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PENGENALPASTIAN RESIDU PENTING UNTUK PEMANGKINAN DAN 

SPESIFIKASI SUBSTRAT DALAM KOLIN A KINASE MANUSIA DENGAN 

MUTAGENESIS 

ABSTRAK 

Fosfatidilkolina (PtdCho) merupakan komponen penting untuk membran eukaryotik 

dan sebahagian membran prokaryotik. Kolina kinase (CK) ialah enzim pertama dalam 

laluan CDP-kolina. CK menukarkan kolina kepada fosforilkolina. CK dijumpai di 

dalam bahagian supematan sel. CK telah dikenali sebagai satu sasaran baru untuk terapi 

anti-kanser. Untuk mengenalpasti residu asid amino CK alfa 2 manusia (hCKa2) yang 

penting untuk proses pemangkinan, aspartat di posisi 342 telah dimutasi kepada 

asparagina. Binaan mutan telah berjaya diklonkan ke dalam vektor pET14b dan lebihan 

diekspresi dalam E.co/i BL2l(DE3). Protein mutan D342NhCKa2 telah menunjukkan 

kehilangan aktiviti dramatik, hanya 12.46% daripada aktiviti protein asli yang tinggal. 

Protein mutan menunjukkan peningkatan nilai Km sebanyak 1.18 kali untuk kolina, 

manakala peningkatan nilai Km untuk etanolamina adalah 598 kali berbanding dengan 

protein asli. Nilai Km dan Vmax untuk ATP bagi protein mutan meningkat 3 dan 4 kali 

masing-masing. Peningkatan nilai Km mencadangkan bahawa residu ini penting untuk 

pelekatan substrat dan memainkan peranan dalam proses pemangkinan. Mutasi pada 

aspartat 342 mungkin menyebabkan perencatan aktiviti atau gangguan bagi kompleks 

homo-dimer dalam hCKa2. 
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IDENTIFICATION OF IMPORTANT RESIDUES FOR CATALYSIS AND 

SUBSTRATE SPECIFICITY IN HUMAN CHOLINE KINASE BY 

SITE-DIRECTED MUTAGENESIS 

ABSTRACT 

Phosphatidylcholine (PtdCho) is a prominent constituent of eukaryotic and some 

prokaryotic membranes. Choline kinase (CK), the initial enzyme of the COP-choline 

pathway, mediates the conversion of choline to phosphorylcholine and is localized in 

the supernatant fraction of cells. CK has been recognized as a new target for anticancer 

therapy. To identify the amino acid residue of human CK (hCK) that is important for 

catalysis, conserved aspartate at position 342 in hCKa2 was mutated to asparagine. The 

mutant construct was successfully cloned into pET14b vector and overexpressed in 

E. coli BL21 (DE3). The mutant protein D342NhCKa2 showed dramatic loss of activity, 

only 12.46% of wild type protein activity remained. The Km for choline of the mutant 

protein increased 1.18 folds while Km for ethanolamine increased 598 folds compared to 

wild type. The Km and V max for ATP of mutant protein increased 3 and 4 folds 

respectively. The increased Km suggested that the residue is important for the binding of 

the substrates and play a role in catalysis. Mutation of aspartate 342 might also cause 

the activity inhibition or disruption of homo-dimer complex in hCKa2. 
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CHAPTER 1.0 INTRODUCTION 

Phospholipid plays many important roles in nature. Their best known role is to form 

membrane bilayers, critical components of cells of all earthly life form. The 

phospholipids bilayer that surrounds mammalian cells consists of four major 

phospholipids components: phosphatidylcholine (PtdCho ), sphingomyelin, 

phosphatidylethanolamine and phosphatidylserine. The choline containing lipids 

(phosphatidylcholine and sphingomyelin) are predominantly (60-80%) in the 

extraceHular leaflet, whereas the aminophospholipids (phosphatidylethanolamine and 

phosphatidylserine) are predominantly (60-80%) in the inner membrane leaflet, 

although this distinction does vary with tissue types (Sher et al, 2006). 

Phosphatidylcholine and phosphatidylethanolamine represent 44% and 18% of total 

phospholipids in yeast, respectively. In addition these two phospholipids represent 

40-50% and 35-40% of the total phospholipids in Plasmodium falciparum (Pessi et al, 

2004). 

1.1 Phosphatidylcholine 

Phophatidylcholine (PtdCho) is the most abundant class of phospholipids in eukaryotic 

cells. Phosphatidylcholine also present in select prokaryotes including Treponema 

denticola, whose genome encodes a fusion protein containing choline kinase and 

CTP:phosphocholine cytidylyltrasnferase activity (Kent et al, 2004). 

Phosphatidylcholine is comprised of hydrocarbon chains attached to 



~lycerophosphocholine through acyl, alkyl or alkenyl linkage (Figure I). It is a neutral 

or zwitterionic phospholipid over a pH range from strongly acidic to strongly alkaline. 

