# INVESTIGATION OF YB-1 GENE EXPRESSION BY SYBER-GREEN BASED REAL-TIME PCR IN BRAIN TUMOR

# MUHAMMAD REDZWAN BIN SIDIK

## SCHOOL OF HEALTH SCIENCE UNIVERSITI SAINS MALAYSIA

2008

.

# INVESTIGATION OF YB-1 GENE EXPRESSION BY SYBER-GREEN BASED REAL-TIME PCR IN BRAIN TUMOR

# **MUHAMMAD REDZWAN BIN SIDIK**

Dissertation submitted in partial fulfillment of the requirement for the degree of

**Bachelor of Health Sciences (Biomedicine)** 

Octorber 2008

# CERTIFICATE

This is to certify that the dissertation entitled "Investigation Of Yb-1 Gene Expression By Syber-Green Based On Real-Time Pcr In The Brain Tumor." is the bonafide record of research work done by Mr. Muhammad Redzwan bin Sidik (87404) during the period from July 2008 to October 2008 under my supervision.

Supervisor,

Dr. Nik Norliza Nik Hassan

Lecturer

School of Health Sciences

Universiti Sains Malaysia

Health Campus

16150 Kubang Kerian

Kelantan, Malaysia

9/2/09

## ACKNOWLEDGEMENTS

Praise to the almighty Allah S.W.T, for His power and blessing that I am able to finish this thesis of mine right on schedule. Despite for the drawbacks in finishing this thesis, I managed to overcome it and also learned some valuable lessons.

My special thanks go to my supervisor, Dr Nik Norliza Nik Hassan. All her advises, comments, and guidance's will be cherish and had be applied in my other thesis to come. It will also by my pleasure to share the knowledge gained from her to others, so that others will make use of it and do a better thesis.

With all my heart, I would like to thank my co-supervisor, Dr Shahrum Shamsudin, in which his sincere comments helped a lot in improving my thesis. His motivations helped me keep going-on in finishing this thesis. My course coordinator, Dr See Wee Too also helped me in completing this thesis.

Also to Dr Venugopal, Dr Asma, Wani and my best friend Faizul, thank you. With out their help, guidance and criticism, my thesis would sure be a failure. Thank you for being available when I desperately needed help. Thank you again.

My warm thanks also goes to my lovely parents, Haji Sidik Jaafar and Hajah Asamah Othman. Words cannot describe how thankful I am to them. All the love in the world, endless support, long prayers that they did and gave me are all meaningful to me in every single bit. Thank you again and I love you guys.

Not to forget, others who also have help me even with the sightless things. Thank you very much. Sorry for not mentioning your names, but Allah knows how grateful I am with your help. May Allah bless you. Amin.

# CONTENT

|        |               |                                                         | Page |
|--------|---------------|---------------------------------------------------------|------|
| CERTI  | FICATION      |                                                         | ii   |
| ACKN   | OWLEDGE       | MENTS                                                   | iii  |
| CONT   | ENT           |                                                         | iv   |
| LIST O | <b>FTABLE</b> |                                                         | viii |
| LIST O | <b>FIGURE</b> |                                                         | ix   |
| ABSTR  | RACT          |                                                         | xi   |
| ABSTR  | RAK           |                                                         | xii  |
| CHAP   | FER 1         |                                                         | 1    |
| INROE  | DUCTION       |                                                         | 1    |
| 1.1    | Introdu       | action to Cancer                                        | 1    |
|        | 1.1.1         | Brain Tumor                                             | 2    |
| 1.2    | Statisti      | c and Prevalence of Cancer in Malaysia (2003)           | 5    |
|        | 1.2.1         | Overall Cancer Incidence                                | 5    |
|        | 1.2.2         | Brain and Other Nervous System Cancers Incident in      | 6    |
|        |               | Peninsular Malaysia 2003                                |      |
|        | 1.2.3         | Brain and Other nervous System. Age Specific Cancers    | 7    |
|        |               | Incident by sex, Peninsular Malaysia 2003               |      |
| 1.3    | The Cl        | assification of Brain Tumor                             | 9    |
|        | 1.3.1         | The Classification of Brain Tumor based on World Health | 9    |
|        |               | Organization (WHO)                                      |      |
|        | 1.3.2         | WHO grading                                             | 11   |
| 1.4    | Y-Box         | Binding Protein                                         | 12   |
|        | 1.4.1         | Introduction To Y-Box Binding Protein                   | 12   |
|        | 1.4.2         | Structure of the YB-1 protein                           | 13   |
|        | 1.4.3         | Integrated Function of YB-1                             | 16   |

