Hydrothermal Synthesis and Structural Properties of V₂O₅ Nanoflowers at Low Temperatures

N.M. Abd-Alghafour¹, Naser. M. Ahmed², Z. Hassan³, Munirah Abdullah Almessiere⁴

¹Iraqi Ministry of Education, Al-Anbar, Iraq
¹University of Al-Anbar, College of Science, Al-Anbar, Iraq
²School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
³Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
⁴Physics Department, College of Science, University of Dammam, Saudi Arabia

na2013bil@gmail.com

Abstract. Vanadium pentoxide nanoflowers were synthesized through a simple hydrothermal method at low temperatures. The structure was fabricated by using NH₄VO₃ and oxalic acid as precursors with 0.1 M solution concentration. The morphology and structural properties of the nanoflowers were characterized using FESEM, XRD, Raman, and UV-Visible spectroscopy. The results reveal an orthorhombic structure with preferred orientation along (001) plane of the prepared V₂O₅ nanoflowers. Raman peaks also expressed the same structural features. FESEM images showed the V₂O₅ nanoflower with diameters in the range of 60-80 nm and length in 600-800 nm. A red-shift was observed in the characteristic absorption peak of V₂O₅ nanoflowers, which are attributed to the decrease of the bandgap of the samples.