1.1.1 Biosynthesis of phosphatidylcholine 

The biosynthesis of phosphatidylcholine is accomplished by three distinct pathways. In 

eukaryotic organisms, phosphatidylcholine can be synthesized by two alternative 

biosynthesis pathways, COP-choline pathway or the methylation pathway (Figure 2) 

(Lopez-Lara & Geiger, 2001 ). Many prokaryotes lack of phosphatidylcholine but it can 

be found in significant amounts in membrane of distantly related bacteria such as 

Rhizobacteria and Spirochetes. Enzymatic methylation of phosphatidylethanolamine via 

methylation pathway was thought to be the only biosynthesis pathway to yield 

phosphatidylcholine in bacteria. However, a choline dependent pathway for 

phosphatidylcholine biosynthesis has been discovered in Sinorhizobium meliloti (Figure 

3) (Sohlenkamp et al, 2003). 

COP-choline pathway is also known as Kennedy pathway. The first step of the pathway 

is the phosphorylation of choline to phosphorylcholine (PChol). Choline kinase (CK) 

catalyzes this phosphorylation by ATP in the presence of magnesium ion (Mg2+), 

yielding phosphorylcholine and ADP. CTP:phosphocholine cytidylyltransferase (CCT) 

catalyzes the formation of COP-choline (COP-Cho) from phosphorylcholine and CTP. 

Cholinephosphotransferase (CPT) catalyzes the final condensation reaction of 

COP-choline with I ,2-diacylglycerol to form phosphatidylcholine (Kent, 2005). 
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Figure I: Fonnula of phosphatidylcholine (www.lipidlibrary.co.uk). 
Phosphatidylcholine consists of hydrocarbon chains bind to the glycerophosphocholine 
through acyl, alkyl or alkenyllinkage. R' and R" represent the alkyl parts of fatty acyl 
residues. 
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Figure 2: Phosphatidylcholine biosynthesis in eukaryotes ( Lopez-Lara & Geiger, 2001 ). 
Phosphatidylcholine is synthesized by two pathways: COP-choline pathway (left) or 
methylation pathway (right). Choline kinase (CK), CTP: phosphocholine 
cytidylyltransferase (CCT) and choline phosphotransferase (CPT) catalyse the reactions 
in the COP-choline pathway. While phosphatidylethanolamine methyltransferase (Pmt) 
catalyses the three steps methylation of phosphatidylethanolamine in the methylation 
pathway. SAM, S-adenosylmethionine act as the donor of methyl group; SAH, 
S-adenosylhomocysteine; Rl and R2 represent the alkyl parts of fatty acyl residues. 
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Figure 3: Phosphatidylcholine biosynthesis in the Sinorhizobium meliloti (taken from 
Sohlenkamp et al, 2003), the third phosphatidylcholine biosynthesis pathway ( __.. ). 
Choline from the plant root exudates reacts with COP-diacylglycerol to form 
phoshatidylcholine and CMP. Phosphatidylcholine synthase (Pes) involve in this 
enzymatic activity. Psd: phosphatidylserine decarboxylase; SAM: 
S-adenosylmethionine; SAH: S-adenosyl homocysteine. Beside methylation pathway 
for the phosphatidylcholine synthesis also shows. 
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Phosphatidylcholine molecules produced from the COP-choline pathway were mainly 

comprised of medium chain, saturated fatty acid species (DeLong et al, 1999). 

The second pathway for the phosphatidylcholine biosynthesis involves sequential 

methylation of phosphatidylethanolamine, with S-adenosylmethionine (SAM) as the 

source of methyl groups (Figure 2). Phosphatidylethanolamine methyltransferase 

catalyzed the first methylation process in this pathway to produce 

monomethylphosphatidylethanolamine (MMPE). While the second and third 

methylations are catalyzed by phospholipids methyltransferase yielding 

dimethylphosphatidylethanolamine (DMPE) and phosphatidylcholine respectively 

(Kodaki & Yamashita, 1987). Although methylation pathway is a minor pathway for the 

higher organisms, it becomes the main route to phosphatidylcholine in most bacteria 

species, yeasts and mammalian hepatocytes (DeLong et al, 1999). In addition, 

phosphatidylcholine molecules from the phosphatidylethanolamine methylation 

pathway were much more diverse and comprised of significantly more long chain, 

polyunsaturated species. Phosphatidylcholine species from the methylation pathway 

contained a higher percentage of arachidonate and are more diverse than those from 

COP-choline pathway (DeLong et al, 1999). 

The third pathway, so far found in certain bacteria, involves the reaction of choline with 

COP-diacylglycerol to form phosphatidylcholine and CMP (Figure 3).The pathway for 

biosynthesis in S. meliloti involves phosphatidylcholine synthase (Pes) to form 
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phosphatidylcholine in one step (Kent, 2005). A number of symbiotic (Rhizobium 

leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens) 

bacteria seem to posses the phosphatidylcholine synthase pathway and suggest that the 

eukaryotic host functions as the provider of choline for this pathway (Sohlenkamp et al, 

2003). 

