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ALGORITMA HIBRID MULTI-OBJEKTIF UNTUK KLASIFIKASI SET

DATA TAK SEIMBANG

ABSTRAK

Klasifikasi set data tidak seimbang kekal menjadi isu penting dalam perlombong-

an data dan bidang pembelajaran berkomputer. Penyelidikan ini, mencadangkan suatu

idea baru berdasarkan pengoptimuman untuk mengendalikan set data tidak seimbang.

Suatu algoritma hibrid adaptasi diri baru (CSCMAES) diperkenalkan untuk pengopti-

muman. Algoritma hibrid ini berasaskan pada dua algoritma metaheuristik yang ter-

kenal: Carian cuckoo (CS) dan strategi evolusi adaptasi matriks kovarians (CMA-es).

Untuk penumpuan pantas dan untuk prosedur carian yang efisien, adaptasi diri da-

lam parameter algoritma hibrid dicadangkan. Keberkesanan algoritma ini diuji dengan

masalah fungsi ujian tanpa kekangan dan dengan kekangan melalui kajian simulasi.

Daripada kajian simulasi, adalah ditunjukkan bahawa CSCMAES dilakukan dengan

baik pada setiap fungsi ujian dan menghasilkan nilai terbaik dengan sisihan piawai mi-

nimum dan dengan penumpuan lebih cepat. Selepas itu, suatu algoritma hibrid multi-

objektif (MOHA), iaitu lanjutan daripada algoritma hibrid adaptasi kendiri dicadangk-

an dan diuji pada fungsi ujian multi-objektif (MO) yang telah ditetapkan. MOHA yang

dicadangkan mendapat keputusan, baik dalam fungsi ujian ini. Suatu metodologi ba-

ru dibentangkan untuk klasifikasi set data tidak seimbang. Idea utama metodologi ini

adalah untuk menganggarkan kebarangkalian untuk setiap kes dalam kedua-dua kelas

secara berasingan. Untuk tujuan ini, taburan normal digunakan pada setiap kelas. Pa-

rameter taburan ini dioptimumkan dengan aplikasi MOHA yang dicadankan. Prestasi

cekap metodologi yang dicadangkan ini diperhatikan dengan bantuan kajian eksperi-

mental pada tiga jenis set data; data simulasi, data bersempadan bising dan set data
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tidak seimbang sebenar digunakan. Tambahan pula, prestasi mesin vektor sokongan

(SVM) yang dipertingkatkan dikaji dengan menggunakan algoritma prapemprosesan

dan pengoptimuman. Di samping itu, prestasi SVM juga dikaji dengan pembelajaran

kernel berbilang (mkl) menggunakan algoritma prapemprosesan dan pengoptimuman.
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MULTI-OBJECTIVE HYBRID ALGORITHM FOR THE CLASSIFICATION

OF IMBALANCED DATASETS

ABSTRACT

Classification of imbalanced datasets remained a significant issue in data mining

and machine learning (ML) fields. This research work proposed a new idea based

on the optimization for handling the imbalanced datasets. A new self-adaptive hy-

brid algorithm (CSCMAES) is introduced for optimization. The proposed algorithm is

grounded on the two famous metaheuristic algorithms: cuckoo search (CS) and covari-

ance matrix adaptation evolution strategy (CMA-es). For its fast convergence and for

its efficient search procedure, the self-adaptation is proposed in the parameters of the

proposed hybrid algorithm. The effectiveness of this algorithm is verified by apply-

ing it on the unconstrained and constrained test functions through a simulation study.

From the simulation study, it is shown that CSCMAES performed very well on each

test function and produced the best values with minimum standard deviation and with

faster convergence. Thereafter, a multi-objective hybrid algorithm (MOHA), an ex-

tension of the self-adaptive hybrid algorithm is proposed and tested on the established

multi-objective (MO) test functions. The proposed MOHA performed very well on

these test functions. A new methodology is presented for the classification of the im-

balanced datasets. The key idea of this methodology is to estimate the probabilities

for each case in both classes separately. For this purpose, the normal distributions are

applied to each class. The parameters of this distribution are optimized by applying the

proposed MOHA. An efficient performance of this proposed methodology is observed

with the help of an experimental study in which three types of datasets; simulated

datasets, noisy borderline datasets and real-life imbalanced datasets are engaged. Fur-
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thermore, an improved performance of support vector machines (SVM) is studied by

using the preprocessing algorithm and optimization. In addition, the performance of

SVM is also studied with multiple kernel learning (mkl) by applying the preprocessing

algorithm and optimization.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

This chapter will provide a general idea of this research work, in which, research

area and the elementary methodologies are introduced. Research problems that are

investigated in this study and related questions will be discussed. The objectives of

this research work are also defined in this chapter. A complete layout of this thesis is

presented in the last paragraph of this chapter.

