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MODEL ADAPTIF BERSANDARKAN PCA UNTUK
PEMBINAAN SEMULA WAJAH 3D DARIPADA

IMEJ TUNGGAL 2D

ABSTRAK

Model wajah statistik berasaskan contoh menggunakan Analisis Komponen Utama (PCA)

telah digunakan secara meluas bagi pembinaan semula wajah dalam bentuk 3D dan pengeca-

mannya. Tumpuan utama tesis ini adalah untuk meningkatkan ketepatan dan kecekapan kaedah

berasaskan PCA untuk membina semula wajah dalam bentuk 3D. Lebih tepat lagi, tesis ini me-

nangani cabaran untuk meningkatkan Kuasa Perwakilan (RP) model berasaskan PCA selaras

dengan keputusan yang menggalakkan diperolehi daripada kajian empirikal yang dijalankan.

Satu set data latihan terhad digunakan dalam usaha untuk meningkatkan ketepatan pembina-

an semula 3D. Mengenai kajian empirikal, ia mengkaji kesan faktor-faktor luar biasa (iaitu

saiz set latihan dan kepelbagaian contoh-contoh latihan terpilih) ke atas RP model wajah 3D

berasaskan PCA. Satu algoritma pembinaan semula wajah 3D terselaras telah diperiksa untuk

memahami bagaimana faktor-faktor biasa seperti matriks rombakan, bilangan titik-titik sifat

dan parameter rombakan λ menjejaskan ketepatan pembinaan semula wajah 3D berdasarkan

model PCA.

Satu model penyesuaian berasaskan PCA adalah dicadangkan untuk meningkatkan RP mo-

del pembinaan semula wajah 3D dengan mengubah bentuk satu set contoh dalam dataset la-

tihan. Dengan mengabungkan sampel yang telah diubahsuai bersama-sama dengan sampel

latihan asal, ia telah menunjukkan bahawa peningkatan dalam RP dapat dicapai. Ujian pe-

ngesahan menyeluruh telah dijalankan untuk menunjukkan bahawa model yang dicadangkan
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dengan ketara telah meningkatkan RP model piawai berasaskan PCA dengan mengurangkan

ralat pembinaan semula bentuk wajah. Tambahan pula, ia telah dibuktikan kewajarannya ba-

hawa model penyesuaian berasaskan PCA mampu membina semula imej wajah 3D dengan

mengekalkan ekspresi muka, walaupun sampel latihan hanya mengandungi ekspresi neutral.

Untuk mengoptimumkan pemilihan parameter rombakan (λ ), model berpandukan jarak di-

cadangkan untuk menentukan nilai λ yang sesuai secara automatik, dan oleh itu, ia bertindak

balas ke atas keperluan peringkat pemadanan. Cadangan model berpandukan jarak dinilai de-

ngan membandingkan λ yang ditentukan secara automatik dengan satu nilai pra-hitung terbaik.

Selain itu, beberapa contoh wajah 3D yang dibentuk semula diperlihatkan secara visual untuk

menjelaskan keteguhan model berasaskan jarak yang dicadangkan. Kemudian, dengan mele-

dingkan tekstur 2D kepada wajah yang telah di bentuk semula, pembentukan wajah 3D dapat

dihasilkan. Untuk ledingan tekstur, pengubahsuaian wajah 2D dapat dilatih dari tekstur model

dengan menggunakan tanda-tanda muka.

Penilaian akhir dilakukan untuk menunjukkan bahawa keseluruhan sistem cadangan yang

terdiri daripada model penyesuaian berasaskan PCA dan model berpandukan jarak mengatasi

beberapa pendekatan terkini dari segi kecekapan. Tambahan pula, ia menunjukkan bahawa

model yang dicadangkan boleh menyumbang kepada beberapa kajian yang berkaitan dalam

bidang pembinaan semula imej.
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ADAPTIVE PCA-BASED MODELS TO
RECONSTRUCT 3D FACES FROM SINGLE 2D

IMAGES

ABSTRACT

Example-based statistical face models using Principle Component Analysis (PCA) have

been widely used for 3D face reconstruction and face recognition. The main concern of this

thesis is to improve the accuracy and the efficiency of the PCA-based 3D face shape recon-

struction. More precisely, this thesis addresses the challenge of increasing the Representational

Power (RP) of the PCA-based model in accordance with the encouraging results of the con-

ducted empirical study. A limited set of training data is utilized towards enhancing the accuracy

of 3D reconstruction. Concerning the empirical study, it examines the effect of phenomenal

factors (i.e. size of the training set and the variation of the selected training examples) on the

RP of 3D PCA-based face models. A regularized 3D face reconstruction algorithm has also

been examined to find out how common factors such as the regularization matrix, the num-

ber of feature points, and the regularization parameter λ affect the accuracy of the 3D face

reconstruction based on the PCA model.

Importantly, an adaptive PCA-based model is proposed to increase the RP of the 3D face

reconstruction model by deforming a set of examples in the training dataset. By adding these

deformed samples together with the original training samples, it has been shown that the im-

provement in the RP can be achieved. Comprehensive experimental validations have been car-

ried out to demonstrate that the proposed model considerably improves the RP of the standard

PCA-based model with reduced face shape reconstruction errors. Furthermore, it has been
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justified that the adaptive PCA-based model is capable of reconstructing 3D face images by

retaining facial expressions, although the training samples contained only neutral expression.