1.1.2 Functions of phosphatidylcholine 

Several recent discoveries revealed that the importance of phosphatidylcholine in the 

mammalian cell physiology. Alterations of phosphatidylcholine metabolism are 

associated to different key cellular events such as oncogenic transformation and 

programmed cell death. Perturbation of phosphatidylcholine synthesis can lead to 

inhibition of growth or even cell death. While enhanced synthesis of 

phosphatidylcholine appears to occur in cancer cells and solid tumours. This may 

provide a target for therapeutic agents (Cui & Houweling, 2002). 

Together with other phospholipids like phosphatidylethanolamine and lipids, 

phosphatidylcholine become the major structural component of the eukaryotic cellular 

membrane (Exton, 2000). Because of the general cylindrical shape of the molecule, 

phosphatidylcholine spontaneously organizes into bilayers. So it is ideally suited to 

serve as the bulk structural element of biological membranes (Culis & Kruijff, 1979). 

Phosphatidylcholine is a key player in balancing the proportions of bilayer and 

non-bilayer lipids that determine membrane intrinsic curvature. This balance has been 
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recognized as a novel criterion in the regulation of yeast membrane lipid composition 

(de Kroon, 2007). 

In addition, phosphatidylcholine also has a role in signaling transduction as a source of 

lipid signaling molecules. It serves as precursor for the production of lipid second 

messengers, like phosphatidic acid, lysophosphatidylcholine and platelet activating 

factor, each with important signaling functions (Exton, 2000). Beside, 

phosphatidylcholine is the biosynthetic precursor of sphingomyelin and as such must 

have influence on the many metabolic pathways that constitute the sphingomyelin 

cycle. 

Recently phosphatidylcholine has been suggested to be involved in specific 

lipid-protein interaction with the yeast mitochondrial glycerol-3-phosphate 

dehydrogenase (Gut2) based on the result of a photolabeling approach (Janssen et al, 

2002). 

1.2 Phosphatidylethanolamine 

Phosphatidylethanolamine is one of the major phospholipids constituents m 

biomembranes, second only to phosphatidylcholine. Phosphatidylethanolamine is 

mainly found in the cytoplasmic leaflet, while phosphatidylcholine is mainly found in 

the extracellular leaflet. It also serves as precursor for phosphatidylserine, synthesized 

by a base exchange enzyme, and phophatidylcholine, synthesized by methylation 
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enzymes (Uchida, 1997). 

1.2.1 Biosynthesis of phosphatidylethanolamine 

Phosphatidylethanolamine is mainly synthesized through two pathways: 

COP-ethanolamine pathway (Figure 4) and decarboxylation pathway (Figure 5). The 

COP-ethanolamine pathway is analogous to the COP-choline pathway. Ethanolamine 

that is transported into the cytoplasm is phosphorylated by ethanolamine kinase into 

phosphoethanolamine. The second step in COP-ethanolamine pathway involves the 

formation of COP-ethanolamine and phosphate from CTP and phosphoethanolamine, a 

reaction catalyzed by CTP:phosphoethanolamine cytidylyltransferase. Finally, the last 

step involved transfer of phosphoethanolamine from CTP: phosphoethanolamine to 

diacylglycerol resulting in the formation of phosphatidylethanolamine and CMP. The 

enzyme catalyzing this reaction is ethanolamine phosphotransferase. COP-ethanolamine 

pathway is considered as a major route for phosphatidylethanolamine synthesis in most 

mammalian tissues (Kent, 1995). 

While in the decarboxylation pathway, the most important is the conversion of 

phosphatidylserine to phsphatidylethanolamine. Phosphatidylserine is synthesized by 

base exchange reaction with phosphatidylcholine. Then the phosphatidylserine is 

decarboxylated to phosphatidylethanolamine by phosphatidylserine decarboxylase 

(Uchida, 1997). In prokaryotic cells like E. coli phosphatidylethanolamine is the most 

abundant membrane phospholipids and all of it is derived from this pathway. 
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ethanolamine pt\nsphoethanolamine cytidine dlphoSPOO· 
ethanolamine 

CH2-00CR' CH2-00CR" 
I I 

COP-ethanolamine + R"COO -CH -----t~o- R"COO -CH 0 
I I II + 
CH;tOH CH2 -0-P-0-Cfi.!C~NI-b 

6-
dlacytg~cerol phosphatidylethanolamine 

Figure 4: CDP:ethanolamine pathway. Ethanolamine is that transported into the 
cytoplasm is phosphorylated by ethanolamine kinase, activated with CTP and finally 
phosphoethanolamine transferase catalyses the reaction of the cytidine 
diphosphoethanolamine to form phosphotidylethanolamine. 
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~~-oocR· PS decarbo~lase ~H2-00CR 
R'COO-CH 0 NH3 R"COO-CH 0 

I U f I II + 
CH:l-0-P -0 -C~CH CH2 -O-P-O-C~CH2N~ 

l I - l o- + coo o-
phosphatidylsertne X phosphatidyl ethanolamine 

Figure 5: Formation of phosphatidylethanolamine by decarboxylation of 
phosphatidylserine. Phosphatidylserine is decarboxylated to phosphatidylethanolamine 
by phosphatidylserine decarboxylase. The decarboxylation takes place in the 
mitochondria inner membrane. 
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