1.1.1 Optimization

Optimization relates to various fields with a wide variety of applications. Human

beings always have some constraints on their resources such as time constraint and

financial constraints. Therefore, its significance cannot be denied. Optimization prob-

lems can be partitioned into two categories based on the type of the decision variables

i.e. discrete optimization or continuous optimization. The solution to a problem is

usually found by an efficient optimization procedure either by minimization of the

cost function or by the maximization of the performance measures. Efficient optimiza-

tion mostly uses the derivative information obtained from the cost function based on

the design variables. However, it is difficult to obtain the accurate information in many

real-life situations or the evaluation of cost function with the existing methodologies is

too expensive.
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Last decade has seen a rapid growth of optimization procedure which can work

without the derivative information of the cost function with the fastest convergence.

These procedures are usually termed as derivative-free optimization methods (Kramer

et al., 2011 ; Rios & Sahinidis, 2013). Tools for finding the rapid and accurate solution

of optimization problems are algorithms. Most conventional and classical algorithms

produced suboptimal results particularly for multimodal and high dimensional prob-

lems due to their deterministic nature (Rakhshani & Rahati, 2017; Yang, 2010). After

the development and modifications of classical algorithms, enhanced nature-inspired

algorithms are introduced by the researchers which are capable enough to overcome

all the inadequacies of the classical algorithms. Nature-inspired algorithms have been

developed by getting inspiration from nature. These algorithms are stochastic and

derivative-free in nature (Fister Jr et al., 2013; Mlakar & Fister, 2016).

1.1.2 Nature-Inspired Metaheuristic Algorithms

Nature-inspired metaheuristics algorithms, a type of stochastic algorithms have the

capability of providing the good quality solutions of problems using both randomness

and local search (Talbi, 2002). Lots of work have been done on nature-inspired meta-

heuristics by the researchers. Swarm intelligence (SI) and Evolutionary algorithms

(EA) are the two major branches of these algorithms (Gendreau & Potvin, 2010;

Lones, 2014). The key idea behind EA is that only those entities of a population

which meet certain selection criteria are kept and the rest are discarded (Fister Jr et al.,

2013). In this way the population will converge to those entities that fulfill the selec-

tion criteria (Parrill, 2000). SI is the combined intelligence of clusters of all agents.

Algorithms based on SI must be flexible to internal and external changes, should be
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robust, distributed and self-organized (Chu et al., 2011; Deepa & Senthilkumar, 2016).

1.1.3 Intensification and Diversification

Metaheuristic algorithm is considered to be an efficient device to produce the opti-

mal solutions within an adequate time for the complex optimization tasks. To find the

good and reasonable solutions for the complex problems, a metaheuristic algorithm

must hold two characteristics: (1) generate the efficient solutions which should be

more effective than the existing solutions by searching the whole area where the global

solutions can be found (2) to be able to escape from the local optimum. The combina-

tion of these two characteristics (intensification and diversification or exploration and

exploitation) are highly demanded (Blum & Roli, 2003; Lozano & García-Martínez,

2010).

Exploration is usually performed by the randomization procedure which enables

an algorithm to search globally and don’t get stuck in local optimum. The search pro-

cedures based on randomization can also be engaged in a local search for the whole

space near the best solution if the steps are restricted to the local area. The randomiza-

tion can search the space globally for the large steps. Whereas, exploitation uses the

information of the local space and produces the local optimum. Exploitation increases

the convergence speed of metaheuristics. However, exploration decreases the conver-

gence rate of an algorithm and reduces its efficiency. A fine-tuning of these two tools

of metaheuristic algorithms can enhance its efficiency (Yang et al., 2014).
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1.1.4 Hybrid Algorithms

The idea of combining two or more algorithms is also now gaining popularity day

by day due to their optimal results. Taking the benefits from two or more algorithms,

the newly proposed algorithms are usually recognized as hybrid algorithms (Cung et

al., 2006). Many studies have been conducted on hybrid algorithms. Few of them used

metaheuristics with local search for hybridization and few utilized only nature-inspired

algorithms i.e. evolutionary and swarm algorithms (Bianchi et al., 2006; Blum et al.,

2011). Most of the hybrid algorithms are problem specific and are being proposed

to solve specific problems by taking the advantage of optimization abilities of two or

more algorithms (Abdullah et al., 2012; Chiarandini et al., 2006; Vidal et al., 2015).

