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MATRIKS "HOURGLASS": PERFAKTORAN KUADRAN SALING 

BERKAIT DENGAN MENGGUNAKAN PERATURAN CRAMER 

TERUBAHSUAI DAN GRAF CAMPURANNYA 

 

 

ABSTRAK    

 

Selama beberapa dekad, matriks hourglass telah secara sinonimnya merujuk 

kepada matriks-𝑍 tanpa mempertimbangkan komponen-komponen pemasukan 

mereka secara teliti. Dalam kajian ini, telah ditunjukkan bahawa matriks hourglass 

sebenarnya merupakan subset kepada matriks-𝑍. Suatu matriks hourglass diperoleh 

dengan melakukan pertukaran baris pada setiap peringkat Pemfaktoran Saling 

Bersambung Kuadran (𝑄𝐼𝐹), jika perlu, untuk memastikan agar pemasukan matriks 

yang dikira adalah bukan sifar. Secara umum, sebarang sistem linear 2 × 2 dalam 

algoritma 𝑄𝐼𝐹 diselesaikan dengan menggunakan peraturan Cramer. Peraturan 

Cramer digunakan untuk memastikan agar 𝑄𝐼𝐹 tidak mengalami masalah pada setiap 

peringkat proses pemfaktoran. Sementara peraturan Cramer membenarkan pertukaran 

lengkap vektor lajur kepada matriks pekali, kaedah peraturan Cramer terubahsuai yang 

diperoleh dalam tesis ini mempertimbangkan vektor lajur bersama dengan pekali 

matriks untuk menyelesaikan sistem persamaan linear. Kaedah peraturan Cramer 

terubahsuai yang dicadangkan adalah sama dengan peraturan Cramer klasik, namun 

berbeza daripada segi penentuan sisa relatif mereka. Keputusan yang diperolehi 

menunjukkan bahawa tidak terdapat perbezaan ketara dalam prestasi masa di antara 

peraturan Cramer dengan peraturan terubahsuai dalam 𝑄𝐼𝐹 matriks segiempat sama 

tak-singular yang padat. Seterusnya, telah ditunjukkan bahawa norma Frobenius bagi 

kaedah terubahsuai dalam pemfaktoran adalah lebih baik berbanding dengan peraturan 



 

xiv 

 

Cramer, tanpa mengambil kira versi perisian MATLAB yang digunakan. Potensi 

aplikasi matriks hourglass dan 𝑄𝐼𝐹 dalam rantaian Markov dan dalam kriptografi 

berasaskan Lattice berbanding dengan matriks-𝑍 dan pemfaktoran 𝑊𝑍nya telah 

ditekankan. Kedudukan pemasukan sifar dan bukan sifar dalam setiap matriks 

hourglass membolehkan matriks tersebut diwakili dalam bentuk graf campuran, tidak 

seperti matriks-𝑍 klasik. Walaupan perwakilan matriks hourglass secara langsung 

diberi oleh graf hourglass campuran berpemberat, penetapan nilai pemberat 1 akan 

menghasilkan graf hourglass campuran. Dengan itu, penentu, tenaga campuran  dan 

tenaga Laplacian bagi graf tersebut telah diperoleh. Akhirnya, matriks hourglass dan 

QIF menunjukkan kesan yang menjanjikan dalam pengkomputeraan saintifik 

menggunakan multiprocessors selari atau mesh. 
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HOURGLASS MATRIX: ITS QUADRANT INTERLOCKING 

FACTORIZATION USING MODIFIED CRAMER’S RULE AND ITS MIXED 

GRAPH 

 

 
ABSTRACT 

 

        Hourglass matrix has been synonymously referring to 𝑍-matrix for decades 

without properly considering the components of their entries. In this research, it is 

established that hourglass matrix is, in fact, a subset of 𝑍-matrix.  An hourglass matrix 

is obtained by carrying out row interchange at every stage of the Quadrant Interlocking 

Factorization (𝑄𝐼𝐹), when necessary, to ensure the computed entries of the matrix are 

restricted to be nonzero.  In general, any 2 × 2 linear systems in 𝑄𝐼𝐹 algorithm is 

solved using Cramer's rule. Cramer's rule is used to ensure that the 𝑄𝐼𝐹 does not 

breakdown at every stage of the factorization process. Though Cramer's rule allows 

complete substitution of column vector to the coefficient matrix, the modified 

Cramer's rule derived in this thesis considered the column vector together with the 

coefficient matrix for solving simple linear systems. The proposed methods are 

efficient for 2 × 2 linear system and are shown to be equivalent to classical Cramer's 

rule, but differ in their relative residual measurement. The presented results show that 

there is no tangible difference in performance time between the Cramer's rule and its 

modifications in the 𝑄𝐼𝐹 of dense nonsingular square matrices. Furthermore, the 

Frobenius norm of the modified methods in the factorization are shown to be better 

than Cramer's rule, irrespective of the version of MATLAB used. Besides, the potential 

applications of hourglass matrix and its QIF in Markov chains and in lattice-based 

cryptography over 𝑍-matrix and its WZ factorization are highlighted. The position of 
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the number of zero and nonzero entries in every hourglass matrix allows the matrix to 

be represented in mixed graph, unlike classical 𝑍-matrix. Though the representation of 

hourglass matrix in graph gives a weighted mixed hourglass graph, assigning 

numerical values of 1 to the weight produces a mixed hourglass graph. Hence, the 

determinant, mixed energy and Laplacian energy of mixed hourglass graph are 

established. Finally, hourglass matrix and its QIF show promising impact in scientific 

computing using parallel or mesh multiprocessors. 