| 1.5   | Real Ti  | ime RT-PCR                                               | 18 |
|-------|----------|----------------------------------------------------------|----|
|       | 1.5.1    | Introduction Real-Time-PCR                               | 18 |
|       | 1.5.2    | Comparison SYBR Green And Taq Man Probe-Based            | 20 |
| 1.6   | The Ai   | im of the Study                                          | 21 |
| 1.7   | Plan of  | fInvestigation                                           | 21 |
| СНАРТ | ER 2     |                                                          | 22 |
|       | LITER    | ATURE REVIEW                                             | 22 |
| СНАРТ | 'ER 3    |                                                          | 24 |
| METER | RIAL AND | METHOD                                                   | 24 |
| 3.1   | Prepara  | ations of reagents and buffer                            | 24 |
|       | 3.1.1    | 0.1 % Diethylpyrocarbonate (DEPC) treated distil water   | 24 |
|       | 3.1.2    | 10X TAE buffer                                           | 24 |
|       | 3.1.3    | Sodium Dodecly-sulfate(SDS)                              | 24 |
|       | 3.1.4    | Ethidium Bromide (EtBr) solution (10mg/ml)               | 25 |
|       | 3.1.5    | 75% ethanol in 25% of DEPC-treated water                 | 25 |
| 3.2   | Equipr   | nent                                                     | 26 |
| 3.3   | Prepara  | ation of glassware, plasticware and elctrophoresis tanks | 26 |
| 3.4   | Sample   | es                                                       | 27 |
| 3.5   | RNA e    | extraction/ determination of RNA quality                 | 28 |
|       | 3.5.1    | RNA extraction                                           | 27 |
|       | 3.5.2    | TRI reagent procedur                                     | 27 |
|       |          | 3.5.2.1 Homogenization                                   | 27 |
|       |          | 3.5.2.2 Phase Separation                                 | 28 |
|       |          | 3.5.2.3 RNA Precipitation                                | 28 |
|       |          | 3.5.2.4 RNA Wash                                         | 29 |
|       |          | 3.5.2.5 RNA Solubilization                               | 29 |
|       | 3.5.3    | TRI reagent procedure Overview                           | 30 |
| 3.6   | cDNA     | Synthesis                                                | 31 |

|         | 3.6.1   | cDNA synthesis using Ferment's first stand cDNA       | 31 |  |  |
|---------|---------|-------------------------------------------------------|----|--|--|
|         |         | synthesis kit                                         |    |  |  |
|         | 3.6.2   | Component cDNA synthesis using Ferment's first stand  | 32 |  |  |
|         |         | cDNA synthesis kit                                    |    |  |  |
|         | 3.6.3   | Procedure cDNA Synthesis Using Ferment's First Stand  | 33 |  |  |
|         |         | Cdna Synthesis Kit                                    |    |  |  |
|         | 3.6.4   | cDNA synthesis method using Omniscipt Reverse         | 35 |  |  |
|         |         | Transcriptaase from Qiegen, Germany                   |    |  |  |
|         |         | 3.6.4.1 Principle                                     | 35 |  |  |
|         |         | 3.6.4.2 Procedure cDNA systhesis using Omniscript     | 36 |  |  |
|         |         | Reverse                                               |    |  |  |
| 3.7     | Determ  | ination of Total RNA Concentration and Purity (RNA)   | 38 |  |  |
| 3.8     | Determ  | ination Of Total RNA Integrity                        | 38 |  |  |
| 3.9     | Prepara | Preparation Gel for Electrophoresis.                  |    |  |  |
| 3.10    | Amplifi | ication of Gene                                       | 40 |  |  |
| 3.11    | Gradier | nt PCR                                                | 41 |  |  |
|         |         | 3.11.1 Optimizing Of Anneling Temperature By Using    | 41 |  |  |
|         |         | Gradient Pcr Procedur                                 |    |  |  |
| 3.12    | Quantif | ication of genes by Real-Time RT-PCR                  | 42 |  |  |
|         |         | 3.12.1 Procedure and the program setting of real time | 42 |  |  |
|         |         | PCR                                                   |    |  |  |
| CHAPTER | 4       |                                                       | 44 |  |  |
|         |         |                                                       |    |  |  |
| RESULT  |         |                                                       | 44 |  |  |
| 4.1     | Total E | xtraction From Brain Tumor Tissue                     | 44 |  |  |

