 
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1.7 Scope of Research 

1.7.1 Design and fabrication of EMR 

The current study starts with designing an enzymatic membrane reactor (EMR) 

system suitable for hydrolysis of crude palm oil (CPO). The system was checked by 

running with water and iso-octane before further studies can be carried out on the 

hydrolysis reaction of CPO.   

 

1.7.2 Lipase-mediated hydrolysis of CPO 

Hydrolysis of crude palm oil using Candida rugosa lipase for the production of fatty 

acids and glycerol was studied. Understanding the basic performance of free lipase is 

very important before it can be subjected to any improvement of lipase properties in 

the membrane system. Therefore, preliminary study in batch for various parameters 

on the behavior of Candida rugosa lipase was conducted before pursuing into the 

EMR system. In the screening stage, effect of different lipases, various organic 

solvent, aqueous-oil phase ratio, agitation speed and reaction time were investigated. 

Then, by using Design of Experiment (DOE) method, optimization for several 

crucial variables such as enzyme loading, oil concentration, temperature and pH was 

carried out and observed. The result was then used as a basis to carry out study in the 

enzymatic membrane reactor.  

 

Enzymatic membrane reactor is used to enhance the performance of C.rugosa 

lipase in catalyzing the hydrolysis of oil. The main aim is to achieve the highest yield 

of fatty acids with minimum requirement of lipase usage and a milder working 

operation. The effect of enzyme loading for immobilization, oil concentration, flow 

rate for organic and aqueous phase, temperature, transmembrane pressure (TMP) 
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were studied in order to measure the extent of achievement of the developed 

C.rugosa immobilized enzymatic membrane reactor.  

 

1.7.3 Phytochemical recovery 

A precipitation process has been investigated to further purify the organic medium/ 

product stream from the EMR unit operation in order to evaluate the feasible amount 

of phytochemicals that can be recovered after the hydrolysis reaction using EMR 

system.  In this part, fatty acids will be separated from other materials to ensure the 

product produced is high in purity and at the same time phytochemical can be 

collected. The studies of several affecting parameters (precipitation agent loading 

and temperature, agitation speed) were conducted to determine the optimum 

operating conditions for the phytochemical recovery in batch process.   

 

1.7.4 Modeling of Hydrolysis Reaction in the EMR 

The proposed model describes interfacial mass transfer of the enzymatic hydrolysis 

reaction. The models were coupled through mass balances at the respective confined 

region of study, i.e in the membrane matrix support. The number of parameters used 

in this mathematical model is reduced by dimensionless analysis. The attention was 

focused on the influence of significant dimensionless parameters, related to the 

system operating conditions, in order to predict the controlling transport on the 

reaction mechanism and the parameters that may optimize the reactor performance.  

The overall process study for batch and EMR is summarized in the flow chart as in 

Figure 1.2.  
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Figure 1.2: Research methodology flow chart. 
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1.8 Organization of Thesis 

This thesis is divided into six chapters as follows: 

 

Chapter 1 gives a brief introduction about palm oil and its availability to be one 

source of raw material in hydrolysis of fats especially in Malaysia. Hydrolysis 

products such as fatty acids and glycerol, overview of lipase and its current 

applications in industrial process and viability of enzymatic membrane reactor for 

current study are also highlighted. This chapter focuses on the problem statement and 

the objectives of the project. 

 

Chapter 2 gives the information of palm oil processing and its products, properties 

of CPO and value added products such as tocopherols and carotenes and methods 

applied in the present days for the industrial production of fatty acids. It is followed 

by a discussion on potential using enzymatic reaction and the advantages of using 

immobilized lipase in hydrolysis process. Reviews on variables affecting hydrolysis 

reaction, statistical method for optimization, thermodynamics, kinetic, advantages of 

enzymatic membrane reactor and potential for recovery of phytonutrients are also 

recovered.  