CHAPTER 1

INTRODUCTION

1.1 General Introduction

Firstly, quadrant interlocking factorization (QIF) or WZ factorization of nonsingular

matrix to yield a butterfly (hourglass) shaped dense square matrix called Z-matrix is

posited by Evans and Hatzopoulos (1978). However, the appellation word "hourglass

matrix" is coined by Demeure (1989) in describing the matrix derived from factorizing

a square matrix, predominantly from real symmetric Toeplitz matrix (Tn =
[
ai− j

]n
i, j=1)

or Hankel matrix (Hn =
[
hi+ j−1

]n
i, j=1) by computing the entries column by column

via WZ factorization or bowtie-hourglass factorization. It was further elucidated that

hourglass matrix is synonymous to Z-matrix which can be partitioned into Zsystem - a

system of 2×2 triangular blocks structured (Heinig and Rost, 2005). Nevertheless, the

applications and similarities between Z-matrix and hourglass matrix are indistinguish-

able. For instance, the matrix has not been constituted in graph theory until now, nor its

utilization in lattice-based cryptography has been hinted. Although, the flaw is due to

unrestricted condition of the computed entries during the factorization to be nonzero,

the factorization has been modified and applied, such as in Markov models, together

with its block factorization being discussed (Evans, 2002; Rhofi, 2016; Bylina, 2018).

Z-matrix exists together with W -matrix during WZ factorization of non-singular matrix

B, such that

B =WZ. (1.1)

1



That is,

B︷ ︸︸ ︷
b1,1 b1, j b1,n

bi,1 Bi, j bi,n

bn,1 bn, j bn,n

=

W︷ ︸︸ ︷
1 0 0

w∗
(1)

i,1 Wn−2 w∗
(1)

i,n

0 0 1

×

Z︷ ︸︸ ︷
z∗

(1)

1,1 z∗
(1)

1, j z∗
(1)

1,n

0 Zn−2 0

z∗
(1)

n,1 z∗
(1)

n, j z∗
(1)

n,n

,

where Bi, j, Wn−2 and Zn−2 are matrix of size (n−2)× (n−2), where Zn−2 is obtained

from

z∗
(k)

i, j = z∗
(k−1)

i, j +w∗
(k)

i,k z∗
(k−1)

k, j +w∗
(k)

i,n−k+1z∗
(k−1)

n−k+1, j, (1.2)

and the entries in W are computed from w∗
(k)

i,k and w∗
(k)

i,n−k+1 as


z∗

(k−1)

k,k w∗
(k)

i,k + z∗
(k−1)

n−k+1,kw∗
(k)

i,n−k+1 =−z∗
(k−1)

i,k

z∗
(k−1)

k,n−k+1w∗
(k)

i,k + z∗
(k−1)

n−k+1,n−k+1w∗
(k)

i,n−k+1 =−z∗
(k−1)

i,n−k+1,

(1.3)

for k = 1,2, ...,bn−1
2 c; i, j = k+1, ...,n− k (Bylina, 2003).

In addition, WZ factorization exists for every nonsingular matrix, often with pivoting.

Pivoting results in swapping rows or columns in a matrix or by multiplying the matrix

with permutation matrices (Bornemann, 2018). The factorization mostly depends on

the use of an old method, called Cramer’s rule, for solving its 2× 2 linear systems

in Equation (1.3). Cramer’s rule is one of the direct methods for solving linear sys-

tems. The rule checks every stage of QIF to avoid breakdown by applying pivoting.

Though, Cramer’s rule is assumed to be less practical due to its high computational

time on large linear systems yet many modifications have been made on Cramer’s rule

to solve restricted matrix equation, Quaternionic systems, and simple and large-scale

linear systems (Ufuoma, 2013; Song and Dong, 2017). If greater precision is used only

2



for the determinant calculations, Cramer’s rule offers accuracy comparable to that of

LU decomposition (Habgood and Arel, 2012).

Furthermore, QIF or butterfly factorization is known for the adaptability of its direct

method to solve system of linear equations (Heinig and Rost, 2011). Thus, the factor-

ization gives rise to the use of implicit matrix elimination algorithm (that is, Parallel

implicit elimination - PIE) for the solution of linear system to simultaneously com-

pute two matrix elements (two columns at a time) for parallel implementation, unlike

Gaussian elimination (GE) which computes one column at a time. This makes WZ fac-

torization suitable for parallel computing. The efficiency of WZ factorization depends

on an efficacious use of the memory echelon because computational cost often relies

on both the total number of arithmetic operations used and the data transferring time

between different memory levels. If there is no sufficient fast memory, then the pro-

cessor will create waiting time for the data and thereby reducing its efficiency (Bylina

and Bylina, 2016). Thus, an optimized algorithm for a single or dual processor may

not produce the best parallel implementation as the processor scaling hit the power

wall. When parallel processing is used, one processor may need output generated by

another processor and hence the processors need to be interconnected. The model for

the connections of these processors is from the application of graph theory (for exam-

ple as path graph which has a linear array of processors). Then, Yalamov and Evans

(1995) presented that WZ factorization is faster on computer with a parallel architec-

ture than any other matrix factorization methods, such as LU factorization. Besides,

WZ factorization is better than the GE and LU factorization irrespective of the number

of processors used (Evans, 1993; Evans and Abdullah, 1994). It has also been shown

that the factorization did better on Intel processor than AMD processor. The more

3



processors used in the factorization the better the results to conclude on (Bylina and

Bylina, 2013).