- 4.2Total Extraction From normal Brain cell-line(Astrocyte SVG12)454.3Optimization annealing temperature of PCR using gradient46
- 4.3 Optimization annealing temperature of PCR using gradient 46 PCR(primer with tumor brain cancer cDNA)
  4.4 Real Time RT-PCR Amplification Plot Graph by Using Primer 47 B-Actin.
- 4.5 Real time RT-PCR amplification plot graph by using YB-1 gene as 48

|       | primer                                                   |                         |    |
|-------|----------------------------------------------------------|-------------------------|----|
| 4.6   | Summary Data Of Relative Quantification(RQ) Study Sample |                         | 49 |
| CHAPI | TER 5                                                    |                         | 50 |
| DISCU | SSION                                                    |                         | 50 |
| 5.1   | RNA is                                                   | solation and extraction | 50 |
| 5.2   | cDNA s                                                   | synthesis               | 50 |
| 5.3   | Gradier                                                  | nt PCR                  | 51 |
|       | 5.4.1                                                    | Real-Time PCR           | 52 |
|       | 5.4.2                                                    | Analyzing Real-Time PCR | 53 |
| CHAP  | FER 6                                                    |                         | 54 |
| CONC  | LUSION                                                   |                         | 54 |
| REFE  | RENCE                                                    |                         | 55 |
| APPEN | IDIX                                                     |                         | 60 |
|       | Chart o                                                  | of project activity     | 60 |
|       |                                                          |                         |    |

# LIST OF TABLE

| No            |                                                                                                            | Page |
|---------------|------------------------------------------------------------------------------------------------------------|------|
| Table 1.1.2   | Classification of brain tumor                                                                              | 6    |
| Table 1.2.2   | Brain and other nervous system cancers incident per 100,000 population (CR) by peninsular Malaysia 2003    | 8    |
| Table 1.3.1   | World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007 | 12   |
| Table 1.2.3a  | Summary of the tumors of the central nervous system grade based of World Health Organization (WHO)         | 13   |
| Table 1.4.2a  | Characteristics of human Y-box binding protein family                                                      | 15   |
| Table 1.4.2   | Splice junctions of the YB-1 gene                                                                          | 16   |
| Table 1.5.2   | Differences SYBR Green and Taq Man Probe-Based                                                             | 22   |
| Table 3.6.2   | Fermentas"s First Strand cDNA synthesis Kit components                                                     | 34   |
| Table: 3.10   | Primer forward and reverse for YB1 gene                                                                    | 42   |
| Table 3.11.1a | Reverse – Transcription Reaction Component                                                                 | 43   |
| Table 3.11.1b | The recommended reaction condition for gradient PCR                                                        | 44   |
| Table 2.12.1a | QuantiFast SYBR Green PCR Reaction Component                                                               | 44   |
| Table 2.12.1  | Program For Running Real-Time PCR                                                                          | 45   |
| Table 4.6     | Summary data of relative quantification study for YB-1 gene and $\beta$ -actin                             | 51   |

# **LIST OF FIGURES**

| No             |                                                                                                                                   | Page |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1.1a  | Benign meningioma                                                                                                                 | 3    |
| Figure 1.1.1b  | The commonest brain tumour an intrinsic malignant tumour that could be a glioma or metastasis                                     | 5    |
| Figure 1.1.2c  | Classification of brain tumor                                                                                                     | 5    |
| Figure 1.2.2   | Brain and other nervour system cancers incident per 100,000 population (CR) by peninsular Malaysia 2003                           | 5    |
| Figure 1.2.3b  | Brain and Other nervous System. Age Specific Cancers<br>Incident per 100,000 populations (CR) by sex, Peninsular<br>Malaysia 2003 | 8    |
| Figure 14.3    | General domain organization of human Y-box binding protein family members                                                         | 18   |
| Figure 1.5:    | Formula for comparative CT method                                                                                                 | 19   |
| Figure1.5.2b   | SYBR Green process                                                                                                                | 21   |
| Figure 1.4.3   | General domain organization of human Y-box binding protein family members                                                         | 19   |
| Figure 1.4.4   | Cellular function of YB-1 and it interaction with cytoplasmic protein and RNAs                                                    | 20   |
| Figure 1.5     | Formula for comparative CT method                                                                                                 | 21   |
| Figure:1.5.2b  | SYBR Green process                                                                                                                | 22   |
| Figure 3.5.3   | TRI reagent procedure Overview                                                                                                    |      |
| Figure 3.6.4.1 | The flow of cDNA systhesis using Omniscript Reverse                                                                               | 37   |
| Figure 4.1     | Total RNA extraction from brain tumor                                                                                             | 46   |
| Figure 3.2     | Total extraction of RNA from normal brain cell-line                                                                               | 47   |
| Figure 4.3     | Optimization annealing temperature of PCR using YB-1 primer                                                                       | 48   |