To optimize the selection of regularization parameter (λ ), a distance-based model is pro-

posed to automatically find an appropriate value of λ , and therefore, it responds to the require-

ments of the fitting stage. The proposed distance-based model is evaluated by comparing the

automatically determined λ with the pre-calculated best one. Moreover, examples of recon-

structed 3D face shapes are visualized to clarify the robustness of the proposed distance-based

model. Then by warping the 2D texture to the reconstructed face shape 3D face reconstruction

is achieved. For the texture warping, the 2D face deformation is learned from the model texture

using a set of facial landmarks.

Finally experimental evaluations have been demonstrated to show that the overall proposed

system which comprises of the adaptive PCA-based model and the distance-based model out-

performs some of the recent approaches in terms of efficiency. Furthermore, it is shown that the

proposed models could contribute to several related studies in the field of image reconstruction.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The primary objective of 3D facial reconstruction systems is to recover the three dimensional

shape of individuals from their 2D pictures or video sequences. One of the major challenges

in 3D facial modeling is the accurate reconstruction of 3D faces from given 2D face images.

The use of 3D faces in image processing applications has received substantial attention during

the last decades. The need for 3D face reconstruction has grown in such crucial applications

such as virtual reality simulations, face recognition (Elyan and Ugail, 2007; Avilaq and Rezaie,

2013) and plastic surgery simulations (Bottino et al., 2012).

For example, in biometric identification, face recognition rate could be significantly im-

proved by incorporating the 3D face shape with 2D face images (Hu et al., 2004). Face Recog-

nition Vendor Test 2006 has shown that 2D face recognition can achieve high accuracy under

controlled conditions, e.g. when the testing face samples are frontal. However, when face pose

changes largely, the performance of existing methods drop drastically, and therefore 2D is a

restricted environment (Li and Jain, 2011). In order to resolve the controlled restriction of 2D,

3D faces can be used. By rotating the reconstructed 3D face to different views, pose virtual

face images are generated to enlarge the training set of face recognition (Wang et al., 2011).

Applications that are more known to common people are in 3D games and movie industries.

For the 3D face reconstruction, the accurate reconstruction of a person’s 3D face model

from his/her 2D face images still remains as an open challenge. Until now, with the aid of most
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popular commercially available tools, 3D facial models are obtained not directly from images

but by laser-scanning of people’s faces (Zhang et al., 2006; Li and Jain, 2011). This technique

has the following limitations:

1. These scanners are usually expensive and are targeted to work in tightly controlled envi-

ronments.

2. Laser-scan based reconstruction could not be applied in certain scenarios; for example,

a person’s face had been damaged during an accident and his/her face needs to be recon-

structed in order to assist plastic surgery. In this situation, laser-scan cannot be applied

and the face can be reconstructed by using computational techniques with the aid of

available photos of the person, which were taken prior to the accident.

A 3D face can either be reconstructed from a single image or from multiple images. This

study focuses on the problem of reconstructing 3D face shapes from single 2D images. This

technology, which is only applicable in controlled environments, does not require setting up

multiple cameras to capture the objects simultaneously.

The PCA-based model proposed by Blanz and Vetter (1999) with relatively small sample

size (100 faces) has primarily been used for face recognition and obtained reasonable results

(Blanz and Vetter, 2003). Furthermore, it does not require the generation of synthetic views

from 2D input images. Instead, the recognition was based on the model coefficients which rep-

resent intrinsic shape and texture of faces. Although in some statistical modeling methods both

shape and texture are modeled separately using PCA (e.g. 3DMM), it has been suggested that

shapes are more amenable to PCA based modeling than texture because textures are subject to

vast variation when compared to shape based features (Jiang et al., 2005). Therefore, the mod-

els intended in this contribution are based on modeling of shapes. When shapes are considered,

2



the reconstruction of 3D face shapes from 2D images using shape models is relatively simple.

A popular method for reconstructing a 3D face from a 2D image is a regularization based re-

construction where a few feature points are selected as observations for reconstruction (Jiang

et al., 2005). Alternatively the regularized algorithm which uses 3D Morphable Model to re-

construct the 3D face shape from facial 2D points has also been presented in (Blanz and Vetter,

2002) and (Blanz et al., 2004). The results based on this method do not go beyond the repre-

sentational power of the model. Even if a 3D face model is trained with more examples or a

different dataset to generate a better representation of the true face, the generated face remains

within the boundaries of the PCA-model.

To utilize the prior information modeled by PCA, an extended version of Tikhonov regu-

larization is used to estimate the model parameters by solving the inverse problem of 3D face

reconstruction. However, most of the regularization methods that uses prior knowledge tend

to smooth the reconstructed image (Agarwal, 2003). To prevent the successive smoothness of

the solution, the optimal selection of regularization parameters is highly considered (Zhu et al.,

2013).