Moreover, the necessary and sufficient condition for matrix B =
[
b jk
]n

j,k=1 to be a

quadrant interlocking factorization or WZ factorization is that the central submatrices

(also known as centro-nonsingular) Bc
n+2−2l =

[
b jk
]n+1−l

j,k=1 are nonsingular, where n is

even order of matrix B (the assumption also holds for odd order) and c the centered

submatrix of B, for l = 1, ...,m = n
2 . Therefore, matrix A with such property is referred

to as centro-nonsingular (Rao, 1997). A centro-nonsingular matrix has every central

submatrix to be nonsingular. A square matrix is nonsingular (its inverse exists) if and

only if its determinant is nonzero, otherwise it is called singular or degenerate (Lip-

schutz et al., 2009).

Lastly, it is important to know that QIF , bowtie-hourglass factorization, butterfly fac-

torization and WZ factorization are literally the same. Also, other notions on hourglass

matrix that do not portray what we discuss in this thesis are based on hourglass stabi-

lization techniques to preserve a full-rank stiffness for single-point element in order to

reduce the hourglass effect - zero energy modes - over del operator, can be found in

(Li et al., 2011; McGann et al., 2012; Warburton and Maddock, 2015).

1.2 Problem Statement

Due to the general structure of Z-matrix, many authors had classified all kinds of Z-

matrix as hourglass matrix without considering the components of their entries. Un-

fortunately, there are changes in structure of the position of zero and nonzero entries of

Z-matrix from QIF which depend on the type of matrix (Toeplitz, Hankel, Hermitian,

centrosymmetric, diagonally dominant or tridiagonal matrix) being factorized. Conse-
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quently, the similarity between hourglass matrix and Z-matrix was gradually dropped

over time without a cogent reason. More so, Z-matrix even if analogously refer to

hourglass matrix has not been represented in graph theory because the computed en-

tries z∗
(k)

i, j of Equation (1.2) are not restricted to be nonzero.

1.3 Research Objectives

The following are the objectives of this study:

1. To modify Cramer’s rule in solving simple linear systems, especially for 2× 2

system of linear equations.

2. To develop an algorithm for obtaining hourglass matrix from quadrant interlock-

ing factorization of nonsingular matrix.

3. To apply the modified Cramer’s rule in solving 2×2 linear systems in the quad-

rant interlocking factorization’s algorithm to obtain optimized hourglass matrix.

4. To represent the established hourglass matrix as a mixed graph.

1.4 Motivation of the Study

The primary motivation of the research was to study an algorithm similar to Cramer’s

rule for solving simple scale linear systems and to apply the algorithm in quadrant in-

terlocking factorization to obtain an optimized hourglass matrix. More so, the obtained

matrix from quadrant interlocking factorization should have a direct representation in

graph theory unlike the traditional Z-matrix.

5



1.5 Significance of the Study

The basic knowledge of matrix is required to enjoy the aesthetic and ambient nature

of this research, yet there is no limitation to whosoever is interested in the beauty of

hourglass matrix, not only matrix theorists and graph theorists but also cryptographers.

Hourglass matrix is for the first time differentiated from the classical Z-matrix. Un-

like other structured matrices which are not in resemblance with any earthly body, the

nonzero entries of hourglass matrix resembles an hourglass device. We restrict the

computed entries of hourglass matrix of order n(n≥ 3) during QIF to be nonzero, un-

like Z-matrix. This restriction allows us to know the total number of zero and nonzero

entries for every hourglass matrix of order n(n≥ 3), its structured block matrix and its

representation as mixed graph.

1.6 Limitations of the Study

In spite of the fact that this research was carefully arranged, we are still mindful of

its limitation. Due to the lack of parallel computer or mesh multiprocessors with high

multicores, we limit our MATLAB codes used in this thesis on Intel processor (Core

i7-4600U 2.1GHz, 8GB RAM) with standard hardware.

1.7 Thesis Organization

The following chapters provide review, background and detail on the proposed matrix

and it factorization algorithm and various results of the research. Chapter 2 presents

a contextual preamble and literature appraisal of Cramer’s rule and its importance in

quadrant interlocking factorization or WZ factorization. The WZ factorization algo-

rithm for Z-matrix is examined and how it is synonymously refer to hourglass matrix
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is discussed. especially mixed graph. This review on graph theory is concentrated on

unweighted mixed graphs including its mixed graph energy. In Chapter 3, we exam-

ine two modifications of Cramer’s rule. The two methods are derived from one of the

properties of determinant. We give the computational time of the methods and compare

the residual error of the methods with Cramer’s rule. Chapter 4 presents vivid expla-

nation of quadrant interlocking factorization algorithm for obtaining hourglass matrix,

the conditions to generate its entries and the application of the modified Cramer’s rule

to solve its 2×2 systems of linear equations during the factorization. Furthermore, the

matrix norm and the performance time of the modified methods of Cramer’s rule in

QIF are examined. The term filanz submatrix and epicenter element are introduced to

give clear proof about the determinant of hourglass matrix. The differences between

hourglass matrix and Z-matrix are made known and properties of hourglass matrix are

explain to justify that hourglass matrix is a subset of Z-matrix. Chapter 5 studies how

hourglass matrix is represented in mixed graph. The representations lead us to many

proofs about its (unweighted) mixed graph either with loops and without loops, where

we examine its mixed energy. Chapter 6 gives the concluding part of the study by

summarizing the results we obtained from Chapter 3 to Chapter 5. Then we suggest

further investigation for interested readers and give an open problem.
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CHAPTER 2