| Figure 4.4 | Real time RT-PCR amplification plot graph by using Primer $\beta$ -actin | 50 |
|------------|--------------------------------------------------------------------------|----|
| Figure 4.5 | Real time RT-PCR amplification plot graph                                | 52 |

#### Abstract

Cancer generally is a genetic disease that can cause alteration in specific gene in which a group of cells display uncontrolled growth, invasion and metastasis. YB-1 Gene Y-box binding protein (YB-1) is a member of the cold-shock domain (CSD) protein superfamily and involved in many cellular functions, including transcriptional regulation, translational regulation, DNA repair, drug resistance and stress responses to extracellular signals. YB-1 gene can be found in a cytoplasm and nuclear cell. The YB-1 gene comprises 8 exons spanning 19 kb of genomic DNA and is located on chromosome 1p34. The aim of the study is to differential relatively quantitative the expression of YB-1 gene in brain tumor sample (meningioma) and normal brain sample (Astrocyte SVG 12). SYBR-Green 1 based Real-Time PCR was performed and data analysis using formula  $2^{-\Delta\Delta Ct}$  has demonstrated that YB-1 gene was over-expressed by 2.86 fold in comparison to its expression in normal sample. This preliminary data is very important in the future experiment for expression of YB-1 gene showed the potential as a biology marker for detection of brain tumor.

#### Abstrak

Kanser adalah penyakit genetik yang disebabkan berlaku pengubahan gen specifik dalam sel dimana kumpulan sel ini menunjukkan pembahagian sel tidak terkawal, menceroboh serta metatasis. Terdapat banyak gen yang boleh digunakan sebagai penanda biologi kanser seperti Gen YB-1. "Y-Box Binding Protein" (YB-1) adalah ahli keluarga protein "cold-shock domian"(CSD) dan terlibat dalam banyak fungsi sel melibatkan pengawalan transkriprasi, pengawalan translilasi, pembaikian DNA,ketahanan terhadap ubat, tindak balas tekanan kepada tanda diluar sel. Gen YB-1 boleh di jumpai di sitoplasma and nuklear sel. Ia mengandungi 8 exon dan mempunyai jarak genomik DNA 19 kb dan terletak pada chromosom 1p34. Matlamat kajian ini untuk membezakan secara relatif pengekspresian gen YB-1 di dalam sampel kanser otak(Meningioma) dan sampel otak yang normal(Astrocyte SVG 12). SYBR-Green 1 berdasarkan Real-Time PCR telah dilakukan dan analysis data mengunakan formula 2<sup>-ΔΔC1</sup> menunjukkan gene YB-1 telah melebihi pengekspresian sebayak 2.86 kali berbanding pengekspresian sampel normal Data awal ini sangat berguna dalam eksperimen akan datang untuk pengekspresian gen YB-1 sebagai penanda biologi untuk pengesahan kanser otak.

## **CHAPTER I**

#### **INTRODUCTION**

#### 1.1 Introduction to Cancer

Cancer also know as malignant or neoplasm in the medical term is a class of diseases in which a group of cells display uncontrolled growth, invasion, and sometimes metastasis. These three malignant properties of cancers differentiate them from benign tumors, which are self-limited, do not invade or metastasize. Most cancers form a tumor but some like leukemia it does not happen.

Cancer is a genetic disease because it can be traced to be an alteration within specific genes but it is not an inherited disease. Due to genetic alteration, cancer cell will uncontrolled proliferation, producing malignant tumor that invade surrounding healthy tissue.