To fill the gaps in PCA-based model and Tikhonov regularization, this study addresses two

significant issues. First, the insufficient representational power of the PCA-based model and

its capability of depicting new 3D faces. Second, Tikhonov regularization does not support the

automatic selection of regularization parameter. Consequently, this study aims at improving

the accuracy as well as the efficiency of the PCA-based 3D face reconstruction from single

images.
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1.2 Motivation

The need for 3D face reconstruction has grown in various applications such as virtual reality

simulations, face recognition (Elyan and Ugail, 2007; Avilaq and Rezaie, 2013) and plastic

surgery simulations (Bottino et al., 2012).

As mentioned in the previous section, face recognition rate could be significantly improved

by incorporating 3D face shapes with 2D face images (Hu et al., 2004). Furthermore, the

training set of face recognition can be enlarged by generating pose virtual images of differ-

ent views (Wang et al., 2011). In addition, the increase in spending money on face plastic

surgery (Adamson and Galli, 2009) triggered new studies in 3D face reconstruction from 2D

images. For example, in 2008, the American Society for Aesthetic Plastic Surgery (ASPS)

reported a 162% increase of the facial plastic surgeries in ten years whereas more than one mil-

lion facial plastic surgeries were performed (Statistics, 2009). According to recent statistics

released by ASPS (Statistics, 2102), 209,000 maxillofacial surgery procedures were performed

in USA in 2012. This reveals that a 7% increase is seen since 2011.

Therefore, it is important to focus on developing techniques that can improve the accuracy

and efficiency of current 3D reconstruction systems. Many researchers have attempted to solve

problems related to 3D faces reconstruction from single 2D images but their methods have

limitations. These limitations will be described in Chapter 2.

1.3 Problem Statement

The problem of 3D facial modeling remains as a partially solved problem in the fields of com-

puter vision and graphics. The purpose of this study is to reconstruct 3D faces from single 2D

images. The advancement of 3D scanning technology has led to the creation of more accu-
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rate 3D face exemplar models (Luximon et al., 2012). Example-based modeling allows more

realistic face reconstruction than other methods (Widanagamaachchi and Dharmaratne, 2008;

Levine and Yu, 2009). In the simplest form, example-based 3D face reconstruction methods

have two main stages: The model building stage and the model fitting stage. In this study,

PCA-based 3D face model and regularized algorithm are used for model building and model

fitting respectively.

For PCA-based modeling, however, the quality of reconstructed faces is affected by the

selected examples. The two common factors that are generally concerned with such models

are the size of the training dataset and the selection of different examples in the training set.

For example, Kemelmacher-Shlizerman and Basri (2011), and Gonzalez-Mora et al. (2010)

emphasized that learning a generic 3D face model requires large number of 3D faces.

For PCA model fitting, reconstructing 3D faces from 2D images is a linear inverse problem

which gives rise to ill-posed linear system. To obtain a meaningful approximate solution,

regularization can be employed (Mallik et al., 2012). One of the most appropriate regularization

methods is the Tikhonov regularization (Jing et al., 2009). The common factors that generally

affect Tikhonov regularization are the regularization Tikhonov matrix (stabilizing item), the

number of feature points, regularization parameters, and noise. The performance of regularized

approximations can only be controlled through the selection of a regularization parameter (Lu

and Pereverzev, 2008; Zhu et al., 2013). Choosing too large regularization parameter causes

the solution to be over-smoothed. Otherwise, a too small regularization parameter leads to

overfitting. In other words, the regularization parameter balances the tradeoff between the

excessive smoothing of the reconstruction and the data misfit.

The overarching research problem of this study is to improve the accuracy as well as the ef-

ficiency of the PCA-based reconstruction. This could be further divided into two sub problems
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as follows:

1. The RP of a PCA-based 3D learning face model is not adequate enough to represent or

reconstruct an accurate 3D face shape.

2. An appropriate value of the regularization parameter λ is not known in advance.

To overcome the first problem, an adaptive PCA-based model is proposed to improve the

accuracy of reconstruction through enhancing the representational power of the standard PCA-

based model. As for as the second problem is concerned, a distance-based model is developed

to automatically select an appropriate regularization parameter for the Tikhonov regularization

method.

1.4 Research Objectives

The overarching aim of this research relates to improving the accuracy as well as the efficiency

of 3D face shape reconstruction from their single 2D images. To achieve this goal, this study

seeks to fulfill the following objectives:

1. To formulate the relationship between sample size and the Representational Power of the

PCA-based 3D face shape model.

2. To enhance the Representational Power of the PCA-based model in order to increase its

capability in depicting new 3D faces of given face images.

3. To categorize the effect of specific factors (feature points, regularization parameter, and

Tikhonov matrices) on regularization based 3D face reconstruction using PCA.

4. To propose a distance-based model model to find an appropriate regularization parameter

for an optimal and plausible solution.
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1.5 Research Scope and Limitation

There are various limitations with respect to the data, which may affect the representational

power of the statistical learning model. These limitations include:

1. Sample Size: The available sample size (100 3D faces) is particularly small and restricted

to faces of only middle aged people. This sample size may not be sufficient to build a

powerful reference model.

2. 3D face examples available in the dataset are neutral faces and do not represent any

common facial expressions. This means that there are some difficulties which hinder the

reconstruction of expressional face images using the learning model.

1.6 Research Contributions

This study introduces the following significant contributions to the body of knowledge:

1. Formulating the functional relationship between sample size and the Representational

Power (RP) of the model.