PRELIMINARIES AND LITERATURE REVIEW

2.1 Introduction

This chapter discusses the review and the leading preamble of quadrant interlocking

factorization (QIF) or WZ factorization. In this study, QIF and WZ factorization will

be used interchangeably and a dense nonsingular matrix B will be considered unless

otherwise stated. The appraisal focuses on the Z-matrix, its QIF algorithm and the

possibility of the factorization to breakdown. The proclivity of WZ factorization for

parallel computing is highlighted. The group axioms of Z-system from Z-matrix are

briefly scrutinized. We anatomize the reason of using QIF to LU factorization of

nonsingular matrix and why Cramer’s rule is used to solve the linear systems of QIF

instead of LU decomposition. Over two centuries of the existence of Cramer’s rule,

we explore its unfaded popularity in theoretical and practical world. The review will

also hinge on the graph theory. Though the matrix obtained from QIF has never been

represented in graph theory, it does have the tenacity to be represented as mixed graph

with fascinating results - on its spectrum and energy - and to be used in lattice-base

cryptography if the conditions of the factorization are met.

2.2 Cramer’s rule as direct solver

There are many direct methods for solving linear systems. The most common is LU-

factorization because it breaks up the solution into two matrices by solving multi-
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ple right hand sides with only minimal effort (Galoppo et al., 2005) . There are also

other linear systems solvers (also called accurate ones) such as Cramer’s rule, Gaus-

sian Elimination or Gauss Jordan. Though, Cramer’s rule is least consider for practical

use but has some theoretical applications and work where other direct solvers may fail

(Habgood and C., 2011). Inverse matrix method for solutions of linear system has a

correlation with Cramer’s rule, because both are applicable when the coefficient matrix

is invertible, otherwise a unique solution is not available. The rule has proven to be

reliable and efficient for solving system of n linear equations in n variables. If for n

linear equations in n unknowns x1,x2,x3, ...,xn is defined by



b1,1x1 +b1,2x2 +b1,3x3 + · · · +b1,nxn = c1

b2,1x1 +b2,2x2 +b2,3x3 + · · · +b2,nxn = c2

b3,1x1 +b3,2x2 +b3,3x3 + · · · +b3,nxn = c3

... +
... +

... + · · · +
... =

...

bn,1x1 +bn,2x2 +bn,3x3 + · · · +bn,nxn = cn

(2.1)

then Equation (2.1) can equivalently be written as matrix equation of the form

Bx = c, (2.2)

where the n×n matrix B (coefficient matrix) has a nonzero determinant, c the column

constant term and the vector x = (x1,x2, ...,xn)
T is the column vector of the variables.

That is,

det(B) 6= 0, B=(bi, j) 1≤ i, j≤ n , x=(x1, ...,xn)
T , c=(c1, ...,cn)

T ; B∈Rn×n; x,c∈

Rn. Since matrix B must be nonsingular (det(B) 6= 0), then we can compute its adjoint,
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Ad j(B), such that

B−1 =
Ad j(B)
det(B)

. (2.3)

Once the determinant of the coefficient matrix can be computed, then the adjoint of the

matrix is the transpose of cofactors (Di, j) given as

Di, j = (−1)i+ jdet(Mi, j),

where Mi, j is the minor corresponding to matrix entry bi, j for the ith row and jth column

of B are eliminated to have

Ad j(B) =



D1,1 D1,2 D1,3 · · · D1,n

D2,1 D2,2 D2,3 · · · D2,n

D3,1 D3,2 D3,3 · · · D3,n

...
...

... . . . ...

Dn,1 Dn,2 Dn,3 · · · Dn,n



T

.

It is obvious that Cramer’s rule provides solutions for given unknowns xi, in linear

systems.

xi = B−1c =
Ad j(B)
det(B)

c =
1

det(B)



D1,1 D1,2 D1,3 · · · D1,n

D2,1 D2,2 D2,3 · · · D2,n

D3,1 D3,2 D3,3 · · · D3,n

...
...

... . . . ...

Dn,1 Dn,2 Dn,3 · · · Dn,n



T 

c1

c2

c3

...

cn


.

Therefore,

xi =
D1,ic1 +D2,ic2 +D3,ic3 + · · ·+Dn,icn

det(B)
. (2.4)
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Theorem 2.2.1. (Higham, 2002)[Cramer’s rule] Let Bx = c be an n× n system of

linear equations and B is an n× n matrix of x such that det(B) 6= 0, then the unique

solution (x1,x2, ...,xn) to the system in Equation (2.1) is given by

xi =
det(Bi|c)

det(B)
, (2.5)

where Bi|c is the matrix obtained from B by substituting the vector column of c to the

ith column of B, for i = 1,2, ...,n.

It is now easy to see that Equation (2.4) and Equation (2.5) are equivalent. That is,

xi =
D1,ic1 +D2,ic2 +D3,ic3 + · · ·+Dn,icn

det(B)
=

det(Bi|c)

det(B)
.

2.2.1 Historical background of Cramer’s rule

Cramer’s rule was named after a Swiss mathematician Cramer Gabriel when he hinted

that resultants (determinants) might be useful in analytical geometry (Cramer, 1750).