For ML and data mining fields, particularly for the classification of imbalanced

datasets, different hybrid algorithms have been introduced by different authors. How-

ever, most of the algorithms are only based on the combinations of ML approaches

and metaheuristic algorithms. Few of them are discussed in Chapter 2. For the classi-

fication of imbalanced datasets, the limited material is available on the nature-inspired

hybrid algorithms.

Two metaheuristic algorithms, CS and CMA-es are combined in this study, to build

a newly proposed hybrid algorithm. CS is grounded on the characteristics of swarms

whereas CMA-es are based on the evolution strategies. During this research work, the

joint efficiency of these algorithms will be utilized to produce a new hybrid algorithm.

Afterwards, this newly proposed algorithm will be extended to MOHA to solve MO

problems.
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1.1.5 Classification of Imbalanced Datasets

The handling of imbalanced datasets is a significant problem in ML and data min-

ing. These types of datasets can be originated in many real-life applications, for ex-

ample, recognition of fake telephone calls, text classification, in marketing and in the

medical field, etc (Nikulin & McLachlan, 2009; Phua et al., 2004; Zheng et al., 2004).

These types of datasets have an imbalance among classes i.e. one class has much more

instances than the other classes. For binary datasets, a class having many instances

is recognized as a majority (negative) class and the other one is termed as a minority

(positive) class. Traditional classifiers are not capable enough to handle this issue as

they show their biased behavior for the majority classes (Chawla et al., 2004; He et al.,

2008; He & Garcia, 2009).

The problems of imbalanced datasets also increased if the datasets contain noise.

Noise can originate in imbalanced datasets due to many reasons, for example, from

incorrect labeling, because of an inadequate number of examples in the data collection

phase, and from data preparation stages. Many ML algorithms are badly affected by the

noise. However, this problem gets worse if the dataset contains the imbalance problem

also. The reason is that many standard ML algorithms usually consider minority class

as the noise of the dataset (Garcia et al., 2012; Weiss, 2004).

Borderline instances or examples are another issues of noisy imbalanced datasets.

These examples are usually positioned in the neighboring area of the class boundaries

where most of them are overlying. This is again a challenging task for the researchers

in data mining and ML.
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The significant reasons behind the reduced performance of ML algorithms include

the ignorance of class-wise efficiency and considering only the overall performance,

the assumption of the equally distributed data among all classes and considering the

equal cost of the loss among classes (Kumar & Sheshadri, 2012).

Among all methods, the distribution of equal error cost to all classes is the foremost

disadvantage of the existing classifiers because of the reason that for many practical

applications, misclassification of examples in a dataset may create a different problem

for different classes. For example, the wrong diagnosis in medical field, i.e misclassi-

fying the cancerous cells may cause an adverse health risk. For this purpose, to tackle

this serious issue, many methodologies have been suggested by the authors.

Different types of sampling methods are presented for handling the imbalanced

datasets. These methods introduced the artificially generated examples with the help

of resampling. These methods are usually recognized as the pre-processing methods

(Chawla et al., 2002; He et al., 2008; Van Hulse & Khoshgoftaar, 2009).

Another way to intelligently tackle the imbalanced datasets is the feature selection

which is also very popular among the researchers. The feature selection methodolo-

gies have been applied in combination with different classifiers or with different sam-

pling methodologies for these types of datasets which can be studied from the existing

literature. For example, the concurrently engaging the backward elimination feature

selection method and SVM for imbalanced high dimensional datasets and the use of

undersampling feature selection and SVM on the skewed datasets (Al-Shahib et al.,

2005; Maldonado et al., 2014).
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Because of the successful applications of metaheuristic algorithms and computa-

tionally intelligent techniques for different real-world optimization problems particu-

larly, in ML and data mining, no one can ignore their important role (Duval & Hao,

2009; Yang et al., 2014). Many studies have been conducted using metaheuristics al-

gorithms and proved a significant performance for handling classification issues. For

example, to deal with imbalanced datasets, the proposal of creating the artificial ex-

amples for the minority class using a genetic algorithm (GA) had been introduced by

Beckmann et al. (2011). A hybrid system, showing the use of SI particularly particle

swarm optimization (PSO) with multiple classifiers and evaluation metrics had been

introduced by Yang (2009).

From the above discussion on the imbalanced datasets and different proposed meth-

ods for tackling them, it can be said that this is a significant issue in data mining and

ML. Keeping in view the significance of this issue, this study is going to introduce an

efficient methodology by using the MOHA.

