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KAEDAH-KAEDAH UNTUK MENGANGGARKAN DAN MENSTABILKAN 

PENYELESAIAN PERSAMAAN PEMBEZAAN KELEWATAN MATRIKS 

RICCATI BUKAN LINEAR 

 

ABSTRAK  

           Persamaan pembezaan matriks Riccati bukan linear mempunyai bentuk: 

 

di mana  dan  merupakan matriks  dengan ,TB B TC C  dan  

Persamaan pembezaan matriks Riccati bukan linear ini boleh juga dilihat sebagai suatu 

persamaan pembezaan kuadratik biasa. Persamaan di atas boleh digunakan secara umum 

untuk persamaan pembezaan kelewatan dengan hujah-hujah terbantut, di mana jangka 

kelewatan berlaku sebagai kelewatan masa malar dalam  tetapi bukan dalam ( )X t

(derivatif tersebut akan hilang dan persamaan itu akan menjadi persamaan matriks algebra 

Riccati selepas keadaan awal digunakan). Tesis ini mempunyai empat matlamat utama. 

Matlamat pertama adalah untuk mengkaji kaedah lelaran bervariasi dan kemudian, 

menggunakan teknik ini untuk menyelesaikan persamaan pembezaan matriks Riccati 

bukan linear dan persamaan pembezaan kelewatan matriks Riccati bukan linear. 

Pendekatan penyelesaian memerlukan, pada mulanya, derivasi kaedah lelaran bervariasi 

untuk menyelesaikan jenis persamaan sedemikian dan kemudian, membuktikan 

penumpuannya kepada penyelesaian yang tepat dalam dua kes dengan dan tanpa 

kelewatan. Matlamat kedua adalah untuk menggunakan kaedah penguraian Adomian 

untuk menyelesaikan persamaan pembezaan matriks Riccati bukan linear dalam dua kes 

dengan dan tanpa kelewatan, dan kemudian, untuk menyatakan dan membuktikan teorem 

penumpuan untuk kedua-dua kes. Matlamat ketiga adalah untuk melaksanakan kaedah 

( ) ( ) ( ) ( ) ( ) 0TX t X t A A X t X t BX t C    

,A B C n n ( ) .n nX t R 

( )X t



xviii 
 

analisis homotopy untuk menyelesaikan persamaan pembezaan matriks Riccati bukan 

linear dan persamaan pembezaan kelewatan matriks Riccati bukan linear, dan kemudian, 

untuk menyatakan dan membuktikan teorem penumpuan untuk kedua-dua kes tersebut. 

Untuk menunjukkan kecekapan dan ketepatan kaedah-kaedah ini, satu kajian 

perbandingan telah dijalankan di antara mereka, dan ralat sisa mutlak telah diperolehi. 

Matlamat keempat, yang boleh dianggap sebagai yang paling penting di antara empat 

matlamat tersebut, adalah untuk menyelesaikan dan menstabilkan sistem dinamik bukan 

linear, persamaan pembezaan matriks Riccati bukan linear 2 2  dan persamaan 

pembezaan kelewatan matriks Riccati bukan linear 2 2  dengan menggunakan dan 

mengubah suai kaedah ‘backstepping’ yang dikenali dan berkesan untuk menstabilkan 

masalah kawalan sempadan. 
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METHODS FOR APPROXIMATING AND STABILIZING THE SOLUTION OF 

NONLINEAR RICCATI MATRIX DELAY DIFFERENTIAL EQUATION 

 

ABSTRACT  

            The nonlinear Riccati matrix differential equation has the form: 

( ) ( ) ( ) ( ) ( ) 0TX t X t A A X t X t BX t C      

where ,A B  and C  are n n  matrices such that ,TB B TC C  and ( ) .n nX t R   This 

nonlinear Riccati matrix differential equation may also be viewed as a quadratic ordinary 

differential equation. The above equation may be generalized for delay differential 

equations with retarded arguments, in which the delay term occurs as a constant time 

delay in ( )X t  but not in ( )X t (the derivative will disappear and the equation will become 

algebraic Riccati matrix equation after the initial condition is used). In this thesis we study 

the variational iteration method and use it to solve nonlinear Riccati matrix differential 

equation and nonlinear Riccati matrix delay differential equations. The solution approach 

requires, initially, the derivation of the variational iteration method for solving such types 

of equations and then proof of its convergence to the exact solution in two cases with and 

without delay. The Adomian decomposition method is then applied for solving nonlinear 

Riccati matrix differential equation in two cases with and without delay. The convergence 

theorems are stated and proved for both cases. The homotopy analysis method for solving 

nonlinear Riccati matrix differential equation and nonlinear Riccati matrix delay 

differential equations are then studied. To show the efficiency and accuracy of these 

methods, a comparative study between them is conducted, and the absolute residual error 

is obtained. The solution and stability of a nonlinear dynamical system, nonlinear 2 2  

Riccati matrix differential equation and nonlinear 2 2  Riccati matrix delay differential 



xx 
 

equation by using and modifying a well-known and effective backstepping method is then 

undertaken. 
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CHAPTER 1 

INTRODUCTION  

 