He published the technique in his paper "Introduction à l’analyse des lignes courbes

algébriques" for solving simultaneous system of linear equations on his contribution

to the theory of determinant. He further explained how to calculate the terms using

his rule for determining the sign and for obtaining the numerator, and explained what

happens if the denominator vanishes (Debnath, 2013a). Earlier in 1545, an Italian

mathematician Gerolamo Cardano in his paper entitled in "ars magna" gave a clue for

solving a system of linear equations which he termed as "regula de modo" – mother of

rules (Cardano et al., 2007). Though his method was practically based on 2×2 resul-

tants, the rule later gave what we essentially know as Cramer’s rule. It was MacLaurin,
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a Scottish mathematician, that gave the first published results on solving two and three

simultaneous linear equations in a book titled "Treatise of Algebra" (MacLaurin, 1748).

In Maclaurin’s posthumous, Boyer (1966) revealed that Cramer’s rule was published

two years earlier. In fact, Hedman (1999) examined a manuscript that produces un-

deniable proof that Maclaurin taught his students "Cramer’s rule" over two decades

before Cramer published it. However, Kosinski (2001) argued that the rule Maclaurin

chose to allocate sign for every summand was actually wrong, though his assertion of

"opposite" coefficient was right, and this was corrected by Cramer by computing the

number of shifts, dérangements, in the permutation. Günther (1908) pointed that, for

lack of good notation, Maclaurin missed the general rule for solving system of linear

equations.

Over a century, Cramer’s rule quickly found its way into the textbooks. Nowadays,

Cramer’s rule is taught not only in undergraduate mathematics but also in additional

mathematics for Secondary (High) School Students (Meyer, 2000). Cramer’s rule is

known for solving systems of n linear equations in n variables for over two centuries

and thus it gives a clear assertion for the solution of nonsingular linear equations (Hog-

ben, 2014). For this reason, Cramer’s rule has been applied in differential geometry

(especially in Ricci calculus), to compute totally unimodular in integer programming,

to derive the general solution to an inhomogeneous linear differential equation and to

obtain Z-matrix from WZ factorization of nonsingular matrix.

2.2.2 Older modifications of Cramer’s rule

According to Halmos (1980), "it may be a new proof of an old fact or it may be a new

approach to several facts at the same time. If the new proof establishes same previously
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unsuspected connections between two ideas; it often leads to a generalization". Thus,

the understanding of a particular area of interest is suddenly advanced by the discovery

of a single basic equation or idea (Pickover, 2011). Therefore, many invented methods

of solving systems of n linear equations in n variables have been linked to Cramer’s

rule (Robinson, 1970; Ehrenborg, 2004). Cramer’s rule has gotten a lot of modifica-

tions than all other direct methods combined together, because the rule indicates if a

system is incompatible or indeterminate without completely solving the system.

There are many previous work on Cramer’s rule that made use of properties of deter-

minants, especially cofactor, in their proofs which includes Jacobi’s proof that led to

Turdi’s proof and rediscovered in Whitford and Klamkin (1953) . Recently, Cramer’s

rule has been proved via adjoint matrix and the proof by identity matrix was adopted to

solve system of linear equations using elementary row operations make Cramer’s rule

invariant - remains unchanged after transformation (Li et al., 2014). Gauss elimination,

Jacobi method and Gauss-Jordan elimination are other efficient iterative and numeri-

cal methods that have succeeded Cramer’s rule, including parallel Cramer’s rule (PCR)

for solving singular linear systems by creating a tree like structure (Sridhar, 1987; Gu

et al., 2006; Watkins, 2004).

Cramer’s rule has brought debate among scholars on page in Wikipedia (Talk:Cramer’s

rule) regarding its complexity time, numerical stability and round off error. Some of

the statements against Cramer’s rule have been shown to be untrue. For instance, Hab-

good and Arel (2012) method depends on Chio’s condensation by mirroring for solving

large-scale linear systems. His work outline how Cramer’s rule can be applied in a scal-

able manner. He showed the stability of the algorithm including its forward and back-

ward error analysis. Unique utilization of Cramer’s rule and matrix condensation tech-
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niques give an effective process that is applicable to parallel computing architectures.

Then he concluded that if an accurate method for evaluating determinants is used then

Cramer’s rule can, in fact, be numerically stable. However, Ufuoma (2013) method

also employed Dodgson’s condensation with partial mirroring but with several 2× 2

determinants to be computed. Thus, much advancement has been made on Cramer’s

rule to solve Quaternionic systems (Song and Wang, 2011; Song and Dong, 2017),

least-squares solution of linear equations (Kyrchei, 2012), class of singular equations

(Wang, 1989), matrix iteration (Srivastava and Gupta, 2015), WZ factorization (Bylina

and Bylina, 2013), Cramer’s rule for the solution of restricted matrix equation (Gu and

Xu, 2008) as well as integrating Dodgson’s condensation and Sylvester’s determinantal

identity with Cramer’s rule (Li et al., 2014; Radhakrishnan et al., 2014).

2.2.3 Accuracy and Stability of Cramer’s rule

For any numerical method, an algorithm should provide an accurate answer. But an

admissible level of accuracy depends on application of the algorithm. Not only should

an algorithm display accuracy and stability, but also efficiently balance the workloads

and memory optimization (Habgood and C., 2011). In scientific computation, if solu-

tions to problems vary enormously in magnitude, then the relative error is considered

due to independent scaling. There are two categories of errors that reduce accuracy

thereby causing instability: round-off error and truncation error or discretization er-

rors (Collins, 1990). Round-off error is unavoidable but can be overcome using higher

precision - more bits to store data (storing floating point values from singles to dou-

bles). Truncations errors arise from the inability of a process to exactly represent the

solution to an individual calculation due to operations that involve a finite number of

14



steps (Quarteroni et al., 2010). If computational errors can be made small and remain

small even as the problem size grows, such an algorithm is considered stable. This is

because less rounding errors increases the accuracy of the algorithm’s solution.