1.2 Research Questions

The basic research question to be addressed in this study is how to classify imbal-

anced datasets using the characteristics of metaheuristics algorithms. A bridge between

these two fields, data mining, and optimization algorithms, should be built so that the

data mining issues should be studied by taking the advantage of the latest metaheuris-

tics optimization algorithms. For this purpose, the first research question is how to

form a new hybrid algorithm which would hold the features of two nature-inspired al-

gorithms. One of them is the CS which grips the characteristics of SI and another one
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is the CMA-es that holds the properties of EA. The next question is whether this newly

formed self-adaptive hybrid algorithm is capable enough to compete with the already

existing algorithms. The third important question attached to this newly formed algo-

rithm is the convergence behavior of this algorithm. How can we build its MO version?

To study the validation of MO algorithm is another research question for this study.

The one and most significant research question is how to propose a new method-

ology for the given classification task of imbalanced datasets using the MOHA. The

behaviors of different datasets i.e simulated, synthetic and real life datasets with the

proposed methodology will be investigated in this study. Besides these main research

questions, the other research questions are what are the applications of the proposed

optimization algorithm in the ML field. For example, one of the applications of opti-

mization algorithm can be seen for the parameters selection of existing classifiers via

random search and in the field of kernel learning. Therefore, another research problem

for this research work is, how to improve the performance of SVM, for the occurrence

of imbalances in the datasets. To improve the performance of SVM for imbalanced,

noisy and borderline datasets, an intelligent methodology would be introduced. How

to apply the proposed optimization algorithm in the field of kernel learning with the

weights optimization problem is another research question.
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1.3 Research Objectives

1. To propose a new hybrid algorithm by using the combined efficiencies of CS

and CMA-es. Self-adaptation in parameters will be introduced for this purpose.

Implementation of this proposed algorithm will be done on unconstrained and

constrained test functions.

2. To propose a MOHA, the self-adaptive hybrid algorithm will be extended. In the

classification task of noisy borderline and imbalanced datasets, a new method-

ology will be proposed. For this purpose, the two significant research areas,

optimization, and ML will be combined by using MOHA and the generative

classifier (normal distribution).

3. For the extensions and applications of this work, the self-adaptive hybrid algo-

rithm will be applied in ML field. For this given task, the proposed self-adaptive

hybrid algorithm will be used with the supervised classifier.

4. To study the improved performance of SVM for the given classification task of

imbalanced datasets by using a preprocessing oversampling algorithm and opti-

mization, a new methodology will be proposed. A comprehensive experimental

study will be conducted by using the synthetic noisy, borderline and real imbal-

anced datasets, to confirm the validity of the proposed methodology.

5. To observe the performance of SVM with mkl for synthetic noisy, borderline

and real imbalanced datasets. Another methodology will be introduced by using

an oversampling algorithm and optimization for the kernel weights and the pa-

rameters. An experimental study will be conducted with more than one kernel

functions.
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1.4 Arrangement of Thesis

This thesis has seven chapters including the first chapter as an introduction. In

Chapter 2, all the relevant studies based on optimization and the classification of im-

balanced datasets will be discussed. The performance of SVM discussed by different

authors by applying different methods will also be presented. The newly proposed self-

adaptive hybrid algorithm will be presented in Chapter 3 and thereafter the simulation

study on this new algorithm and comparisons with other algorithms will be presented

and discussed in Chapter 4. Chapter 5 is based on MOHA followed by a newly pro-

posed methodology for the classification of imbalanced datasets. Chapter 6 will show

the extensions and applications of this work. Finally, a summary, some extensions for

this study and the future directions will be discussed in Chapter 7.
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CHAPTER 2

REVIEW OF LITERATURE

In this chapter, the literature related to the objectives of this study will be reviewed.

All the related studies will be discussed in different sections with respect to different

aspects of the study, starting from nature-inspired to mkl. However, to justify the sig-

nificance of this present research work, the focus of discussion will be on those studies

which were conducted for the classification of imbalanced datasets using different op-

timization techniques.

2.1 Studies on Nature-Inspired Metaheuristic Algorithms

Optimization is a way of finding the optimal solution of the problem under consid-

eration from the given potential sets of substitutes following the defined criteria. This

method involves the maximization or minimization of a real-valued function by pro-

gressively picking the values from a stable predefined range and generating the best

values of the given task. The obtained “best” solution means that no other solution

is equal to or better than it. The algorithms engaged for the optimization problems

can be of deterministic and stochastic. Since the former method comprises substan-

tial and tedious calculations, thus, the later optimization methods are preferred by the

investigators (Binitha et al., 2012; Haupt & Haupt, 2004).