 

 

 

1.1       Background 

 

    Functional differential equations have a wide range of applications in science and 

engineering. The simplest and perhaps most natural type of functional differential 

equation is a “delay differential equation”, that is, a type of differential equations where 

the time derivatives at the current time depend on the solution, and possibly its 

derivatives, at previous times instead of a simple initial condition, and an initial history 

function   must be specified as the initial condition. Then the equation can be 

expressed as delay differential equations (DDEs), which are also known as difference-

differential equations and were initially introduced in the 18th century by Laplace and 

Condorcet (Gorecki et al., 1989). However, the rapid development of the theory and the 

applications of equations did not come until after the Second World War, and continue 

to current days. A number of applications, in which the delayed argument occurs in the 

derivative of the state variables and in the state variables itself, exist. Models can be 

formulated with linear or nonlinear, which are called mixed or advanced DDEs (Sun, 

2005). 

    Delay differential equations arise when the rate of change in a time dependent 

process in a mathematical model is not only determined by its present state but also at 

certain past state known as its history. Introduction of delays in models enriches the 

dynamics of such models and allow a precise description of certain real-life 

phenomena. Delay differential equations are frequently encountered in various areas 

and are important in many applications, such as mixing of liquids, population growth 
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and automatic control systems (Driver 1977); mechanics, physics, engineering, 

economics, biology and technology (Asl and Ulsoy, 2003); signal processing, digital 

images and control systems (Fridman et al. 2000); lasers and traffic models (Davis, 

2003), metal cutting, epidemiology, neuroscience and population dynamics (Kuang, 

1993); and chemical kinetics (Epstein and Luo, 1991). Particularly, DDEs are 

fundamental when ordinary differential equations (ODEs) based models fails. Unlike 

ODEs where the initial conditions are specified at the initial point, DDEs require the 

history of the system over the delayed interval and are given as initial conditions. 

Consequently, delay systems are slightly complex. Thus, DDEs are difficult to analyze 

analytically, therefore numerical and approximate methods are necessary.  

 
 
    Many different methods, such as variational iteration method (VIM) by He (1997), 

Adomain decomposition method (ADM) by Evans and Raslan (2005) and homotopy 

analysis method (HAM), have recently been introduced to solve DDEs. These methods 

are powerful and efficient and give approximations of higher accuracy and closed-form 

solutions, if existing (Wawaz, 2007). Variational iteration method is an approximate 

analytical method (since the solutions are polynomials), which is a modification of the 

general Lagrange’s multiplier method (Inokuti et al., 1978). It has been shown to solve 

effectively, easily and accurately a wide class of nonlinear problems with 

approximations that converge rapidly to accurate solutions (He, 1997), (He, 1998), (He, 

1999), (He, 2000), (He, 2003), (He et al. 2004), (He, 2006), (He and Wu, 2006), (He, 

2007). It was introduced and developed by Chinese mathematician He (1999) in He 

(2006), He (1998), He (2000), He (2008) and He (2007). It has been used by many 

authors, including Abassy (2010), Momani and Abuasad (2006), and Wazwaz (2009) 

and found to be reliable and efficient for various scientific applications. This method 
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provides a solution in the form of rapidly convergent successive approximations that 

may yield the exact solution, if existing (Wazwaz, 2009). The application of VIM to 

differential equations usually involves three steps, that is, obtaining the correction 

functional, identifying the Lagrange multiplier and determining a good initial 

approximation. 

 
     Adomian decomposition method is a powerful approximate analytic technique for 

strongly nonlinear problems. This technique was introduced and developed by George 

Adomian, which can be applied successfully to different types of equation and is 

proven to be powerful and effective and can easily handle a wide class of linear or 

nonlinear, ordinary or partial differential equations, and linear and nonlinear integral 

equations. This technique has been successfully proven by many authors, such as Rao 

(2010) and Gbadamosi et al. (2012). This method involves expressing ODEs, linear or 

nonlinear, in an operator form, then applying the inverse operator to both sides of the 

equation written in an operator form and decomposing the unknown function of this 

equation into a sum of an infinite number of components defined by the decomposition 

series. It provides an efficient computational procedure for equations and the 

approximate solution by constructing a series that converges to the exact solution. An 

important point can be make here is that this method attacks the problem, homogeneous 

or inhomogeneous, in a straightforward manner without the need for any transformation 

formulas and does not involve any linearization of assumptions (Wazwaz, 2005); the 

zeroth component is identified by the terms that arise from integrating the 

inhomogeneous term and the initial or boundary conditions. The successive terms are 

determined in a recursive manner (Wazwaz, 2009). The VIM has been shown by many 

authors to be more powerful than other techniques, such as ADM. One of the 

advantages of VIM over ADM is that it has no specific requirements for nonlinear 

https://en.wikipedia.org/wiki/George_Adomian
https://en.wikipedia.org/wiki/George_Adomian
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operators, whereas ADM suffers from the cumbersome work needed for the derivation 

of Adomian polynomials for nonlinear terms. Another advantage of VIM over ADM is 

that it can be used directly with no requirement or restrictive assumptions for nonlinear 

terms, whereas computational algorithms are used for ADM to handle nonlinear terms 

(Wazwaz, 2009). He’s VIM provides several successive approximations by using the 

iteration of the correction functional. By contrast, the ADM provides the components of 

the exact solution, where these components should follow the summation.  Moreover, 

VIM requires the evaluation of the Lagrange multiplier, whereas ADM requires the 

evaluation of the Adomian polynomials that mostly require tedious algebraic 

calculations. Unlike the successive approximations obtained by VIM, ADM provides 

the solution in successive components that will be added to obtain the series solution. 