An algorithm can be stable for solving a specific problem but unstable when applied to

another problem. Now, the challenge becomes presenting an argument which proves

that an algorithm is stable. The two most common strategies are forward analysis and

backward analysis (Higham, 2002). Forward error is a relatively intuitive measure as it

bounds the algorithm’s solution and the actual correct solution. However, the challenge

is to provide a known correct solution for comparison. On the other hand, the back-

ward analysis estimates the potential perturbations that the algorithm would affect the

original data (Habgood and Arel, 2012). An example of a method that is forward sta-

ble but not backward stable is Cramer’s rule for solving 2×2 linear systems (Higham,

2002). Nevertheless if the system is well-conditioned for a nonsingular linear system,

then Cramer’s rule is backward stable (Stummel, 1981). The stability of Equation (2.2)

is given as

B(x+δx) = c+δc. (2.6)

Due to numerical instability, Moler (1974) expressed that Cramer’s rule is unsatisfac-

tory even for 2× 2 ill-conditioned linear systems because of round-off error. How-

ever, Dunham (1980) gave counter example to the statement to show that Cramer’s

rule is satisfactory. If better precision is utilized only for the determinant calculations,

Cramer’s rule offers accuracy comparable to that of LU-factorization. The rule yields

a highly accurate answer than Gaussian elimination even with pivoting, especially for

2×2 linear systems. Thus, accurate method to evaluate determinants makes Cramer’s

rule numerically stable (Habgood and C., 2011).
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2.2.4 The advantages and disadvantages of Cramer’s rule

Cramer’s rule has many disadvantages as it fails when the determinant of the coeffi-

cient matrix is zero, requires n+ 1 determinants each of n× n order, round off error

may become significant on large problems with non-integer coefficients and also nu-

merically unstable (Debnath, 2013a; Vein and Dale, 1999). Cramer’s rule via Laplace

expansion method of determinant has time complexity of O(n.n!), however it has been

improved with other fast and concise methods such as K-Chio’s method (Kaltofen and

Villard, 2005; Habgood and Arel, 2012; Shores, 2007). Debnath (2013b) pointed out

that to solve a system of linear equations that possesses a distinct solution, Cramer’s

rule requires polynomial time of

(
1
3

n4 +
1
3

n3 +
2
3

n2 +
1
3

n−1
)

multiplications (2.7)

and (
1
3

n4− 1
6

n3− 1
3

n2 +
1
6

n
)

additions and subtractions (2.8)

which gives the total number of arithmetic operations, T (n), used as T (n) ≈ 2
3n4 and

its the asymptotic time complexity as O(n4). Notwithstanding its high computational

complexity, Cramer’s rule is truly intriguing and it is of hypothetical significance for

solving linear systems (Brunetti and Renato, 2014).

Another disadvantage of Cramer’s rule is the high residual error for ill-conditioned

systems. Conditioning measures the sensitivity of the solution to perturbations in the

data (Higham, 2002). The condition number for coefficient matrix B of ill-conditioned

system (with respect to the sensitivity of its inverse) should satisfy
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κ(B) = ‖B‖‖B−1‖.

The condition number depends on the matrix B and on the norm used. If the condi-

tion number is large (κ(B) ≥ 1) then matrix B is ill-conditioned, otherwise it is well-

conditioned. An ill-conditioned system does not warrant a minute error of the solution

when it has small residuum, since its matrix is nearly singular. A system is singular

if the condition number is infinite, and ill-conditioned if it is too large because it esti-

mates worst-case loss of precision which are difficult to solve on a computer (Strakos

and Liesen, 2005). The condition number is more precisely defined to be the maximum

ratio of the relative error in x to the relative residual error in c. We can check how good

our result after computing x̂ (and the symbol ||x̂|| represents the norm of the calculated

solution vector x̂) by finding the residual as Bx̂− c. The relative residual error

‖Bx̂− c‖
‖B‖.‖x̂‖

≤ ‖E‖
‖B‖

,

where E is the round-off error, which almost measure accuracy (numerical stabil-

ity) when working with system of linear equations (Davis, 1984; Neumaier, 1998).

Roughly, the relative error norm is about the condition number times the machine pre-

cision. If a method is backward stable, then it gives a small residual base on machine

precision, even for ill-conditioned problems (Datta, 2004). Stability is connected to an

algorithm applied to a precise system because in the ill-conditioned system the errors

on the data are amplified by the system. For ill-conditioned system, the solution can be

inaccurate even if the residual is small or have an accurate solution even if the residual

is large.

Cramer’s rule gives a clear representation of an individual component unconnected to

17



all other components. Another advantage of Cramer’s rule is its application in quadrant

interlocking factorization or WZ factorization to check if the matrix being factorized

is nonsingular and to solve the linear systems of the factorization (Levin and Evans,

1991).

2.3 Z-matrix from quadrant interlocking factorization or WZ factorization

Over a century, square matrix has been the research interest of matrix theorists and

graph theorists. The properties and applications of square matrices have spread their

tentacles to many fields of studies (Debnath, 2013a). Nowadays, studies show that the

position of zero and nonzero entries in a square matrix reflects the structure (shape) of

the matrix such as Z-matrix (Garnett et al., 2014; Antony and Alemayehu, 2015).

