P26 ## EFFECTS OF POST-DEPOSITION ANNEALING TIME IN FORMING GAS AMBIENT ON Y₂O₃ FILMS DEPOSITED ON SILICON SUBSTRATE Hock Jin Quah^{1,*}, Kuan Yew Cheong², Zainuriah Hassan¹, Way Foong Lim¹ ¹Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Penang, MALAYSIA. ²School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, MALAYSIA. (E-mail: hock_jin@usm.my) **ABSTRACT-** The effects of post-deposition annealing (PDA) time (15, 30, and 45 min) at 800° C in forming gas (95% N₂-5% H₂) ambient was systematically studied for RF-magnetron sputtered Y₂O₃ films on n-type Si(100) substrate. X-ray diffraction characterization has revealed the detection of Y₂O₃ phase oriented in (400), (440), (541), and (543) planes for all of the investigated samples. Atomic force microscopy was utilized to acquire 2-dimensional surface topograpy of Y₂O₃ films subjected to different PDA time. An increment in root-mean-square roughness was perceived as PDA time was prolonged. In addition, current-voltage and capacitance-voltage characteristics of the investigated Al/Y₂O₃/Si-based metal-oxide-semiconductor capacitors were also presented in this work. **Keywords:** Y₂O₃, post-deposition annealing, time, forming gas, metal-oxide-semiconductor.