Furthermore, VIM reduces the volume of calculations by not requiring the Adomian 

polynomials; hence VIM is direct and straightforward. By contrast, ADM requires the 

use of Adomian polynomials for nonlinear terms, and this requirement leads to 

additional work. In VIM, the initial condition can be selected freely with some 

unknown parameters, unlike in ADM. The VIM is strongly and simply capable of 

solving a large class of linear or nonlinear equations without the tangible restriction of 

sensitivity to the degree of the nonlinear term (AL-Bar, 2017), homogeneous and 

nonhomogeneous (Wazwaz, 2007). For nonlinear equations that arise frequently to 

express nonlinear phenomena, He’s variational iteration method facilitates the 

computational work and provides the solution rapidly compared with ADM (Wazwaz, 

2007). 

 

    The homotopy analysis method (HAM) is an analytic approximation method for 

highly nonlinear equations in science, finance and engineering. This method was first 
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proposed by Liao (1992) and was later developed in Liao (1995), Liao (2003), Liao 

(2004) and Liao (2009); it is a general analytic approach for acquiring series solutions 

of various types of nonlinear equations, including algebraic equations, ODEs, partial 

differential equations, differential-integral equations and differential-difference 

equation. This method is based on homotopy, which is a basic concept in topology. The 

validity of HAM is independent of whether small/large physical parameters exist in the 

considered. This method has been successfully applied to various nonlinear problems in 

science and engineering (Hayat and Sajid, 2007), (Abbasbandy, 2008) and (Liao, 

2009). Without performance computer and symbolic computation software, such as 

Mathematica, solving high order deformation equation rapidly to obtain approximations 

at high order is impossible. Without performance computer and symbolic computation 

software, it is also impossible to select a proper value of convergence-control parameter 

ћ by analyzing the high order approximation. The solution obtained using HAM 

depends on the selection of linear operator L, auxiliary function ( ),H t  initial 

approximation 0( )u t  and the value of the auxiliary parameter ,ћ  which is nonzero and 

allows control over the convergence of the series. We can adjust the region wherein the 

series is convergent and the rate at which the series converges by varying the auxiliary 

parameter .ћ  Having selected a linear operator, an auxiliary function and an initial 

approximation, we can solve the deformation equations and develop a solution series. 

The solution we obtain in this way will still contain the auxiliary parameter ,ћ  and this 

solution should be valid for a range of values of ћ . In order to determine the optimum 

value of ,ћ we can plot the so-called ћ -curves of the solution. The ћ -curves will be 

essentially horizontal over the range of ћ for which the solution converges. As long as 

we can select ћ  in this horizontal region, the solution must converge to the exact 

solution. These curves are obtained by plotting the partial sums ( , )mu x t and/or their 
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first few derivatives evaluated at a specific value of t against parameter ћ . More 

importantly this method exhibits many advantages, such as providing a direct scheme 

for solving the problem, that is, without the need for linearization or any transformation 

(Awawdeh et al. 2009). This method also provides us a simple way to adjust and 

control the convergence of solution series by using an auxiliary parameter ℏ; and it is 

proved us that well-known ADM is a special case of HAM when ℏ = −1 (Cang et al., 

2009). Another advantage is that HAM provides with great freedom to select a proper 

base function that approximates a nonlinear problem (Liao, 2003) and allows us to fine 

turn the region and rate of convergence of a solution by allowing the auxiliary 

parameter ћ  to vary. Furthermore, an important property of this method is that any 

initial approximation that satisfies the initial condition can be used. 

   
    Riccati differential equation (RDE) is named after an Italian nobleman, Count Jacopo 

Francesco Riccati (1676-1754). According to the aforementioned advantages of VIM, 

ADM and HAM, many authors such as Batiha et al. (2007) applied VIM to solve 

classical and difficult nonlinear differential equations, such as RDEs; Bulut and Evans 

(2002) applied ADM to solve RDEs and Das et al. (2016) solved RDE by HAM. The 

book of Reid (1972) contains the fundamental theories of Riccati algebraic equation 

with applications to random processes and optimal control, in addition to important 

engineering science applications that are currently considered classical, such as 

stochastic realization theory, robust stabilization and network synthesis. The newer 

applications include areas such as financial mathematics (Anderson and Moore, 1999), 

(Lasiecka and Triggiani, 1991).  