 

Chapter 3 describes the methods and analysis required for the hydrolysis process. It 

also gives details on the chemical requirements and equipment used throughout the 

whole process of this study. The overall experimental flowchart is also presented and 

discussed. The subsequent topics explain clearly the methodology of this research 

project, preliminary study using free lipase in batch process, optimization, 

thermodynamic and kinetics study, immobilized lipase in enzymatic membrane 
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reactor and phytochemical recovery. Finally, applied analytical methods and set up 

are also included in this chapter.  

 

Chapter 4 presents the enzyme kinetics mechanism for hydrolysis of CPO. 

Explanation on the model formulations to predict the behavior of lipase-catalyzed 

hydrolysis of CPO in hollow fiber membrane reactor system is also included.  

 

Chapter 5 presents the result obtained from experimental runs and discusses on 

every effect of parameters on the synthesis of fatty acids and glycerol using free and 

immobilized lipase and finally the recovery of tocopherols and carotenes. The end of 

this section discusses the model verification of the predicted model against actual 

experimental conditions.  

 

Chapter 6 concludes the research project. Recommendations for future work related 

to this research project are also given.  
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CHAPTER 2 

 
LITERATURE REVIEW 

 

 

2.1 Crude Palm Oil 

The oil palm is tropical perennial plant and grows well in lowland with humid places 

and therefore it can be cultivated easily in Malaysia (Ong et al., 2011). Currently, 

4.49 million hectares of land in Malaysia is under oil palm cultivation; producing 

17.73 million tonnes of palm oil and 2.13 tonnes of palm kernel oil. Malaysia is one 

the largest producers and exporters of palm oil in the world, accounting for 11% of 

the world’s oils and fats production and 27% of export trade of oils and fats. The oil 

palm is the most efficient oil-bearing crop in the world, requiring only 0.26 hectares 

of land to produce one tonne of oil while soybean, sunflower and rapeseed require 

2.22, 2.0 and 1.52 hectares, respectively, to produce the same (The Oil palm tree, 

2010). Oil palm tree will start bearing fruits after 30 months of field planting and 

will continue to be productive for the next 20 to 30 years of its life span of 200 years 

(Ong et al., 2011). Thus, this will ensure a consistent supply of oils. 

 

There are two main products produced by the oil palm fruit and they are 

crude palm oil (CPO) which is obtained from mesocarp and crude palm kernel oil 

(CPKO) from endosperm (kernel) (Ong et al., 2011). CPO is deep orangey red in 

colour due to the high content of natural carotenes (500-700 mg/L) (Edem, 2002). 

Crude palm oil is one of the rich sources of carotenoids and vitamin E, which 

confers natural stability against oxidative deterioration.  Palm oil consists mainly of 

glycerides made up of a range of fatty acids. Table 2.1 shows the fatty acid 
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composition in crude palm oil (CPO) produced by the Palm Oil Research Institute of 

Malaysia (PORIM) (Crabbe et al., 2001). 

 

Table 2.1: Quality characteristics of crude palm oil (CPO) (Crabbe et al., 2001) 
Parameters  PORIM* specification  

Moisture (% w/w)  ND  
Acid value (mg KOH/g)  ND  

Fatty acid composition  
Lauric  0–0.4 % 

Myristic  0.6–1.6 % 
Palmitic  41–47%  

Palmitoleic  0–0.6 % 
Stearic  3.7–5.6 % 
Oleic  38.2–43.5 % 

Linoleic  6.6–11.9 % 
Linolenic  0–0.5 % 
Arachidic  0–0.8%  

Mean molecular weight (g)  
Unsaturated fatty acids   44.8–57.3 % 

Saturated fatty acids 45.3–55.4 % 
ND- not determined *PORIM – Palm Oil Research Institute of Malaysia, 2010 

 