There are two general classes of genes that are related to genetic abnormalities of cancer. Oncogenes is a typically activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. Tumor suppressor genes are then inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system (Kumar, 1999).

Alterations of several tumor suppressor and oncogenes have been identified as being critical to the initial steps of transformation and progression to cancer (Christine . *et al* 2005). Associated alterations in cell cycle regulation and various growth factor signaling pathways are being dissected for their contributions to cancer progression.

#### 1.1.2 Brain Tumor

Brain tumors are the leading cause of cancer related mortality in children. Pediatric grade IV astrocytomas (pediatric glioblastoma [pGBM]), non-neuronal tumors originating from the astrocytic lineage, around 15% of all pediatric brain tumors and have a 3-year survival of less than 20% and high morbidity (Faury *et al*,2007)

Adult GBM (aGBM) is the most common brain tumor that cause to death. Secondary GBM occur in adults aged younger than 40 years, evolve from low-grade astrocytomas. Primary GBM targets older patients and exhibits gain of function mutations of *EGFR*. Both forms are indistinguishable to pathologists, and share aberrations of the p53 and retinoblastoma (RB) pathways and similar prognosis (Maher *et al*, 2001, Louis *et al*, 2001)

Brain tumors have various shapes and sizes with different ways of behaving. It can grows within and originating from the brain parenchyma.. However, tumors arise from two sources which is a structures adjacent to the brain which can compress and distort it which include tumor meningiomas (Figure 1.1.2a) arising from the meninges, schwannomas from the cranial nerves, and adenomas from the pituitary gland. Another source is a metastatic tumors (Figure 1.1.2b) that originate from outside the CNS. The commonest sources of origin are carcinomas of the breast, lung and kidney, and malignant melanoma. Some other common malignancies (e.g. prostate, bowel) only rarely metastasize to the brain. (Henry Marsh *et al*, 2007) .The classification of brain tumours is shown in table 1.1.2.

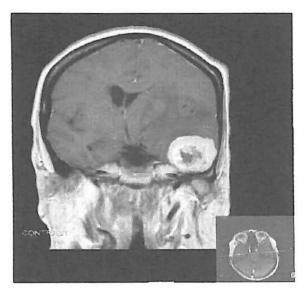



Figure 1.1.2a: Benign meningioma

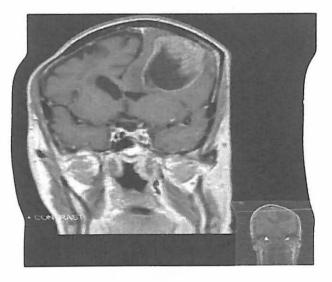



Figure 1.1.2b The commonest brain tumor an intrinsic malignant tumor that could be a glioma or metastasis

(Source: Henry ,2007)

## Table 1.1.2: Classification of Brain Tumor

# Classification of Brain Tumor Tumor aring primarily from the brain • Gliomas -Astrocytomas Oligodendrogliomas Ependymomas • Primary cerebral lymphoma • Choroid cerebral lymphoma • Choroids plexus papalilomas • Haemangioblastomas Metastatic tumors Meningiomas Pituitary Adenomas Tumors of the skull

# 1.2 Statistic and prevalence of cancer in Malaysia (2003)

#### 1.2.1 Overall Cancer Incidence

A total of 21,464 cancer cases were diagnosed among Malaysians in Peninsular Malaysia in the year 2003, comprising 9,400 males and 12,064 females. The National Cancer Registry received 42,985 cancer notifications of Malaysian residents in 2003 of which 23,746 were unique incident cancer cases. Of the 23746 cases, 22622 cases had histological verification thus 95.3 % of the cases had histological verification. The 2003 cancer incidence results presented in the rest of this report refer only to Peninsular Malaysia.

The crude rate for males was 97.4 per 100,000 population and 127.6 per 100,000 population for females. The age standardized incidence rate for all cancers in the year 2003 was 134.3 per 100,000 males and 154.2 per 100,000 females.