Definition 2.3.1. (Bylina and Bylina, 2013) Z-matrix of order n (n ≥ 3) is generally

defined as

Z =


(0, ...,0︸ ︷︷ ︸

i−1

,zi,i, ...,zi,n−i+1,0, ...,0)T , i = 1, ...,b (n+1)
2 c;

(0, ...,0︸ ︷︷ ︸
n−i

,zi,n−i+1, ...,zi,i,0, ...,0)T , i = b (n+1)
2 c+1, ...,n,

(2.9)

The definition of Z-matrix depends on the form on the factorized nonsingular matrix.

Definition 2.3.2. (Bylina and Bylina, 2013) W-matrix or a bow-tie matrix of order

n (n≥ 3) is

W =


(wi,1, ...,wi,i−1,1,0, ...,0︸ ︷︷ ︸

n−2i+1

,wi,n−i+2, ...,wi,n), i = 2, ...,b (n+1)
2 c;

(wi,1, ...,wi,n−i,0, ...,0︸ ︷︷ ︸
2i−n−1

,1,wi,i+1, ...,wi,n), i = b (n+1)
2 c+1, ...,n−1,

18



The W -matrix is called a unit W -matrix if in addition wi,i = 1 and wi,n+1−i = 0 for

i = 1,2, ...,n (Golpar-Raboky, 2012). Using WZ factorization of Equation (1.1) to

solve equation (2.2) will result in


Wy = c

Zx = y,

(2.10)

where y is an auxiliary intermediate vector. If the main diagonal entries of Z-matrix

are 1’s and the anti-diagonal entries are 0’s, then it is referred to as unit Z-matrix. It is

called unit split Z-matrix if the anti-diagonal entries are replaced with 1’s (Heinig and

Rost, 2004). A matrix which is both a Z-matrix and a W -matrix is called an X-matrix

(Han and Kye, 2016). Thus, a factorization which is either a ZW factorization or WZ

factorization is known as butterfly factorization (Heinig and Rost, 2011). A matrix

which is either a Z-matrix or a W -matrix is called butterfly matrix. These names are

suggested by the shapes of the set of all possible positions for nonzero entries, which

are as follows:

W =



• •

• ◦ ◦ •

• ◦ ◦ ◦ ◦ •

• ◦ ◦ ◦ ◦ ◦ ◦ •

• ◦ ◦ • • ◦ •

• ◦ • • ◦ •

• • • •

• •



Z =



• • • • • • • •

◦ ◦ ◦ ◦ ◦ •

◦ ◦ ◦ •

◦ •

• ◦

• ◦ ◦ ◦

• ◦ ◦ ◦ ◦ ◦

• • • • • • • •


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X =



• •

• •

• •

• •

• •

• •

• •

• •



.

A representation of a nonsingular matrix B in the form B = ZXW (or B = WXZ) in

which Z is a Z-matrix, W is a W -matrix and X is a X-matrix is called a ZW factor-

ization of B. If X-matrix and Z-matrix are of the same order, then ZX and XZ are

Z-matrices. It is called unit ZW factorization if Z is a unit Z-matrix and W is a unit

W -matrix. Obviously, if B admits a ZW factorization, then it admits a unique unit

ZW factorization. There are other forms of QIF or WZ factorization such as alternate

quadrant interlocking factorization (AQIF), Cholesky QIF , QZ, QW where the matrix

Q is an orthogonal matrix (Evans, 1999; Khazal, 2002). Among all, AQIF possesses

many general properties of QIF . Furthermore, AQIF is a variant of Gaussian elimina-

tion that works from inner submatrix to outer submatrix whereas QIF is a variant of

Gaussian elimination that works from outer submatrix to inner submatrix.

2.3.1 Quadrant interlocking factorization (QIF) algorithm

We assume that matrix B is a square nonsingular matrix. Furthermore, we assume

matrix B is centro-nonsingular which has to be factorized into Z-matrix should be of an

even size (the assumption also holds for odd order yet easier to work with even order).
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If matrix B is singular then interchange columns or rows of the matrix by suitable

permutation to avoid breakdown of the factorization method. For the establishment

of elements in W -matrix (with 1’s in its main diagonal and 0’s in the antidiagonal),

column ith and (n− 1)th are solved by simultaneous equation using Cramer’s rule

which requires matrix B to be successfully updated and this update changes matrix B

to Z-matrix. The matrix update of WZ factorization indicates the most time consuming

part of the factorization. The advantage of using Cramer’s rule to solve for 2×2 system

of linear equations during the factorization is to check if the matrix is centro-singular

and to adopt least matrix norm (Levin and Evans, 1991; Bylina and Bylina, 2014). The

steps to obtain Z-matrix is as follows:

Step 1: Let B(0) = Z(0)for initial update and obtain the first and last rows of Z-matrix

as b(0)1,1 = z(0)1,1, b(0)1,i = z(0)1,i , b(0)1,n = z(0)1,n, b(0)n,1 = z(0)n,1, b(0)n,i = z(0)n,i , b(0)n,n = z(0)n,n, where i =

2, ...,n−1. Now, we compute w(1)
i,1 and w(1)

i,n from (n−2) sets of 2×2 linear system in

Equation (2.11) of matrix B using Cramer’s rule


z(0)1,1w(1)

i,1 + z(0)n,1w(1)
i,n =−z(0)i,1

z(0)1,nw(1)
i,1 + z(0)n,nw(1)

i,n =−z(0)i,n .