Table 2.2: Composition of carotenes in CPO (Ng and Tan, 1998) 
Carotene Composition 
Phytoene 1.27 
Cis-β-carotene 0.68 
Phytonefluene 0.06 
β-Carotene 56.02 
α-Carotene 35.16 
Cis- α-Carotene 2.49 
ζ-Carotene 0.69 
γ-Carotene 0.33 
δ-Carotene 0.83 
Neurosporene 0.29 
β-Zeacarotene 0.74 
α-Zeacarotene 0.23 
Lycopene 1.30 

 
 
Table 2.3: Tocopherols and tocotrienols in CPO (Ooi, 1999) 

Composition Concentration (ppm) 
α-tocopherol 279 
γ-tocopherol 61 
α-tocotrienol 274 
γ-tocotrienol 398 
δ-tocotrienol 69 
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Other than that, there are small amount of impurities in CPO. The average 

composition of carotenes in CPO is shown in Table 2.2. The concentration of 

carotenes in CPO can range from 400 to 3500 ppm depending on the species of oil 

palm (Ooi, 1999). The concentration of Vitamin found in CPO is shown in Table 

2.3.  

 

2.1.1 Valuable Nutrients  of Crude Palm Oil 

Palm oil also supplies important fat-soluble micronutrients like carotenoids 

including pro-vitamin A, vitamins D, E and K as well as very rich in calories. One 

gram of palm oil supplies 9 kcal of energy, which is 2½ times more than one gram 

of protein (4 kcal) or carbohydrates (4 kcal). The total carotenoids content in CPO 

are quite high as clearly depicted in Table 2.2. Vitamin A is an effective antioxidant 

that helps strengthening the body's immune system and reduces the risk of cancer, 

heart disease and cataract. Lack of vitamin A can lead to blindness and a variety of 

serious medical conditions (Health and Nutrition, 2010). 

 

In addition, crude palm oil is also rich in vitamin E (tocopherols and 

tocotrienols) which is about 559 to 1000 ppm (Edem, 2002). Tocotrienols are 

members of the vitamin E family comprising of tocotrienols and tocopherols. 

Tocotrienols differ from the tocopherols in that they contain three double bonds in 

the side-chain (Figure 2.1). Tocotrienols isoprenoid side chain has three double 

bonds as compared to tocopherols saturated side-chain. In total, there are four type’s 

tocopherols namely alpha, beta, gamma and delta and four corresponding 

tocotrienols isomers (What are tocotrienols, 2010). 
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Figure 2.1: Molecular structures of tocopherol and tocotrienol isomers (Edem, 2002) 

 

 In fact, no other vegetable oils have as much vitamin E compared to palm 

oil. The tocotrienols have been reported to be natural inhibitors of cholesterol 

synthesis (Edem, 2002). Tocotrienols are surprisingly not found in any other 

vegetable oils such as; soy bean oil, canola oil, rape seed oil and sunflower oil. The 

compounds can be found naturally, but in much lesser quantities in rice barn, barley, 

wheat gem and oats. The vitamin E content in CPO ranges between 600 - 1000 parts 

per million (ppm) with a mixture of tocopherols (30%) and tocotrienols (70%) 

(Basiron and Weng, 2004). The major tocotrienols contain in palm oil are α-

tocotrienols (22%), γ-tocotrienol (46%) and δ-tocotrienol (12%) (Edem, 2002).  
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2.2 Enzymatic Approach and Potential 

Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is an enzyme with many industrial 

applications in hydrolysis, alcoholysis, acidolysis, amidolysis, and inter-

esterification (Pandey et al., 1999; Li and Wu 2009). It is used in various fields such 

as food technology, detergents, beverages, cosmetics, biomedical and chemical 

industries (Li and Wu, 2009). Biocatalysts especially lipases are particularly useful 

for certain applications, specifically in terms of energy consumption, safety, 

pollution prevention and the high quality of products formed. However, the use of 

biocatalysts in industrial scale is yet to be fully established (Giorno and Drioli, 

2000).   