Cancer occurred at all ages. The median age at diagnosis for cancer in Malaysian males was 59 years and 53 years for Malaysian females. The 5 most frequent cancers in children (0-14 years old) were leukaemia, cancers of the brain, lymphoma, cancers of the connective tissue and kidney. In the group of young adults (15-49 years old), the common cancers were nasopharynx, leukaemia, lymphoma, lung, colon and rectum in men, and cancers of the breast, cervix, ovary, uterus, thyroid gland and leukaemia in women. In older subjects (50 years old and above), cancers of the lung, colon, rectum, nasopharynx, prostate and stomach were predominant among men, while cancers of the breast, cervix, colon, uterus, lung and rectum occurred commonly in women.

# 1.2.2 Brain and other nervous system cancers incident in Peninsular Malaysia 2003

In Peninsular Malaysia on 2003, there are 468 cases of brain and other nervous system cancers that had been reported. Number of male cases is 249 which are higher than female with 219 cases. Different percentage of both sex who get brain and other nervous system cancers is 6.4 % where male is 53.2% and female is 46.8%. Whereas incident per 100,000 populations (CR) of male is 2.6 and female is 2.3.

Table 1.2.2:Brain and other nervous system cancers incident per 100,000 population (CR) by peninsular Malaysia 2003

| Sex    | No  | %    | CR  |
|--------|-----|------|-----|
| Male   | 249 | 53.2 | 2.6 |
| Female | 219 | 46.8 | 2.3 |
| Total  | 468 | 100  | 2.4 |




Figure 1.2.2: Brain and other nervour system cancers incident per 100,000 population (CR) by peninsular Malaysia 2003

## 1.2.3 Brain and Other nervous System. Age Specific Cancers Incident by sex, Peninsular Malaysia 2003

In 2003, there are 468 cases of brain and other nervous system had been reported. Based on the specific age between male and female, group age 30-39 show the higher number cases for male whereas for female, the higher cases reported at the specific group 30-39 and 50-59.

Table 1.2.3a shows that numbers of male cases relatively higher compare to the female. The higher number cancer patient for male is 43 cases whereas for female is 36 cases. However, at the age of 70 year old above show that both sex have low number of cancer cases.

Table 1.2.3a: Brain and Other Nervous System. Age Specific Cancers Incident per 100,000 populations (CR) by sex, Peninsular Malaysia 2003

|           | Male |      |     | Female | ;    |     |  |
|-----------|------|------|-----|--------|------|-----|--|
| Age(year) | No   | %    | CR  | No     | %    | CR  |  |
| 0-9       | 33   | 13.3 | 1.5 | 32     | 14.6 | 1.5 |  |
| 10-19     | 38   | 15.3 | 1.9 | 31     | 14.2 | 1.6 |  |
| 20-29     | 34   | 13.7 | 2.2 | 26     | 11.9 | 1.7 |  |
| 30-39     | 43   | 17.3 | 3.2 | 36     | 16.4 | 2.7 |  |
| 40-49     | 33   | 13.3 | 2.9 | 26     | 11.9 | 2.3 |  |
| 50-59     | 26   | 10.4 | 3.5 | 36     | 16.4 | 5   |  |
| 60-69     | 29   | 11.6 | 7.3 | 22     | 10   | 5.3 |  |
| 70+       | 13   | 5.2  | 6   | 10     | 4.6  | 3.7 |  |

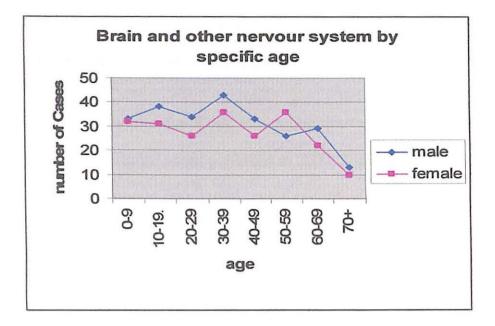



Figure 1.2.3b: Brain and Other nervous System. Age Specific Cancers Incident per 100,000 populations (CR) by sex, Peninsular Malaysia 2003

### 1.3 The Classification of Brain Tumor

# 1.3.1 The Classification of Brain Tumor based on World Health Organization (WHO)

Based on the 4th edition of the World Health Organization (WHO) classification of tumors of the central nervous system, published in 2007, it can be divided into 7 group which is Tumors of Neuroepithelial Tissue, Germ Cell Tumors, Tumors of Cranial and Paraspinal Nerves, Tumors of the Sellar Region, Tumors of the Meninges, Metastatic Tumors, Lymphomas and Haemopoietic Neoplasms .These classifications is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumors to the clinical oncology and cancer research communities world-wide.