In recent years, metaheuristic algorithms inspired by nature are commonly used

for answering optimization problems. The acceptance of metaheuristic algorithms in
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the field of optimization is because of their fast performance. Although their produced

solutions are not optimal but these solutions are valid because they do not take long

running time. Intensification and diversification are two essential features of meta-

heuristics. Finding the best solution by moving around the existing best solution is

done by intensification. However, diversification examines the whole area for provid-

ing the global optimal solution.

According to Blum and Roli (2003) and Talbi (2002), a good metaheuristic algo-

rithm should hold the balance of the two. Therefore, an algorithm should be quick

enough in determining the region of good quality solutions in the whole search area

and secondly, it should not spend much time for those regions which do not have a

good quality solution or which are already explored.

Many nature inspired metaheuristic algorithms are very popular and are applied

by different researchers in various fields requiring high-quality solution in their real-

life problems. These algorithms are divided into two major categories (1) SI and (2)

EA. The most famous algorithms having the behavior of swarms are PSO, ant colony

optimization (ACO), CS, and firefly algorithm (FA) (Blum, 2005; Kennedy, 2011;

Yang, 2009; Yang & Deb, 2009).

Evolution based common algorithms include genetic programming (GP), genetic

algorithm (GA), evolutionary programming (EP), learning classifiers systems (LCS)

and evolution strategies (ES) (Parrill, 2000). Among the class of EA’s, evolution strate-

gies based on the Gaussian mutation are popular for parameter optimization. CMA-es

is the utmost popular and effective ES among real-parameter optimization for non-
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linear problems (Auger et al., 2004; Hansen & Kern, 2004).

2.2 Studies on Cuckoo Search and Covariance Matrix Adaptation evolution strate-

gies

This study proposes a new self-adaptive hybrid algorithm based on CS and CMA-

es. Therefore, different existing studies related to these two algorithms are presented

here which will help us in understanding their significant roles in handling optimization

problems in different fields. However, the main focus will be on the implementations

of these algorithms for the classification task of imbalanced datasets.

CS is a famous nature-inspired algorithm developed by Yang and Deb (2009). This

algorithm is inspired by the attitude of cuckoos. These birds attract others not only

by their sounds but also by their hostile behavior of reproduction strategy. The later

version of this algorithm was improved by levy flights instead of the simple random

walk. Many advancements and modifications of this algorithms have been proposed by

different researchers. Modifications for unconstraint optimization, modification using

Mantegna levy flights, modification using exchange of information, problem-specific

modifications, enhancements using self-adaptation of parameters in the algorithm have

been introduced (Li & Yin, 2015; Naik et al., 2015; Nguyen & Vo, 2015; Tuba et al.,

2011; Walton et al., 2011).

Fateen and Bonilla-Petriciolet (2014) proposed a simple modification of CS for

global optimization using the information obtained by the derivative of the objective

function. This modification proved to be consistent and effective for most of the test

functions. However, improved performance could not be achieved for the benchmark
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test problems.

The use of CS algorithm can be found in different fields and for different types of

problems, for example, for multimodal function, engineering optimization, for busi-

ness problems, design of steel structures and constrained problems (Bulatovic et al.,

2014; Cuevas & Reyna-Orta, 2014; Yang & Deb, 2010; Yang et al., 2012). The com-

prehensive literature reviews by two different authors on CS were done by Fister Jr et

al. (2014) and Mohamad et al. (2014).

In the field of ML, different applications of CS can be found. For example, this

algorithm is used for feature selection in the classification task by forming its binary

versions (Pereira et al., 2014; Rodrigues et al., 2013). Wang et al. (2016) introduced

a nearest neighbor CS algorithm (NNCS) with the probabilistic transformation. The

author proposed an idea of utilization of nearest neighbors strategy to search new solu-

tions instead of best solution so far. A solution based and fitness based similar metrics

were employed for the implementation of nearest neighbor strategy in CS.

Husaini et al. (2016) proposed a modification in CS using Markov Chain Monte

Carlo (MCMC) and this modification showed a satisfied performance with respect to

the convergence. A recent study proposed by Ismail et al. (2017) presented another

modified CS algorithm for solving quadratic assignment problem (QAP). To handle

the discrete variable of QAP, the smallest position value rule was introduced. The

application of CS for the medical data, remote sensing data, and the cancer data classi-

fication could also be found in the different studies proposed by Bhandari et al. (2014),

Gunavathi and Premalatha (2015), and Mohapatra et al. (2015).
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A significant role of MO algorithms cannot be denied. Therefore, we can also see

different MO versions of CS proposed by different authors using varying strategies.

The weighted sum approach and the non-dominated sorting were mostly engaged for

MOCS (Balasubbareddy et al., 2015; Rani et al., 2014; Yang & Deb, 2013).

As mentioned earlier, CS had been used in ML, particularly for classification tasks.