 
    Riccati differential equation is a class of nonlinear differential equations of much 

importance and plays a significant role in many fields of applied sciences. A more 

http://www.sciencedirect.com/science/article/pii/S0960077909003889#!
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general form of this equation is the nonlinear Riccati matrix differential equation 

(RMDE). This equation, in one form or another, has an important role and appears in 

most optimal control problems, multivariable and large scale systems, scattering theory 

and estimation (Jamshidi, 1980) and (Reid, 1972). 

 
    The solution of RMDE is difficult to obtain from two points of view. One is that it is 

nonlinear, and the other is that it is in matrix form. Most general methods for solving an 

RMDE with a terminal boundary condition are obtained on transforming this equation 

into an equivalent linear differential Hamiltonian system (Jodar and Navarro, 1992). By 

using this approach, the solution of RMDE is obtained by partitioning the transition 

matrix of the associated Hamiltonian system, (Reid, 1965) and (Razzaghi, 1997). 

Another class of methods is based on transforming the RMDE into a linear matrix 

differential equation and then solving it analytically or computationally (Razzaghi, 

1978), (Razzaghi, 1979) and in optimal control (Nazarzadeh et al., 1998). 

 
 

1.2       Motivation  

 

    Delay differential equations arise from the inherent time-delays in system 

components or from the deliberate introduction of time-delays into systems for control 

purposes. Such time-delays occur often in systems in engineering, biology, chemistry, 

physics and ecology (Niculescu, 2001). Furthermore, DDEs models can be more 

effective and accurate compared to ODE based models, when it is necessary to capture 

oscillatory dynamics with specific periods and amplitudes (Kuang, 1993). Also, Riccati 

scalar or matrix differential equations are applied to random processes and optimal 

control in physics and engineering. Moreover, important engineering science 

applications that are presently considered classical, such as stochastic realization 

theory, optimal control, robust stabilization, and network synthesis, include such areas 
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in financial mathematics (Reid, 1972), (Anderson and  Moore,1999), (Lasiecka and 

Triggiani, 1991). These kinds of differential equations are a class of nonlinear 

differential equations of considerable importance, for several reasons, an RDE 

comprises a highly significant class of nonlinear ODEs. Firstly, this equation is closely 

related to ordinary linear homogeneous differential equations of the second order. 

Secondly, the solution of RDE possesses a very particular structure in which the 

general solution is a fractional linear function of the constant limits of integration. 

Thirdly, the solution of RDE is involved in the reduction of nth-order linear 

homogeneous ODEs (Aminikhah, 2013); (see theorem (3.1)). Due to this importance, 

we solve such types of equations with the other more general form of nonlinear Riccati 

matrix differential equation and modify them to nonlinear Riccati matrix delay 

differential equations (RMDDEs) in connection with the method of steps for solving 

DDEs to find the approximate analytical solution by VIM, ADM and HAM. These 

approximations converges rapidly to an accurate solution (He, 1999), (He, 2006) and 

(Wazwaz, 2009). Finally, nonlinear RMDEs play an important role and appear in most 

optimal control system design problems, and in order to make the system of nonlinear 

RMDE and system of nonlinear RMDDE asymptotically stable, we use and propose a 

modified backstepping method to solve and stabilize such types of equations.    

 
1.3   Research Objectives  

    The research objectives are as follows: 

1- To solve nonlinear RMDE and nonlinear RMDDE by using VIM, by deriving the 

sequence of approximate solutions and then proving that this sequence of approximate 

solutions converges to the exact solution in two cases, nonlinear RMDE and nonlinear 

RMDDEs according to location of delay terms in linear and nonlinear parts. For this 

objective, a comparative study between the exact and approximate solutions with RK4 
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is conducted; also the efficiency of the obtained results is validated using residual 

error.    

 
  2-  To apply ADM for solving nonlinear RMDE, a comparison with the exact solution 

RK4, and VIM is conducted ,as well as, solving nonlinear RMDDEs in connection with 

the method of steps for solving DDEs in which the accuracy of the results are evaluated 

using residual error, as well as, comparison with the VIM. Then to state and prove the 

convergence theorems for ADM in two cases, nonlinear RMDE and nonlinear 

RMDDEs according to location of delay terms in linear and nonlinear parts.  

 
3- To implement HAM for solving nonlinear RMDE, a comparison with the exact 

solution of VIM, RK4 and ADM is conducted and solving nonlinear RMDDEs in 

connection with the method of steps for solving DDEs and a comparison with the ADM 

and VIM in addition to residual error is performed. Then to state and prove the 

convergence theorems for HAM in two cases, nonlinear RMDE and nonlinear 

RMDDEs based on location of delay terms in linear and nonlinear parts.  