2. A novel adaptive model to increase the RP of the statistical PCA face shape model for

3D face shapes reconstruction.

3. Examining the effect of common factors such as the regularization matrix, the number of

feature points, and the regularization parameter λ on PCA-based 3D face reconstruction

using Tikhonov regularization.

4. A novel distance-based model to automatically find an optimal regularization parameter

that produces a plausible solution.
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1.7 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 reviews the literature on 3D face reconstruction from 2D images. It first covers

3D face reconstruction from images and focuses on approaches of reconstruction from single

2D images. Second, it reviews the various statistical learning-based methods. Third, it explains

the statistical 3D face modeling and emphasizes PCA-based models. Finally, it reports a variety

of techniques used for 3D face reconstruction.

Chapter 3 introduces the research methodology and the proposed framework of the PCA-

based 3D face reconstruction system. The 3D face reconstruction from a limited number of

feature points using Tikhonov regularization is discussed. Finally, the problems of low accu-

racy and efficiency of the PCA-based 3D face reconstruction are addressed.

Chapter 4 encompasses an empirical study on the RP of 3D PCA-based face models using

USF Human ID 3D database. A series of experiments are designed to examine the effect of

training set on the RP of the model. The common factors that generally affect Tikhonov reg-

ularization are also studied. These factors are the regularization Tikhonov matrix (stabilizing

item), the number of feature points and regularization parameters. The experimental results of

these factors are reported in this chapter.

Chapter 5 introduces a novel adaptive PCA-based model to increase the RP of the model

in order to improve its capability in depicting new 3D face shapes of given input face images.

The adaptive PCA-based model is used to reconstruct a 3D shape face from the input 2D face

image. The technique used to deform the training data is explained. The experimental results of

the proposed model are also discussed. Finally, the proposed model is evaluated and compared

with the standard PCA-based model.
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Chapter 6 introduces a novel distance-based model to automatically find an appropriate

regularization parameter for an optimal 3D face shape reconstruction. An evaluation and a

comparison are carried out on the results of the distance-based model compared with best

solution in terms of accuracy. Moreover, the comparison has been carried out on the results of

the overall system (adaptive model and distance-based model) with existing methods in terms

of efficiency.

Chapter 7 concludes the thesis by presenting the thesis summary and future work.

9



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter examines the literature on 3D faces reconstruction from single 2D images. Partic-

ularly, this chapter emphasizes statistical 3D face modeling using examples. It also intends to

look into the limitations of the existing techniques of the 3D faces reconstruction.

The literature review is divided into four main sections. The first section covers a review

of 3D face reconstruction from 2D images. The second section covers a variety of statistical

learning-based methods. The third section explains the PCA-based 3D face modeling and

concentrates on PCA-based models. Finally, techniques used for 3D face reconstruction are

reported.

2.2 3D Face Reconstruction

Reconstruction of 3D faces is an important issue in the fields of computer vision. 3D facial

reconstruction systems are to recover the three dimensional shape of individuals from their 2D

pictures or video sequences. The need for 3D face reconstruction has grown in applications

such as virtual reality simulations, face recognition (Elyan and Ugail, 2007; Fanany et al.,

2002; Avilaq and Rezaie, 2013) and plastic surgery simulations (Bottino et al., 2012). For

Example, in biometric identification, face recognition rate could be significantly improved by

incorporating the 3D face shape with 2D face images (Hu et al., 2004).
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3D faces can be reconstructed based on single images, or multiple images. Higher level

abstraction taxonomy for 2D image-based 3D face reconstruction techniques can be seen in

Figure 2.1.
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Figure 2.1: Taxonomy of a higher level of abstraction on the 3D face reconstruction techniques
from 2D images.

Approaches based on 3D face reconstruction from multiple images include video-based

and silhouette-based methods. Video-based techniques are used for 3D face reconstruction

from images captured from different viewpoints. There are a diverse number of techniques

based on video frames such as reconstruction using generic model morphing (Liu et al., 2001),

by using linear basis functions that do not require a generic model (Bregler et al., 2000), and

Shape From Motion (SFM) (Amin and Gillies, 2007; Chowdhury et al., 2002) where motion

information of feature points from multiple video frames are extracted to obtain 3D reconstruc-
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tion. However, morphing using SFM needs one or more images taken from different viewpoints

and pre-knowledge of the generic shape of the object.

In Silhouette-based methods (Moghaddam et al., 2003; Lee et al., 2003), a 3D face is recon-

structed by using multiple face outlines extracted from several face images or video sequences.

The silhouettes captured from different angles provide details related to the geometrical struc-

ture of the face that can be used to generate a 3D face. Silhouette-based methods have been

combined with other 3D reconstruction methods such as statistical methods (Wang et al., 2005;

Moghaddam et al., 2003; Lee et al., 2003). This study will focus on the problem of recon-

structing 3D face shapes from single 2D images. This technique does not require setting up

multiple cameras to capture the objects simultaneously and thereby it is not limited to working

in controlled environments.

There are many approaches for the reconstruction of 3D faces from single images. One of

the earliest techniques being utilized is Shape-from-Shading (SFS) (Atick et al., 1996; Zhang

et al., 1999; Smith and Hancock, 2006), which capitalizes the idea that the depth information

is related to the intensity of a face image acquired through a given/chosen reflectance model.