However, the available material is insufficient. Another important issue is that most of

the studies used this algorithm are only for feature selection purposes using its different

versions. However, a study by Abdualrhman and Padma (2017), proposed a robust and

scalable classifier based on CS. This was the first study which used CS algorithm in

making a binary classifier directly. According to this author, CS was employed for the

class search due to the rapid search characteristics of this algorithm.

Now we will discuss the existing studies on another optimization algorithm used

in the formation of our new hybrid algorithm. Before performing hybridization, it is

better to view and understand its role in different fields. This algorithm is another

nature-inspired algorithm and follows an evolution theory proposed by Darwin. There

are different algorithms based on this evolution theory but only CMA-es is used in this

study.

CMA-es was introduced by Hansen and Ostermeier (1997). According to Muller

et al. (2009), CMA-es is one of the ES and a stochastic iterative technique for con-

tinuous parameter optimization. Few developments and modifications were proposed

by the authors in different years (Hansen et al., 2003; Hansen & Ostermeier, 2001).

Hansen and Kern (2004) evaluated CMA-es by using the multimodal test functions.
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The convergence of CMA-es was also studied by Diouane et al. (2015).

A restart strategy of CMA-es with the increased population size at each restart

for the global optimization problems was suggested by Auger and Hansen (2005) and

Suganthan et al. (2005). The authors evaluated this method on the 25 real-parameter

optimization test functions of CEC 2005.

In another study, the effect of small primary population size on IPOP Active CMA-

es with mirror mutations was investigated by Brockhoff et al. (2012). Hansen (2008)

proposed another idea of combining two-point step size adaptation with CMA-es for

large populations. In addition to this combination, a refined formula for the learning

rate of the covariance matrix and recombination weights was also suggested.

This algorithm also has some drawbacks in terms of its efficiency. According to

Chen et al. (2009), although CMA-es is the famous EA for solving continuous opti-

mization problems, its efficiency is not much admirable but these algorithms have the

ability of escaping from the local minima. Therefore, in many studies, different adap-

tations, and modifications of this algorithms were proposed to cover its shortcomings.

Beyer and Sendhoff (2008) proposed a new adaptation strategy in CMA-es to over-

come the drawbacks of these algorithms. The weighted recombination is a way for

improving the local search of evolution strategies by making use of available effective

information. A ranked based weighted recombination was introduced. The optimal

weights were computed for the sphere model and comparisons were made with the

strategies without weighted recombination. An extension of this study was made in

which the weighted recombination strategy was studied for the parabolic ridge (Arnold,
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2005, 2006).

As CMA-es is a continuous optimization algorithm. This algorithm has been ap-

plied to the optimization problems of real life. Suominen et al. (2012) used CMA-

es for the parameter estimation of complex chemical kinetics. An efficient improved

CMA-es for network security situation prediction was proposed by Hu and Qiao (2015).

CMA-es was engaged for the total cost minimization of energy and the spinning backup

arrangement for a wind thermal power in the study proposed by Reddy et al. (2013). In

another study, a multimodal, MO and nonlinear optimal transformer design was pro-

posed. For the optimization of that design, CMA-es was used by minimizing the four

objective functions namely purchase cost, total lifetime cost, total mass and total loss

individually (Tamilselvi & Baskar, 2014).

The use of CMA-es for MO optimization problems can also be studied from the

available literature (Igel et al., 2007). Thereafter, an improved step size adaptation was

proposed in the MO version of CMA-es (Vob et al, 2010). However, a limited material

is available on CMA-es as a MO optimization algorithm.

After viewing the literature, it can be said that these two algorithms are popular

optimization algorithms for continuous test problems. CS, as it is discussed above, is

capable enough of generating the efficient results in a minimum time, whereas CMA-

es has a few drawbacks in terms of efficiency. Therefore, this study took the inspiration

from these two algorithms in terms of combining them and form a new hybrid algo-

rithm which would hold the characteristics of these two optimization algorithms. CS

holds the features of swarm intelligence whereas CMA-es holds the properties and con-
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cepts of the evolution process. So by hybridizing them, we would be able to combine

both the characteristics in one algorithm, which will be capable enough to overcome

the shortcomings of CMA-es.

2.3 Studies on Hybrid Algorithm of CS and CMA-es

Over the last few years, the interest in hybridization has increased. The hybridiza-

tion can be done in several ways. The first way is the addition of different components

of one algorithm to another algorithm. The control of these schemes is grounded in the

impression of recombining the results to acquire new ones. The second way is to form

the concern systems considered as the cooperative search. This method consists of

exchanging the information through different algorithms in some way. The third pos-

sible way is the mixing of approximate (or complete) schemes (Jourdan et al., 2009;

Talbi, 2009). In this section, a look at the existing hybrid algorithms based on CS and

CMA-es will be taken.