 

4- To propose and modify the well known backstepping technique to solve and study the 

stability of nonlinear RMDE and nonlinear RMDDE associated with the method of steps 

for solving DDEs. 
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1.4   Methodology 

Firstly, we derive the sequence of approximate solutions of RMDE by using VIM 

and then prove that this sequence of approximate solutions converges to the exact 

solution. Then the VIM is implemented to find the approximate analytical solution for 

nonlinear 2 2  RMDE for each component. In this method, the initial condition may 

be selected freely. We perform a comparative study with the exact solution. Secondly, 

the nonlinear RMDE is modified to four types of nonlinear RMDDEs in connection 

with the method of steps. Similarly, we derive the sequence of approximate solutions of 

these equations using the VIM for each time step and then prove its convergence to the 

exact solution for two cases based on location of the delay terms in linear and nonlinear 

parts. Then VIM is implemented to find the approximate analytical solution for 

nonlinear 2 2  RMDDEs for the four types based on the location of delay terms in 

connection with the method of steps for solving DDEs. The important point can be 

make here is that we have used the term of delay in first and second examples in the 

linear parts while in the third and fourth examples in the nonlinear parts and more 

importantly is that the term of delay disappears after applying the method of steps for 

all types and systems that are transformed into a special type of RMDE, which can be 

solved similarly for the solving system of the first order ODEs.  

    Adomian decomposition method is implemented to find the approximate analytical 

solutions for nonlinear 2 2  RMDE and for the four types nonlinear 2 2 RMDDEs in 

connection with the method of steps for solving DDEs. The convergence theorems in 

two cases for nonlinear RMDE and nonlinear RMDDEs based on the location of delay 

terms in linear and nonlinear parts is stated and proven. Firstly, we apply the ADM for 

nonlinear 2 2  RMDE for each component and compare it with the exact solution and 

VIM. Secondly, for nonlinear 2 2  RMDDEs for the four types based on the location 
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of delay term in connection with the method of steps for solving DDEs, and the 

important point can be make here is that we have used the term of delay in the first and 

second examples in the linear parts while in the third and fourth examples in the 

nonlinear parts. The term of delay disappears after applying the method of steps for all 

types and systems transformed to a special type of RMDE, which can be solved 

similarly for the solving system of the first order ODEs. A comparative study is 

conducted with VIM and absolute residual error.  

Homotopy analysis method is implemented to determine the approximate analytical 

solutions for nonlinear 2 2  RMDE and nonlinear 2 2  RMDDEs for the four types in 

connection with the method of steps. The convergence theorems of the approximate 

solution of nonlinear RMDE and nonlinear RMDDEs based on the location of the delay 

terms in linear and nonlinear parts is stated and proven. Firstly, for the nonlinear 2 2  

RMDE, we implement HAM for each component and compare it with the exact 

solutions of ADM and VIM. Secondly, for the nonlinear 2 2  RMDDEs for the four 

types based on the location of delay term in connection with the method of steps for 

solving DDEs, the important point can be make here is that we have used the term of 

delay in the first and second examples in the linear parts and in the third and fourth 

examples in the nonlinear parts. The term of delay disappears after applying the method 

of steps for all types and systems transformed to a special type of RMDE, which can be 

solved similarly for the solving system of the first order ODEs. A comparative study is 

conducted with ADM, VIM and absolute residual error.  

Finally, we apply the modified backstepping method to solve and stabilize the 

dynamical, nonlinear 2 2  RMDE and nonlinear 2 2  RMDDE systems by evaluating 

n-number of Lyapunov functions that depend on system dimension. These functions 

stabilize the system in n-steps by evaluating control functions 1 2, ,..., ,nu u u which make 
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those Laypunov functions stabilize system and then evaluate the solution. All results of 

numerical examples are obtained by Mathematica 10 and Mathcad 14.  

 

1.5        Organization of Thesis 

     This section presents the organization of thesis as follows: 

 
     Chapter 1 contains the introduction of this thesis, along with the literatures of the 

study. The motivation, objectives and methodology of the study are also introduced. 

 
     Chapter 2 presents the literature review for DDEs. Beginning with history and 

development of methods with application for solving DDEs, nonlinear RMDEs and 

nonlinear RDEs using different methods in various fields of sciences are provided.  

 

     Chapter 3 explains some basic concepts related to our study. A brief description and 

basic ideas for some approximate analytical methods, such as VIM, ADM and HAM, 

are presented. Finally, some theorems related to nonlinear RDE and nonlinear RMDE 

are proven.  

 
    Chapter 4 describes the application of VIM for solving nonlinear RMDE with and 

without time delay in connection with the method of steps for solving DDEs. The 

convergence theorems for nonlinear RMDE and nonlinear RMDDEs by VIM are stated 

and proven. This method is investigated to solve several different examples. A 

comparative is conducted, in which the results are tabulated and analyzed, as well as, 

the residue error is calculated. 

        

    The implementation of ADM for solving nonlinear RMDE and nonlinear RMDDEs 

in connection with the method of steps to find the approximate analytical solution is 
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presented in Chapter 5. The convergence theorems for nonlinear RMDE and nonlinear 

RMDDEs by ADM are stated and proven. This method is investigated to solve different 

numerical examples, in which the results are tabulated and analyzed, and the residual 

error is obtained. A comparative study with VIM is conducted.  

 
    Homotopy analysis method is implemented to solve nonlinear RMDE and nonlinear 

RMDDEs in connection with the method of steps to find the approximate analytical 

solutions in Chapter 6. The convergence theorems for nonlinear RMDE and nonlinear 

RMDDEs by HAM are stated and proven. Several examples are considered, in which 

the results are tabulated and analyzed, and the residual error is obtained. A comparative 

study with VIM and ADM is conducted.  