 

 Rapid development of enzyme technology has brought considerable 

attentions to the application of lipase in fat and oil industries (Halling et al., 1996; 

Chang et al., 1999). Major industrial applications of enzymes are summarized in 

Table 1.1. Enzymatic reaction using lipase offers a lot of advantages over 

conventional chemical reaction. Lipases can be used effectively and economically 

under mild conditions (Sharon et al., 1998). This is an important characteristic 

because extreme conditions could cause polymerisation of fat, forming by-product 

which cause difficulties during separation (Al-Zuhair et al., 2003). Hence, the use of 

lipase could reduce the need to remove the by-products through further separation 

method such as the distillation process, which is an energy intensive process. In 

addition, recovery of valuable pyhtochemical in crude oil is possible because via 

enzymatic approach; hydrolysis process can be carried out at a considerably low 

temperature.  
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Table 2.4: Industrial applications of enzymes (Giorno and Drioli, 2000)  
Type of industry Enzyme  Application 
Detergent Protease 

Lipases 
Amylase 
Cellulases 

To remove organic stains 
To remove greasy stains 
To remove residues of starchy foods 
To restore a smooth surface to the fiber and restore the 
garment to its colours. 
 

Food Proteases and lipase 
Lactases 

To intensify flavor and accelerate the aging process 
To produce low-lactose milk and related products for 
special dietary requirements 
 

Wine β-Glucanases 
Cellulase 
Cellulase and pectinase 

To help the clarification process 
To aid the breakdown of cell walls 
To improve clarification and storage stability 
 

Fruit juices Pectinases 
 
Cellulase 

To improve fruit-juice extraction and reduce juice 
viscosity 
To improve juice yield and colour of juice 
 

Oil and fats Lipases The industrial hydrolysis of fats and oils or the 
production of fatty acids, glyceri, polyunsaturated fatty 
acids used to produce pharmaceuticals, flavours, 
fragrances and cosmetics. 
 

Alcohol α-Amylases 
 
Amiloglucosidase 

Liquefaction of starch or fragmentation of gelatinized 
starch  
Saccharification or complete degradation of starch and 
dextrins into glucose. 
 

Starch and sugar α-Amylases 
 
 
Glucoamylase and pullulanase 
Glucose isomerase 

Enzymatic conversion of starch to fructose: liquefaction, 
saccharification and isomerization 
Liquefaction of starch 
Saccharification 
Isomerization of glucose. 
 

Animal feed β-Glucanases The reduction of β-glucans 
 

Brewing industry β-Glucanase The reduction of β-glucans and pentosans 
 

Fine chemical Lipases, amidases and 
nitrilases 

Enantiomeric intermediates for drugs and agrochemicals 
Hydrolysis of esters, amides, nitriles or esterification 
reactions. 
 

Leather Lipases To remove fats in the de-greasing process 
 

Textiles Amylases and cellulases To produce fibers from less-valuable raw materials. 
 

Pulp and paper Xylanases Used as bleaching catalyst during pre-treatment for the 
manufacture of bleached pulp for paper 

 

Lipase also can be used as catalyst in both organic and aqueous phases and 

maintains its activity in organic solvents (Kazlauskas, 1994; Li and Wu 2009); 

however, its low stability, limits its potential applications in industrial hydrolytic 
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reactions (Sharma et al., 2001; Villeneuve et al., 2000). In addition, the application 

of lipase is still in its infancy due to its high cost (Kittikun et al., 2000; Kaewthong 

et al., 2005). This problem can be overcome by employing lipase in immobilized 

form, where the enzyme can be reutilized easily. Besides, immobilization of enzyme 

enables processes to be operated continuously. Furthermore, it can also increase the 

thermal stability enzymes. Several methods of enzyme immobilization have been 

reported such as adsorption, ionic binding, covalent binding, cross-linking, 

entrapment and encapsulation (Murty et al., 2002, Li and Wu 2009).  Murty et al., 

(2002), reported that the use of immobilized lipase in several types of reactor 

configurations such as packed bed reactor (PBR), continuous stirred tank reactors 

(CSTR’s), fluidized bed reactors, batch reactors and membrane reactors have been 

studied by researchers for the hydrolysis various types of oil rather than in free form. 