A hybrid algorithm of CMA-es and hybrid differential evolution (HDE) was pro-

posed by Kampf and Robinson (2009). The main focus of the authors was on vary-

ing placement of buildings to optimize solar irradiation availability. Kanagaraj et al.

(2013) introduced another hybrid algorithm for reliability and redundancy allocation

problems. This hybrid algorithm was formed by using CS and GA (CS-GA). By insert-

ing GA operators in standard CS algorithm, an improved exploration and exploitation

of the algorithm was achieved.

Feng et al. (2014) introduced another hybridization of CS with Shuffled Frog Leap-

ing algorithm. This hybridization was also done for the real world problems. The re-
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searchers applied this proposed algorithm for solving the Knapsack problems. For the

efficient constraints handling, in optimization issues by applying the CS algorithm, a

hybrid version was introduced by Long et al. (2014). This hybridization was done with

a local search technique Solis and Wets method by engaging the lagrangian method for

constraints.

A hybrid Kalman CS tracker was suggested by Ljouad et al. (2014). A modified

version of CS was combined with Kalman filters. This hybrid enhanced the quality of

the initial population and produced better results in terms of computational time.

Prachi and Kaur (2015) introduced another hybridization of two SI algorithms,

CS and artificial bee colony (ABC). The proposed algorithm was introduced for an

improved and efficient classification of the satellite image.

A hybridized CS algorithm was observed for the cluster analysis, a renowned

method in data mining. The algorithm was proposed with the combination of dif-

ferential evolution algorithm for data clustering. By taking advantage of differential

evolution algorithm in CS algorithm, better results in terms of convergence analysis

was observed (Bouyer et al., 2015).

Mlakar and Fister (2016), proposed a hybrid self-adaptive CS algorithm. The sug-

gested algorithm was mainly an expansion in the actual scheme of CS with the bal-

ancing of the exploration schemes, self-adaptation for the parameters and the linear

population reduction.

Two-hybrid algorithms of CS with Nelder Mead method were proposed. Both
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algorithms were problem specific, one was for integer programming and another one

was for the optimization of the multi solar system (Ali & Tawhid, 2016; Jovanovic et

al., 2014).

A comprehensive study of the various versions of the modified CS (MCS) with

the strength pareto evolutionary algorithm (SPEA) was conducted for the rectangular

arrays. Modification in CS was proposed with the roulette wheel selection operators

to select the primary host nests. In the 3D search area, the adaptive inertia mass to

regulate the locations, search of the possible finest host nest and the dynamic detec-

tion amount to regulate the fraction of the likelihood of discovering the finest host

nests were also selected with the help of the proposed modifications. This study also

proposed two hybrid algorithms of this modified CS with PSO and hill climbing with

SPEA (Rani et al., 2017).

Sun and Gu (2017) proposed a hybrid algorithm of CS to solve the flow shop

scheduling task. The hybrid estimation of distribution algorithm was combined with

CS to form a new hybrid algorithm. A discrete solution representation method was

applied to increase the operation efficiency.

After discussing the literature on hybrid algorithms, it can be perceived that all

projected hybrid algorithms were problem specific and introduced for handling these

problems in the framework of optimization. Different studies have proposed differ-

ent hybrid algorithms for the real-life problems. However, the only single study is

available on the hybridization of CS and CMA-es algorithm (Rakhshani & Rahati,

2017), in which hybridization was done for intelligent multiple search strategy algo-
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rithm (IMSS) with Q learning but a decent point is the further exploration of different

ways of forming a new hybrid algorithm. Therefore, this area necessitates a special at-

tention, because of the effective results reported by these nature-inspired metaheuristic

algorithms with respect to time, fast convergence, and robustness. The inadequate ma-

terial and few implementations of hybrid algorithms in ML area and mainly for the

classification field of imbalanced datasets again give us a motivation for exploring and

proposing a new hybrid algorithm.

2.4 Studies on the Classification of Imbalanced Datasets

In data mining, the learning of datasets and predominantly for imbalanced datasets

is a substantial matter. Many researchers have studied and addressed this prevalent

issue. Various ideas were introduced to overcome this issue. The suggested ap-

proaches include sampling approaches, feature selection approach, and the algorithm

approaches. The hybrid methods based on these approaches can also be found in the lit-

erature. We will discuss here all the possible related studies on the imbalanced datasets,

which forced us to think over this problem. However, our focus will be on those studies

which used metaheuristics optimization algorithms for the imbalanced datasets.