 

    A new technique for solving and studying the asymptotic stability of nonlinear 

RMDE and nonlinear RMDDE by applying the modified backstepping method is 

discussed in Chapter 7. This approach provides a recursive method for stabilizing the 

system origin, and numerical examples are considered. 

 
    Finally, conclusion and suggestions for future work are presented in Chapter 8. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1       Introduction 

       This chapter provides a review of the literature and previous work of several 

researchers related to the present study. This chapter comprises four sections. Section 

2.1 presents the introduction. The literature review of delay differential equations 

(DDEs) is presented in section 2.2. Riccati matrix differential equations (RMDEs) are 

reviewed in section 2.3. A summary of the issues is provided in section 2.4. 

 

2.2     Semi Analytic Methods 

Evans and Raslan (2005) solved DDEs using Adomian decomposition method (ADM) 

to find the approximate analytical solutions. They applied this by using initial value 

problems. Numerical examples were discussed, and numerical results showed that this 

method was quite efficient and practically suitable. 

 
      Taiwo and Odetunde (2010) studied the iterative decomposition method to 

determine a numerical solution for DDEs. They showed that the approximate solution 

of DDEs rapidly converged as an infinite series to the exact solution. Several examples 

were selected to demonstrate the validity and applicability of this method. Numerical 

results showed that this method was efficient, accurate and practically suitable. 

 

       Mohyud-Din and Yildirim (2010) applied the variational iteration method (VIM) to 

solve DDEs by using He’s polynomials. Illustrative examples for the proposed 
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combination method were provided, and numerical results showed that this method was 

efficient and practically suitable.  

 
      Also, Chen and Wang (2010) solved neutral functional differential equations with 

proportional delays using VIM, in which they presented illustrative examples to show 

the efficiency of this method. They also compared the performance of the method with 

that of a particular Runge–Kutta method and others by considering neutral functional-

differential equations with proportional delay. 

 
      Avaji et al. (2012) solved linear and nonlinear Volterra integral equations with time 

delay using VIM. They identified the general Lagrange multiplier optimally via 

variational theory, and the initial approximations can be freely selected in a form with 

unknown constants. The proposed method was highly accurate and rapidly converged 

to the exact solution.  

 

      Rangkuti and Noorani (2012) investigated the exact solution of DDEs by VIM with 

Taylor series expansion. They constructed the correction functional by using the 

general Lagrange multiplier for VIM. The terms of delay were considered as restricted 

variations. Then the Taylor series expansion was used for ignoring the small terms in 

each iteration, which were obtained via VIM. Furthermore, the exact solution of DDEs 

was obtained in good agreement with those obtained by previous researchers. Also, this 

method provided more realistic series solutions that converged rapidly to the exact 

solution. Numerical examples were selected to show the efficiency and accuracy of the 

method.    
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      Ogunfiditimi (2015) used ADM to obtain the approximate analytical solution of 

DDEs, presented several examples, and demonstrated the efficiency of the method. 

 

 

2.3      Riccati Matrix Differential Equations 

      Davison and Maki (1973) utilized a fast computational method to solve a Riccati 

matrix differential equation (RMDE) with finite terminal time by using a linear system 

and  an associated quadratic feedback controller with a minimizes form. An illustrative 

example for the proposed method was given.  

 
     Razzaghi (1978) obtained an analytical solution for RMDE in optimal control. The 

proposed method calculated the optimal control for linear systems subject to quadratic 

cost criteria. This method transformed the problem into examining matrix differential 

equations. This problem could also be programmed and would appear to offer a 

computational algorithm for the optimal control. Several examples were selected to 

demonstrate the validity and applicability of the proposed method. 

 
      Razzaghi (1979) also presented a computational solution for RMDE. This work was 

concerned with the solution of the finite time Riccati equation. The solution was 

presented in terms of the partition of the transition matrix. Matrix differential equations 

for the partition of the transition matrix were derived and solved using computational 

methods, that is, this method transformed the problem into examining matrix 

differential equations of the type, which were extensively studied in the field of control 

theory. Illustrative examples and computational algorithms were presented to 

demonstrate the proposed method.  
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      Jodar and Navarro (1992) discussed a closed analytical solution for RMDE. The 

solution was presented in terms of exponential of matrices related to the problem under 

the consideration that it was associated with an equivalent linear differential 

Hamiltonian system. 

 
      Razzaghi (1997) presented a Schur method (a method used to find the solution of 

matrices according to whether a unitary matrix U  exists, such that HU GU  is 

triangular and has diagonal elements as the eigenvalues of G; an orthogonal matrix P  

also exists, such that HP GP is quasi- upper-triangular, where each diagonal element is 

either a 1 1  or 2 2  matrix that have complex conjugate eigenvalues) to obtain an 

analytic solution for RMDE by presenting the solution in terms of the multiple of two 

matrices. Several numerical examples were selected to illustrate the validity, 

applicability and feasibility of the method of solution. 