An entity had to be characterized by distinctive morphology, location, age distribution and biologic behaviour, and not simply by an unusual histopathological pattern.(Louis *et al*, 2007) 1. Variants were defined as being reliably identified histologically and having some relevance for clinical outcome, but as still being part of a previously defined, overarching entity. Finally, patterns of differentiation were considered identifiable histological appearances, but that did not have a distinct clinical or pathological significance. The classification is shown the table 1.3 1 which include type of cancer and it grade.

9

| nervous                      | s system, published in 2007               |
|------------------------------|-------------------------------------------|
| Classification Of Tumour     | s Of The Central Nervous System By WHO    |
| Tumours Of Neuroepithelial   | Astrocytic tumours                        |
| Tissue                       | Oligodendroglial tumours                  |
|                              | Oligoastrocytic tumours                   |
|                              | Ependymal tumours                         |
|                              | Choroid plexus tumours                    |
|                              | Other neuroepithelial tumours             |
|                              | Neuronal and mixed neuronal-glial tumours |
|                              | Tumours of the pineal region              |
|                              | Embryonal tumours                         |
| Tumours Of Cranial And       | Schwannoma (neurilemoma, neurinoma)       |
| Paraspinal Nerves            | Cellular                                  |
| -                            | Plexiform                                 |
|                              | Melanotic                                 |
|                              | Neurofibroma                              |
|                              | Plexiform                                 |
|                              | Perineurioma                              |
|                              | Perineurioma,                             |
|                              | Malignant perineurioma                    |
|                              | Malignant peripheral                      |
|                              | nerve sheath tumour (MPNST)               |
| Tumours Of The Meninges      | Tumours of meningothelial cells           |
|                              | Mesenchymal tumours                       |
|                              | Primary melanocytic lesions               |
|                              | Other neoplasms related to the meninges   |
| Lymphomas And Haematopoietic | Malignant lymphomas                       |
| Neoplasms                    | Plasmacytoma                              |
| -                            | Granulocytic sarcoma                      |
| Germ Cell Tumours            | Germinoma                                 |
|                              | Embryonal carcinoma                       |
|                              | Yolk sac tumour                           |
|                              | Choriocarcinoma                           |
|                              | Teratoma                                  |
|                              | Mature                                    |
|                              | Immature                                  |
| Tumours Of The Sellar Region | Craniopharyngioma                         |
| C C                          | Adamantinomatous                          |
|                              | Papillary                                 |
|                              | Granular cell tumour                      |
|                              | Pituicytoma                               |
|                              | Spindle cell oncocytoma                   |
|                              | of the adenohypophysis                    |
| Metastatic Tumours           |                                           |
|                              |                                           |
|                              |                                           |

 Table 1.3.1 : World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007

#### 1.3.2 WHO grading

The WHO grading of CNS tumors establishes a malignancy scale based on histologic features of the tumor .Histological grading is a means of predicting the biological behaviour of a neoplasm. In the clinical setting, tumour grade is a key factor influencing the choice of therapies, particularly determining the use of adjuvant radiation and speciWc chemotherapy protocols. The WHO classification of tumours of the nervous system includes a grading scheme that is a 'malignancy scale' ranging across a wide variety of neoplasms rather than a strict histological grading system. Table 1.3.2 shown the summary of the tumours of the central nervous system grade based of World Health Organization (WHO).

| WHO Grade Summary |                                                                                                                                                                       |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Will Graue        | Summary                                                                                                                                                               |  |  |
| WHO GRADE I       | includes lesions with low proliferative potential, a<br>frequently discrete nature, and the possibility of cure<br>following surgical resection alone                 |  |  |
| WHO GRADE II      | includes lesions that are generally infiltrating and low in<br>mitotic activity but recur. Some tumor types tend to<br>progress to higher grades of malignancy        |  |  |
| WHO GRADE III     | includes lesions with histologic evidence of malignancy,<br>generally in the form of mitotic activity, clearly expressed<br>infiltrative capabilities, and anaplasia. |  |  |
| WHO GRADE IV      | includes lesions that are mitotically active, necrosis-prone,<br>and generally associated with a rapid preoperative and<br>postoperative evolution of disease         |  |  |

 Table 1.3.2: Summary of the tumors of the central nervous system grade based of World Health Organization (WHO)