A thorough material for studying the patterns of imbalanced datasets can be seen in

Guo et al. (2008), Maheta and Dabhi (2015), Phung et al. (2009), Witten et al. (2016)

and Yang et al. (2009). Different approaches including data imbalance, sampling tech-

niques for handling it, including basic sampling and advanced sampling and algorithm

level methodologies were discussed by the authors in the previously mentioned studies.

Batista et al. (2004) conducted a study on different sampling techniques to observe
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their performances for the balancing of training datasets. It is shown that oversampling

produced better results than the other methods including the undersampling using the

area under the curve (AUC). In another study, synthetic oversampling methods for

increasing the classification accuracy were applied. Moreover, two alterations to the

prior methods namely SLOUPS and OUPS were introduced (Rivera & Xanthopoulos,

2016).

Bach et al. (2017) conducted an experimental study based on the undersampling

and oversampling methods for the analysis of highly imbalanced datasets regarding

osteoporosis. The objective of the study was to identify a better sampling approach for

the modest and ensemble-based classifiers.

The use of Bayesian methods for handling imbalanced datasets was introduced by

Maragoudakis et al. (2000). Galar et al. (2012) presented a brief review of differ-

ent methods including bagging, boosting and hybrid-based methods for imbalanced

datasets.

Existing classifiers were also explored by researchers in the presence of imbal-

anced datasets. For the classification task of imbalanced datasets, Sun et al. (2007)

introduced a cost-sensitive boosting. The authors, for this purpose, suggested a cost

into the framework of AdaBoost. The cost-sensitive boosting algorithm was also ex-

plored for the weighting schemes related to different types of samples.

A comprehensive study of the performance of k nearest neighbors (KNN) for im-

balanced and overlapping datasets can be studied from the literature (Garcia et al.,

2008). Applications of the cost-sensitive techniques for imbalanced datasets are also
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common. For example, Thai-Nghe et al. (2010) used cost-sensitive learning methods

and resampling methods for handling these types of datasets. From their two proposed

methods, the first one was a combination of resampling method and SVM and the

second was grounded on the optimization of the cost matrix.

Boonchuay et al. (2017) suggested the use of entropy for the minority class of im-

balanced datasets. The improved classification results were observed for these datasets

by using the decision tree algorithm with the proposed minority class entropy.

In another study, for the imbalanced training datasets, a cost-sensitive margin distri-

bution learning was developed and introduced a large cost sensitive margin distribution

machine (LCSDM). The proposed method gradually increased the marginal distribu-

tion of the positive class to obtain the balanced classification results (Cheng et al.,

2017).

Model-based approaches are also common for imbalanced data learning. The use

of combinative classifiers can be justified from the literature. An effective handling

method for the imbalanced datasets was introduced with a model fusion approach

by incorporating the discriminative classifiers (cSVM) and the generative classifiers

(GMM) (He et al., 2015).

Chen et al. (2004) applied the random forest for handling the imbalanced datasets

in two different ways called weighted random forest and balanced random forest. The

weighted random forest assigned comparatively more weights on the positive class.

Whereas, balanced random forest entailed the idea of joining downsampling (from the

majority class) and ensemble learning. With the large imbalanced datasets, the second
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realization of random forest, i.e. the balanced random forest was observed to be more

effective.

Because of the rising popularity of computational intelligence and metaheuristic

algorithms in various fields, for example, in computer science, artificial intelligence,

ML and data mining, frequent use of these procedures and methods can be seen for the

classification of imbalanced datasets. For example, the learning classifiers systems also

called evolutionary online rule-based systems were examined to prove their abilities of

mining sufficient amount of information from the imbalanced datasets. It is shown that

learning classifier systems were capable enough to extract the sufficient information

from the imbalanced datasets (Orriols-Puig & Bernadó-Mansilla, 2009).

Milare et al. (2010) introduced a hybrid approach using evolutionary algorithms to

learn the imbalanced classes. The proposed rule sets are combined with an evolution-

ary algorithm to build a new classifier. Ducange et al. (2010) introduced an idea of

applying MO genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. The

potentially optimal classifiers in the projection of Pareto front approximation were se-

lected by using receiving operating curve convex hull method. A reduced classification

cost was obtained by using the proposed scheme.

For the imbalanced and borderline datasets, the hierarchical genetic fuzzy system

based on genetic programming was introduced. The results were verified with the help

of a statistical analysis of an experimental study (Lopez et al., 2013). To enhance

the classification ability of the classifiers for cancer diagnosis, the feature extraction

method based on genetic programming was suggested by Moreno-Torres et al. (2013).
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