(2.11)

The values of w(1)
i,1 and w(1)

i,n are put in matrix form as:

W (1) =



1 0 · · · 0 0

w(1)
2,1 1 . . . ... w(1)

2,n

... 0 . . . 0
...

w(1)
n−1,1

... . . . 1 w(1)
n−1,n

0 0 · · · 0 1


.
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Step 2: We update matrix B (let B(1) = Z(1) for the first update) and compute:

Z(1) =W (1)Z0.

We, therefore, proceed analogously for the inner square matrices of Z(1) of size (n−2)

and so on.

Step 3: Next, we compute w(k)
i,k and w(k)

i,n−k+1 from Equation (2.12) by solving its 2×2

linear equations using Cramer’s rule, where k = 1,2, ..., n
2 −1; i = k+1, ...,n− k.


z(k−1)

k,k w(k)
i,k + z(k−1)

n−k+1,kw(k)
i,n−k+1 =−z(k−1)

i,k

z(k−1)
k,n−k+1w(k)

ik + z(k−1)
n−k+1,n−k+1w(k)

i,n−k+1 =−z(k−1)
i,n−k+1.

(2.12)

Then, we put the values of w(k)
i,k and w(k)

i,n−k+1 in a matrix form as:

W (k) =



1

w(k)
k+1,k

. . . w(k)
k+1,n−k+1

... . . . ...

w(k)
n−1,k

. . . w(k)
n−k,n−k+1

1


.

Step 4: We further compute for kth such successful steps as:

Z(k) =W (k)Z(k−1).

To arrive at the Z-matrix, we let Z(k) = Z. Thus,
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Z =



z(0)1,1 z(0)1,2 z(0)1,3 · · · z(0)1,n−2 z(0)1,n−1 z(0)1,n

0 z(1)2,2 z(1)2,3 · · · z(1)2,n−2 z(1)2,n−1 0

0 0 z(k−1)
k,k · · · z(k−1)

k,n+1−k 0 0

...
...

...
...

...
...

0 0 z(k−1)
n+1−k,k · · · z(k−1)

n+1−k,n+1−k 0 0

0 z(1)n−1,2 z(1)n−1,3 · · · z(1)n−1,n−2 z(1)n−1,n−1 0

z(0)n,1 z(0)n,2 z(0)n,3 · · · z(0)n,n−2 z(0)n,n−1 z(0)n,n



.

The MATLAB code to compute the elements of W -matrix and Z-matrix is given in A.1.

Note that the computed z(k)i, j in Z is unbound to be nonzero, for i, j = k+ 1, ...,n− k.

A complete one-stage in WZ factorization is when Z(k−1) is computed. Therefore,

the factorization has b (n−1)
2 c stages to compute all the elements of the matrix W and Z

(Evans and Hatzopoulos, 1979). After the algorithm of WZ factorization is established,

the following theorems were put forward:

Theorem 2.3.1. Factorization Theorem (Rao, 1997). Let B ∈ Rn×n be a nonsingular

matrix that has a unique QIF factorization, then B =WZ if and only if the submatrices

of B are invertible.

Theorem 2.3.2. (Rao, 1997). If B ∈ Rn×n is nonsingular matrix, then there exist a row

permutation matrix P for QIF to be carried out with pivoting such that PB =WZ.

Theorem 2.3.3. (Rao, 1997). Let B be a square matrix, invertible or not. There exists

at least one invertible matrix M such that MB = Z.

Theorem 2.3.4. (Rao, 1997). Every symmetric positive definite and strictly diagonally

dominant matrix has a QIF.

Theorem 2.3.5. (Rao and Kamra, 2015). Let B be nonsingular tri-diagonal diago-

nally dominant, then its factored Z-matrix from QIF factorization is also tri-diagonal
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diagonally dominant.

2.3.2 Suitability and efficiency of QIF for parallel computing

Factorization of matrix B is difficult to compute and applying different optimization

techniques couple with parallelism of contemporary computers makes WZ factoriza-

tion extremely efficient and suitable for parallel computing. While the stability of

WZ factorization comes from the centro-nonsingular matrix which is far reliable than

any other type of factorization. In fact, WZ factorization is stable for every nonsin-

gular matrix irrespective of their condition number because the algorithm has been

preconditioned (Bylina and Bylina, 2007). Thus, for the factorization using Thomas’

algorithm, split Levison algorithm, split Schur algorithm, BSP or ABS to speed up and

solve linear systems on SIMD or MIMD shared memory parallel computers with many

integrated core (MIC) in order to reduce processing time can be found in (Heinig and

Rost, 2011; Golpar-Raboky, 2014; Bylina and Bylina, 2016). For parallel implemen-

tation, matrix B from Equation (2.2) is expressed as


b1,1 b1, j b1,n

bi,1 Bi, j bi,n

bn,1 bn, j bn,n

=


1 0 0

−wi,1 In−2 −wi,n

0 0 1

×


b1,1 b1, j b1,n

0 Bn−2 0

bn,1 bn, j bn,n

 , (2.13)

where Bn−2 is a matrix of size (n−2)× (n−2) to update B′n−2 as B′n−2 =−wi,1 b1, j +

Bn−2−wi,n bn, j, for i, j = 2,3, ...,n−1.

Parallel computing is a type of computation in which many calculations (the compu-

tation can be divided into smaller subproblems) are performed at the same time. In

a parallel algorithm, a single instruction stream commands the execution of the algo-
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