SFS estimates the illumination direction in the 2D image to infer the 3D shape of the surface.

It has been shown SFS suffers from poor global shape control and being difficult to provide an

accurate reflectance model for various environments (Atick et al., 1996).

Recently, a novel method has been proposed by Kemelmacher-Shlizerman and Basri (2011)

that combines shading information with generic shape information derived from a single refer-

ence model by utilizing the global similarity of faces. This method uses only a single reference

model of a different person’s face to reconstruct the 3D face shape. It does not need a learn-

ing stage to build a model for representing input faces. Their algorithm starts with estimating

parameters that best fit the reference model to the input image. These parameters are lighting,
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pose and depth. Then the estimated depth and spherical harmonics coefficients are used to

estimate the albedo. The involved fitting process requires boundary conditions and parameters

to be adjusted during the reconstruction process. In addition, not counting on a 3D reference

model which keeps shape similarities with the input image may result in inaccurate 3D shape

estimation.

There are also conventional (non statistical) learning-based methods, such as neural net-

work (Nandy and Ben-Arie, 2001; Lin et al., 2005) and statistical learning-based methods, such

as Hidden Markov Model (HMM) (Nagai et al., 2002), Markov Random Field (MRF) (Saxena

et al., 2009), and analysis by synthesis using 3D Morphable Model (3DMM) (Blanz and Vetter,

1999).

Lin et al. (2005) proposed a neural network based adaptive hybrid-reflectance 3D surface

reconstruction model. They used the back-propagation learning algorithm to train the neural

network. The pixel values of the 2D image have been used as inputs while the output of the

neural network was the normal vectors. The normal vectors can then be applied to 3D surface

reconstruction by enforcing integrability method.

HMM has been used to model the correspondence between an intensity image and its depth

information by learning knowledge of objects from number of samples containing pairs of an

intensity image and depth information.

MFR is a generic and state-of-the-art method for unstructured 2D still images. It has been

applied to numerous numbers of scenic pictures, including those containing faces. However,

the result is not satisfactory because the face area is probably segmented into one plane because

of its fairly shading/feature variations. MRF is based on local model to recover the 3D surfaces,

which usually suffer from global shape controllability.
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Analysis by synthesis is an approach in which the parameters of the 3D statistical model

are adjusted to increase the accuracy between the reconstructed face and the 2D face im-

age (Widanagamaachchi and Dharmaratne, 2008). 3DMM has made itself a milestone in 3D

face reconstruction area for its realistic results. The strength of the method is that the 3D train-

ing faces were obtained using 3D scanners which not only provide the depth information, but

also colors/textures. This review will focus on statistical learning methods using 3D examples.

In the last few years, vast research has been performed on 3D face modeling whereas many

different approaches for 3D face reconstruction are proposed. However, the accuracy of recon-

structed 3D faces still needs some improvements for the real world applications. Consequently,

this review will look at existing techniques and focus on the current and common approaches.

The presence of 3D scanning technology lead to create more accurate 3D face model ex-

amples (Luximon et al., 2012). Examples based modeling allows more realistically face re-

construction than other methods (Widanagamaachchi and Dharmaratne, 2008; Levine and Yu,

2009). However, all learning based methods suffer from the limitation that the learning model

is heavily dependent of the training data. Consequently, the quality of face reconstruction using

examples is affected by the chosen examples.

For expressional face images that have not been trained it cannot be reconstructed properly.

Some remedy to the problem has been sought by constructing 3D face basis from various ex-

pressional face images using Active Appearance Model (AAM) (Zhu et al., 2006), but proved

marginal reconstruction accuracy. Other methods dealing with expressions can be found in

(Hahnel et al., 2006; Xu and Luo, 2006; Lu and Jain, 2008; Wang and Lai, 2011), but most

of these methods are mainly designed for recognition purpose and require different 3D ex-

pressional faces to be scanned which is somewhat taxing and not applicable in uncontrolled

environments. On the other hand, an incremental Structure from Motion (SFM) approach to
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learn a generic 3D face model from 2D face images containing different expression is proposed

in (Gonzalez-Mora et al., 2010). The main concern of this method is the utilizing of existing

2D face databases to learn a generic 3D face model based on SFM. The proposed technique

requires one or a reduced number of input images to reconstruct a 3D face shape.

Furthermore, Kemelmacher-Shlizerman and Basri (2011), and Gonzalez-Mora et al. (2010)

urged that learning a generic 3D face model requires large amounts of 3D faces. Moreover,

analytical results in Chapter 4 show that the size of training set increase, the more accurate

the model can represent a new face. The existing statistical 3D face modeling approaches are

summarized in a taxonomy (see Figure 2.2). 
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Figure 2.2: Taxonomy of the statistical 3D face modeling approaches covered in this review.
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2.3 Statistical Learning-Based Methods (Example-Based Methods)

The strength of example-based methods (e.g. 3DMM) is that the 3D training faces are obtained

using 3D scanners which not only provide the depth information, but also the colors/texture.

However, all learning based methods suffer from the limitation that the learning model is heav-

ily dependent of the training data. This section provides an overview of different types of

statistical learning 3D face models used for 3D face reconstruction purposes. More attention

will be focused on 3DMM.