 
       Nazarzadeh et al. (1998) presented a solution for RMDE with a terminal boundary 

condition (boundary condition with final time), where this solution is given by using 

the solution of the algebraic form of the Riccati equation. This method solved RMDE 

with a terminal boundary condition for the linear quadratic optimal control problems 

then transformed the problem into examining matrix differential equations of the 

Liapunov type to get the solution. Numerical examples demonstrated the reliability and 

capability of the proposed method. 

 

      Bulut and Evans (2002) investigated the solutions of Riccati differential equations 

(RDEs) by ADM.  The solutions obtained were in the form of a series with simply 

computable components. Several numerical examples were discussed to find the 
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approximate analytic solution, and then a comparison was conducted with Rung –Kutta 

and Euler methods.  Numerical results showed that the method was efficient, more 

accurate, easily and practically suitable.  

 

      Abbasbandy (2007) introduced a new application of VIM for one-dimensional 

quadratic RDE by using Adomian’s polynomials. A comparison with the ADM and the 

exact solution were achieved. Finally, the results which obtained revealed that the 

proposed method was very effective and simple and could be applied to other nonlinear 

problems. 

 
 
      Batiha et al. (2007) applied VIM to solve a general one-dimensional RDEs by 

considering two equations; the first one with included a single variable coefficient, and 

the other was a special matrix form. A correction functional was constructed using VIM 

by a general Lagrange multiplier, which could be identified via variational theory and 

showed that VIM yielded an approximate solution in the form of a rapidly convergent 

series. Furthermore, a comparison with the exact solution and the fourth-order Runge-

Kutta method was performed. The numerical results showed that VIM was very 

powerful, efficient and more accurate in finding the approximate analytical solution, as 

well as, numerical solutions for wide classes of linear and nonlinear differential 

equations. 

 
      Tan and Abbasbandy (2008) implemented a homotopy analysis method (HAM) for 

solving quadratic RDEs, selected numerical examples and conducted a comparative 

study with the ADM and the exact solution. The results indicated that the ADM was a 
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special case of HAM when assuming the auxiliary parameter ℏ = −1 and ( ) 1.H t  The 

numerical results showed that HAM was very effective and simple.      

 
      Abazari (2009) applied the differential transform method to find the approximate 

analytical solution for the RMDE, in which the exact solution was obtained. Several 

examples were discussed. The numerical results showed that the method was efficient 

and practically suitable. 

   
      Geng et al. (2009) studied a piecewise VIM, which was a modified VIM (MVIM), 

to solve RDEs. The solutions, which were obtained for RDEs by using the classical 

VIM, presented good approximations only in the neighborhood of the initial position. 

However, using the MVIM was proven to obtain good approximations for a larger 

interval rather than a local vicinity of the initial position, that is, a highly accurate 

numerical solution was obtained. The advantage of the modified approach over the 

existing methods for solving this problem was also discussed. The solution obtained 

using the proposed method was efficient not only for a small values of the state variable 

but also for a large values.  

 
      Ghorbani and Momani (2010) presented an effective VIM algorithm for solving 

RDEs by proposing an easy-to-use piecewise-truncated VIM algorithm to overcome the 

shortcomings for the piecewise VIM, which provided a solution as a sequence of 

iteration that led to the calculation of unnecessary terms that are not needed and 

considerable time was consumed in repeated calculations for the series solutions. A 

comparison was conducted with the classical fourth-order Runge–Kutta method to 

verify that the new method was very effective and convenient for solving RDEs. The 
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numerical results showed that the method was efficient, more accurate and practically 

suitable. 

 
      Rao (2010) solved general one-dimensional RDEs by ADM. Several numerical 

examples verified the validity and applicability of this method. A Comparison with the 

exact solution was performed. The numerical results showed that the proposed method 

was efficient, more accurate and practically suitable. 

    Geng (2010) introduced a modified VIM to solve RDEs. The RDE solutions which 

obtained using the traditional VIM presented good approximations only in the 

neighborhood of the initial position. The advantage of the modified VIM over the 

existing methods for solving this problem was proven, such that the solution of the 

considered equation using the proposed method, which was based on selecting an 

auxiliary parameter generally less than one to adjust the convergence region (to 

enlarge the convergence region of the sequence of successive approximations), was 

efficient not only for a small values of the state variable but also for a large values  

rather than a local vicinity of the initial position. Numerical examples were selected to 

demonstrate this method, and a comparison with the standard VIM method was 

conducted. The numerical results showed that the proposed method was more 

accurate, quite efficient and practically well suited.  

     Ntogramatzidis and Ferrante (2011) presented an exact solution of the RMDE by 

establishing closed formulae for the solution of this equation with a terminal condition 

that involved particular solutions of the associated algebraic Riccati equation. 

Numerical examples were selected to verify the validity and feasibility of the proposed 

method. 
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     Taiwo and Osilagun (2012) solved general RDEs by iterative decomposition 

algorithm to find an approximate analytic solution. Numerical examples were 

presented to illustrate the accuracy and efficiency of this method. A comparison with 

the exact solution and Runge–Kutta method was conducted. The numerical results 

showed that the proposed method was powerful and provided an accurate result with 

few terms.  