Therefore, it is believed that immobilized lipase has the potential in the present 

reaction process and need to be study comprehensively to maximize the catalytic 

activity of lipase especially in production of fatty acids.  

 

2.3 Hydrolysis Process and Parameter Affecting the Reaction System 

The factors, catalyst loading, substrate concentration, temperature, and pH value 

have significant effects on oil hydrolysis. Therefore, a brief description on each 

parameter is discussed in order to understand the catalytic activity of lipases in the 

hydrolysis of oil.  

 

2.3.1 Enzyme Loading 

An optimum amount of enzyme for use in a reaction is a crucial parameter 

especially those involving lipase. Too little enzyme would cause hydrolysis with low 
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conversion. Whereas, too much of enzyme would definitely give high conversion 

but with higher cost of production incurred. Certain enzymes are very expensive and 

they are only used in sufficient quantity based on type of reaction. The enzyme 

concentration is measured in LU (lipase unit). The effect of enzyme concentration to 

the degree of palm oil hydrolysis was normally studied in order to obtain the 

optimum amount. The main concern encountered by enzymatic hydrolysis is the 

fatty acids release during the process, which competes with the enzyme for the 

active-site and thus, leads to the reduction of the rate of hydrolysis. Hence, by 

adding more enzymes the hydrolysis rate will not be improved, as the rate of 

hydrolysis is dependent on the amount of product formed at a fixed interfacial area 

under specific operating conditions (Puthli et al., 2006). 

 

2.3.2 Oil Loading.  

Another important parameter in hydrolysis of oil is the level of substrate 

concentration. Researchers reported that the inhibition of substrate was observed 

when oil concentration reaches a particular value (Noor et al., 2003). In order to 

increase the rate of hydrolysis, researchers attempt by dissolving the fat in a water 

immiscible organic solvent and dispersed the solvent in the aqueous phase 

containing the enzyme (Hasan et al., 2006). Okada and Morrissey (2007) also 

observed that the rate of hydrolysis of sardine oil by lipase from C.rugosa varied 

linearly with oil concentration. Many investigations only focus on the oil-aqueous 

ratio instead of the oil concentration. Lipase does not only able to catalyze 

hydrolysis reaction but also esterification too (reversible reaction). In the presence of 

low amount of water, catalytic activity may shift the thermodynamic equilibrium 

into preferring the esterification route. Therefore, higher quantity of water is 
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required for hydrolysis reaction to take place. Besides, lipase’s activity in hydrolysis 

is known to increase with increasing water content. The phenomenon can be 

explained by oil-water interfacial activation of lipase and the content of water in the 

oil-phase. The active site of lipase is enclosed with a α-helix (named lid) of which 

the outer layer is hydrophilic and the inner is hydrophobic. When lipase is absorbed 

on the oil-water interface, the active site of lipase would be contacted with the oil-

phase. This observation indicates that the reaction equilibrium is formed in the oil 

phase (Kobayashi et al., 2008).  

 

2.3.3 Temperature 

Biocatalyst possessed several desirable qualities, but their thermal stability in many 

desired process formulations has hindered their applications. All enzymatic reactions 

are very sensitive to operating temperature and are only performed at their best at a 

particular temperature. When a protein applied in the presence of extreme 

temperature, irreversible denaturation of protein/enzyme will occur (Polizzi et al., 

2007). The thermal inactivation of enzymes explains such a behavior. Immobilized 

systems always favor higher optimum operating temperature compared to the free 

lipase systems. Enzymes are intrinsically labile, but temperature provides opposite 

effects on its stability, and reactivity becomes an important variable in any processes 

that includes enzymes as biocatalysts. The average temperature for hydrolysis of oils 

via various lipases was found to be at the range of 30oC to 50oC as shown in Table 

2.5. 
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