2.3.1 Hidden Markov Model (HMM)

HMM is one of the statistical learning techniques that used to model the corresponding be-

tween an intensity image and its depth information. Nagai et al. (2002) proposed an approach

called shape from knowledge, which is trained from number of samples containing pairs of

an intensity image and depth information. The intensity (appearance model) is represented by

knowledge and the 3D shape is represented by the depth information. The method was applied

to face and hand images for recognition and reconstruction purposes.

2.3.2 Markov Random Field (MRF)

MRF is used for each small homogeneous patch in the image. It has been applied to model both

image depth and the relationships between different parts of the image (Saxena et al., 2009) for

estimating the 3D scene structure from single still images. The proposed algorithm in (Saxena

et al., 2009) segments the image into small homogeneous patches and uses MRF to infer the

3D position and orientation of each patch.
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2.3.3 Canonical Correlation Analysis (CCA)-based method

CCA is used to implement a method for generating face depth maps from a color frontal face

image. For training, 150 pairs of face images and their corresponding depth maps were needed

to explain the correlation between the training pairs whereas the dimensionality of the trained

data was much more than the number of training data (Reiter et al., 2006). An overview of

their method is illustrated in Figure 2.3. A reasonable 3D depth map prediction is achieved

using a simple matrix multiplication which does not require an iterative optimization method.

However, this method is only applicable for frontal 2D face images taken under controlled

illumination.

Figure 2.3: Overview of CCA-based algorithm: In the training process, Canonical factors pairs
are generated from a set of training examples. During testing, the factors pairs are used for the
prediction of a 3D map from texture data. Reiter et al. (2006)

2.3.4 3D Morphable Model (3DMM)

A 3D human face model is represented by its shape and texture where the shape is represented

by the 3D coordinates of all vertices in three-dimensional space and texture is represented by

the RGB color of each vertex. The 3D morphable model (3DMM), developed by (Blanz and

Vetter, 1999) decomposes any 3D face model into a linear combination of shape and texture
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vectors of set of example faces (100 face models) which obtained by 3D scanners. The linear

combination is controlled by shape and texture parameters α and β which can be considered as

weights. In order to build the 3D morphable model, Blanz and Vetter performed PCA on shape

and texture information, obtained from 100 aligned 3D faces, separately. Section 2.4 illustrates

PCA-based statistical 3D face modeling using examples.

The main idea of Blanz and Vetter method is that given a sufficiently large database of 3D

face models, any arbitrary face can be generated by morphing between the ones in the database.

An analysis-by-synthesis method have been employed for fitting the model to the input 2D

image. They used Stochastic Newton Optimization (SNO) algorithm to estimate all model

parameters assuming that the pixels are independent and identically distributed (Romdhani,

2005) which is difficult and time-consuming problem.

3DMM has made itself a milestone in 3D face reconstruction area for its realistic results.

The strength of the method is that the 3D training faces were obtained using 3D scanners which

not only provide the depth information, but also the color/textures. However, in many cases,

the produced face is not realistic. This is because the fitting algorithm estimates the shape,

texture and image condition from the pixel intensity only (Romdhani, 2005). Section 2.4.3

demonstrates different methods of fitting a morphable model to an input face image.

2.4 PCA-Based 3D Face Modeling

This section provides an overview of parametric deformable models that describe the deforma-

tions of the 3D surface/texture. In the literature, the deformable models are usually used with

model-fitting algorithms that deform and fit the model to input data.

Building a generic statistical shape model of an object depends on the observation within
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the training set. The common factors that are generally concerned are the size of the training set

and the different choices of the examples in the training set. This section focuses on Principle

Component Analysis (PCA)-based statistical 3D face modeling using examples. It is a popular

techniques for modeling 3D faces and has been widely used for 3D face reconstruction and face

recognition. An earlier idea to use PCA was to employ it for implementing a face recognition

system (Turk and Pentland, 1991). In order to build a PCA-based models, PCA is performed

on the set of training samples. The eigenvectors and corresponding eigenvalues that define the

variability within the training set are computed by applying PCA on the the covariance matrix

of training samples (Smith, 2002).

The following section demonstrates 3D face shape modeling using PCA. Modeling texture

information is similar.

2.4.1 3D Face Shape Modeling using PCA

The 3D face shape model is a linear combination of eigenvectors obtained by applying PCA

decomposition to model shape variability. Each training 3D face shape is represented by the 3D

coordinates of all vertices in the triangulated mesh, where shape vectors are given as follows:

si = (xi1,yi1,zi1, ...,xin,yin,zin)
T , (2.1)

where si has the dimension n× 3, n is the number of vertices and i = 1, ...,m (number of

face shapes).

Based on this representation, the mean 3D face among the training set is estimated and

the deviation of each training sample from the mean is calculated. PCA is then applied on the

covariance matrix. As a result, a new 3D shape s can be generated using the following equation
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s = s0 +
m

∑
i=1

αiei , (2.2)

where s0 is the mean 3D shape, ei represent the ith eigenvector of the covariance matrix, αi is

the coefficient of the shape eigenvector ei and m is the number of significant eigenvectors.