      Gbadamosi et al. (2012) applied ADM for solving RDE with variable and constant 

coefficients. Several illustrative examples were discussed, and a comparison of the 

results which obtained by using this method with the exact solution was conducted. The 

proposed method was proven more accurate, effective, reliable, powerful and 

practically well suited.    

 
      Allahviranloo and Behzadi (2012) solved a general RDE by using many iterative 

methods such as ADM, modified Adomian’s decomposition method (MADM), VIM, 

modified variational iteration method (MVIM) and homotopy analysis method. 

Furthermore, several examples were discussed to demonstrate the capability and 

accuracy of these methods. 

 
 
      Goharee and Babolian (2014) applied a modified VIM to solve RDE. The 

modification was based on replacing the integrand involved in the corresponding 

correction functional by Taylor or Chebyshev expansions. Numerical examples were 

selected, and comparison with the standard VIM and exact solution was conducted. The 

numerical results showed that the proposed method was more accurate and very 

powerful in finding the approximate analytical solution. 
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      Bildik and Deniz (2015) proposed a new technique for solving RDEs by using a 

modified ADM to improve the effectiveness of this method. The proposed technique 

was based on using Chebyshev polynomials instead of the Taylor polynomials to 

expand the source function. Several numerical examples were discussed. The results 

which obtained revealed that the proposed method was very effective and more 

accurate than the standard ADM.   

 
 
      Ghomanjani and Khorram (2015) presented an efficient method to study the 

approximate solution of a quadratic RDE by considering the Bezier curve method as an 

algorithm to find the approximate solution of the nonlinear RDE. Several examples 

were selected to demonstrate the capability, reliability, simplicity and efficiency of the 

proposed method. 

 
 

       Didgar et al. (2016) proposed an effective and simple method to obtain an 

approximate analytical solution for the RDE with high accuracy by using VIM. The 

proposed method was based on transforming the general RDE into a second order linear 

ODE and then applying VIM to solve the transformed equation.  

 

Hamaresha  et al.  (2016) presented the approximate analytical solution for RDE 

of fractional order  using  optimal homotopy asymptotic method. The convergence rate 

and the region of the solution series was discussed via several auxiliary parameters over 

the homotopy analysis method that has only one auxiliary parameter which optimally 

determined. Numerical experiments were selected and a comparative study with the 

homptopy perturbation method is conducted. Numerical results showed that the 
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proposed method was reliable, efficient and more accurate tool for solving such types 

equations.  

 

Suresh and Piriadarshani (2016) obtained approximate analytical solution for 

various kinds of RDEs using differential transform method. Numerical examples are 

presented. Results which are obtained indicate that this technique is more effective, 

powerful and provides the solution in a rapidly convergent series with components that 

are computed elegantly and accurately.  

 

Ismail et al. (2017) applied the VIM- Restrictive Padé to determine the 

approximate solution for RDEs of fractional order. Several examples are presented and 

a comparative study with standard VIM and VIM Padé  is conducted. Numerical results 

emphized that the proposed method gives that Padé -VIM is more better than VIM but 

restrictive Padé VIM is the best result and less error from them.      

 

Kashkari and  Saleh (2017) proposed a variational homotopy perturbation method 

to solve nonlinear RMDEs and find the approximate analytical solution. Many 

examples are discussed and a comparative study with truncated Taylor series and 

rational approximation is performed. The results reveal that the proposed method is 

very effective and simple. 

 

 Osintcev and Sobolev (2017) explored the possibility of applying the method of order 

reduction of optimal estimation problem for singularly perturbed systems with low 

measurement noise for RMDEs. It is shown that RMDEs for the Kalman-Bucy filter 
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has a periodic solution. They used a combination of geometric and asymptotic 

approaches for the regularization of RMDEs in some critical cases. Firstly, they found  

a formal solution for RMDEs as asymptotic expansions. 

 

Pala and Ertas (2017) proposed an analytical method for solving general 

nonlinear RDEs by a new transformation which reduces RDEs of general type into a 

second order linear homogeneous differential equation which is readily solvable, 

therefore, there is no need for extra operation to reduce the transformed equation, the 

present method is further simple and can be preferred in teaching the solutions of RDEs 

and does not put any condition on the functions involved in the equation, the method is 

very general. Several examples are illustrated to explain the ability of the proposed 

method.  

 

Masjed-Jamei and Shayegan (2017) implemented a numerical method for solving 

RDEs by adding a suitable real function on both sides of the quadratic RDE. A 

weighted type of Adams Bashforth rules is proposed for solving it, in which moments 

are used instead of the constant coefficients of Adams-Bashforth rules. Many examples 

are selected. Numerical results reveal that the proposed method is efficient and can be 

applied for other nonlinear problems. 

 

Suresh and Piriadarshani (2017) applied differential transform method, He 

Laplace method and ADM for solving  nonlinear RDEs to determine the approximate 

analytical solution. Numerical examples were selected and a comparative study 
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