The coefficient of a face shape si can be calculated using the following equation

α = ET (si− s0) , (2.3)

where E = [e1,e2, ...,em] are the eigenvectors of the covariance matrix. The projected new face

shape can be represented by applying Equation (2.2).

Based on this demonstration a 3D face can be represented by a set of shape parameters and

a set of texture parameters. These parameters can perform as model descriptors that can be

estimated to reconstruct new 3D face from input face image. Figure 2.4 illustrates the building

process of PCA-based 3D face model.
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Figure 2.4: Block diagram illustrating a general method for building 3D face model based on
PCA.
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Accordingly, the 3D reconstruction problem is to search for the best possible fitted shape

and texture parameters such that the deformed model optimally matches the input 2D im-

age (Blanz and Vetter, 1999).

2.4.2 Different Applications of PCA-Based 3D Face Models

PCA-based 3D face models have been used in different applications related to 3D faces such

as 3D face modeling (Luximon et al., 2012), 3D face reconstruction (Blanz and Vetter, 2002,

1999; Basso and Vetter, 2005), 3D face recognition Blanz and Vetter (2003), age Synthesis Hut-

ton et al. (2001), and face tracking and animation (Blanz et al., 2003). Regarding to 3D face

reconstruction, variations of PCA-based models have been used by many researchers. A sum-

mary of PCA-based models variation is given in Table 2.1.

Table 2.1: Different Applications of PCA-based 3D face models

Author/Year Description
Atick et al.
(1996)

PCA has been applied on cylindrical coordinates instead of cartesian
coordinates. It was used to derive a low-dimensional parametrization
of face shape space from 200 laser-scanned 3D faces. Using this rep-
resentation, an algorithm is developed to solve SFS.

Hutton et al.
(2001)

PCA was used for building a dense face surface model from example
faces. The surfaces were aligned using thin-plate spline (TPS) based
on 9 manually selected points on each training surface

Blanz and
Vetter (1999,
2003)

They applied PCA on shape and texture vectors of 100 exemplar faces
to build 3D morphable model(3DMM). The shape and texture were
processed separately. The main idea is that any 3D face can be mod-
eled as a linear combination of shape and texture vectors of the 100
exemplar faces. The linearity combination is fully controlled by shape
and texture parameters, which can be considered as weights. An anal-
ysis by synthesis algorithm was employed for fitting the model to the
input 2D face image to estimate the model parameters.

Gonzalez-
Mora et al.
(2010)

A prior shape basis was computed by performing PCA on existing 3D
shapes. These shape basis function as prior knowledge about possible
solution to regularize the incremental SFM which is proposed to learn
a generic 3D face model from large number of 2D images. PCA was
used at the first iteration to estimate the deformation basis of the shape.

Luximon et al.
(2012)

PCA was applied on 78 males and 78 females separately to model the
variation among the 3D face and head shapes. A separate PCA-based
male model and PCA-based female model were build using all head
vertices whereas the models have the same amount of vertices.
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2.4.3 Model-Fitting Algorithms

PCA-based 3D face reconstruction approaches have generally two main stages: The model

building stage and the model fitting stage. 3DMM is trained with 3D scan faces, which can

be matched with new face images by an optimization method. The estimated parameters can

then be used to generate the 3D face of the input image. The optimization is mainly based on

the minimization of the intensity difference between the model and the input face. The process

of 3DMM fitting to the input face can be done iteratively (Blanz and Vetter, 1999), matrix

multiplication (Jiang et al., 2005; Blanz et al., 2004), or any non-linear optimization algorithm

as presented in (Lee et al., 2005; Wang et al., 2011)

Table 2.2 describes some fitting algorithms used to estimate the values of shape and texture

parameters for generating novel 3D faces.

In the last few decades much interest has been shown in the area of extracting 3D surfaces

from observed 2D images by using statistical models. These models can be used as prior

information which can be incorporated with a fitting algorithm to estimate the complete 3D

face shape from the given information such as a set of facial feature points. One of the most

appropriate methods that can be employed is the Tikhonov regularization (Jing et al., 2009).

It is a popular and effective method that can be easily incorporated with prior information

embedded in a closed-form solution which can be readily obtained by applying PCA on the 3D

face shapes. Importantly, reconstruction by means of a Tikhonov regularization method can be

computed in one step (non-iterative way), thereby enabling faster 3D reconstructions. Hence,

Tikhonov method is an efficient choice for several 3D oriented interactive tools. The following

subsection will review a fitting algorithm based on Tikhonov regularization method.
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Table 2.2: Model-fitting algorithms

Algorithm/ Ref-
erences

Remarks

Stochastic New-
ton Optimization
(SNO) (Blanz
and Vetter, 1999,
2003)

The SNO algorithm has been used to estimate the model parameters for shape
and texture. The algorithm was also used to optimize 22 rendering parameters
concatenated into a vector which include pose angels, 3D translation, ambient
light intensities, directed light intensities, the angles of the directed light, focal
length, color contrast, gains and the offsets of color channels.

Bayesian Ap-
proach (Blanz
and Vetter, 2002)

The proposed method finds the face shape vector with maximum posterior proba-
bility, given examples data. The 3D shape face model is estimated from small set
of facial points using a morphable face model. The approach based on example-
based vector space and on statistical properties of the 3D face data.

Regularization
(Jiang et al.,
2005; Blanz
et al., 2004)

Jiang et al. compute the regularization in an iterative manner to estimate the
shape parameters using 84 feature points. The position of the feature vertices
on the face were forced for accurate alignment of the feature points on the 2D
image. They perform an additional interpolation method (Kriging interpolation)
to compute the displacement of the non-feature vertices. Blanz et al. computed
the regularization in a direct non iterative way using Singular Value Decompo-
sition (SVD). The regularized algorithm computed an optimal tradeoff between
the surface fitting and plausibility in term of prior probability. 17 feature points
have been used for shape reconstruction.

2D face assisted
3D face recon-
struction (Wang
et al., 2011)

The shape and texture parameters of the 3DMM have been estimated to opti-
mize the objective energy function which takes not only the frontal face image
intensity, but also 2D face fitting results into account. The 2D face-fitting algo-
rithm is called Random Forest Embedded Active Shape Model. The optimization
algorithm uses Levenberg-Marquardt method, which is non-linear optimization
problem.

Parameters es-
timation using
a bilinear illu-
mination model
(Lee et al., 2005)

Using both morphable model and illumination model, the parameters of the mor-
phable model are estimated given a single photograph. The combined two mod-
els leads to a simple fitting method that deal with illumination and complex face
reflectance. The pose parameter (rotation and translation) of the face is also es-
timated using 9 feature points. The illumination model uses higher-order SVD
that describes 3D shape and illumination variation. Downhill simplex method, a
non-linear minimization algorithm, is employed to optimize the cost function.

Multi-feature fit-
ting (MFF) al-
gorithm (Romd-
hani, 2005)

Romdhani proved experimentally that the minimization of intensity difference
between the face and a model instance does not always give the optimum posi-
tion of the model. To deal with this problem, he included additional image based
and model-based features to the objective function. Image-based features depend
on edge information, pixel intensity, the position of anchor points in the input
image, and specular highlights. Model-based features are the distance between
the model instance and the mean face shap/texture and texture related constraints
(acceptable limits of texture). These additional features ensure that the candi-
date model instances are plausible and the estimated texture lye within a specific
range. Romdhani show that MFF algorithm has a smoother cost function than
SNO algorithm, which does not require to use a stochastic optimization algo-
rithm. Consequently, much fewer iteration are needed to reach convergence.
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2.4.3(a) Tikhonov Regularization-Based Fitting Algorithm

For robust, plausible and stable results, the regularization mechanism needs to find a tradeoff

between fitting 3D shape to the given 2D facial landmarks and producing plausible solution

in terms of prior knowledge (Blanz et al., 2004; Zhu et al., 2013). The Standard Tikhonov

Regularization method (STR), which uses the identity matrix as a regularization matrix, is used

to estimate the model parameters by solving the inverse problem and preventing the overfitting.

However, the quality of the reconstructed face shapes is very similar to the mean face shape

(excessive smoothness) which leads to loss of information about the reconstructed images (Jing

et al., 2009).

Furthermore, by using Tikhonov regularization, the problem of choosing an appropriate

regularization parameter arises. Choosing too large regularization parameter causes the solu-

tion to be over-smoothed. Otherwise, too small regularization parameter leads to overfitting. In

other words, the regularization parameter balances the tradeoff between the excessive smooth-

ing of the reconstruction and the data misfit.

There are numerous strategies for determining the regularization parameter (Honerkamp

and Weese, 1990). Some mathematical methods such as the discrepancy principle, the Tikhonov

prior estimation, the Engl criteria, and Arcangeli criteria method need prior information about

the data noise (Jing et al., 2009). In practice, however, such prior information cannot be easily

acquired and it is highly impractical to obtain the noise characteristic in real time (Jagannath

and Yalavarthy, 2012). Other methods including L-curve and generalized Cross Validation

need less prior information but are time consuming. In addition, some factors can influence the

parameter selection. These factors include e.g. diffusion of errors in the process of numerical

computation, and the random fluctuation of errors in the input data (Jing et al., 2009). Fur-

thermore, these methods have also their limitations. For example, although in the last decade,
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L-curve gained attention for determining optimal regularization parameters, yet, however, its

limitation is of having asymptotic property which means it is non convergent (Agarwal, 2003).

A different strategy is to select the regularization parameter in a straightforward way and

setting its value as constant for all images (Ying et al., 2004). For example, in (Jing et al., 2009)

the range of the regularization parameter was determined empirically by solving typical cases

in advance.

However, empirically determination of regularization parameter leads to an unwanted bias

in the solution. Furthermore, it varies for different problems and requires prior information on

the target images as well as the noise in the data.

This study uses a different strategy for optimal selection of the regularization parameter.

The distance from the average face shape and the reconstructed face shape is employed through

an optimization function to control the regularization process. A new approach based on this

distance is proposed in order to determine an optimal regularization parameter which ensures

that the obtained 3D face shape is plausible and not over-smoothing.

2.5 Techniques used for 3D Face Reconstruction

In this section, general techniques will be demonstrated and discussed mainly used for build-

ing PCA-based 3D face models as well as fitting the PCA-based model to new faces. Such

techniques are frequently employed in different 3D reconstruction approaches reported in the

literature.
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