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PENYEDIAAN DAN PENCIRIAN KOMPOSIT POLIURETANA YANG 

DIPERKUAT OLEH TERAS KENAF 

 

ABSTRAK 

Dalam kajian ini, kesan rawatan silana ke atas teras kenaf (KC) dan komposit 

poliuretana (PU) diperkuat KC (KCP) telah dikaji. Komposit ini disediakan dengan 

menggunakan proses sekaligus yang mana; pertama PU disediakan dari 

difenilmetana diisosianat (MDI) dan gliserol dengan nisbah NCO/OH yang berbeza. 

Kemudian komposit KCP disediakan dengan peratusan pengisi KC menggunakan 

nisbah NCO/OH yang sesuai. Daripada ujikaji sifat mekanik didapati nisbah 

NCO/OH 1.5 dan beban KC sebanyak 20% adalah sesuai untuk dikaji dalam fasa 

seterusnya. Dalam fasa seterusnya, KC dirawat dengan menggunakan (1–3 %); vinil-

trimetoksi-silana (VTMS), trimetoksi-fenil-silana (TMPS), dan tetra-methosi-orto-

silikat (TMOS) menggunakan kaedah hidrolisis dengan etanol/air (80:20 isipadu) 

yang dijadikan sebagai medium silanisasi untuk KC. Sifat-sifat KC yang tidak 

dirawat (UKC) anda KC dirawat (TKC) diselidiki melalui analisis morfologi, analisis 

pemetaan unsur mikroskopi imbasan elektron–X-ray penyebaran tenaga (SEM – 

EDX), analisis fourier transformasi inframerah (FTIR) dan analisis termogravimetrik 

(TGA). Daripada keputusan yang diperoleh melalui morfologi permukaan dan 

analisis pemetaan SEM-EDX terhadap UKC dan TKC, tertunjuk kehadiran elemen 

silikon pada permukaan TKC. Analisis terma sampel TKC telah menunjukkan 

meningkatkan kestabilan terma jika dibandingkan UKC. Sifat visko-mekanik 

komposit KCP yang dihasikan daripada TKC dengan silana (TKCP) diukur melalui 

analisis DMA. TKCP menunjukkan modulus simpanan dan kehilangan yang tinggi 



xxiii 

berbanding dengan komposit dengan UKC. Hal ini.kerana ikatan kimia antaramuka 

antara teras kenaf dan poliuretana dapat dipertingkat yang juga menigkatkan dan 

kekakuan komposit. Kajian kestabilan terma pada TKCP menunjukkan haba 

penguraian yang tinggi diperlukan untuk komposit terurai pada suhu yang tinggi. 

Kestabilan terhadap rintangan api ke atas TKCP juga ditingkatkan. 
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PREPARATION AND CHARACTERIZATION OF POLYURETHANE 

COMPOSITES REINFORCED BY KENAF CORE 

 

ABSTRACT 

In this study, the effect of silane treatment on kenaf core (KC) and KC 

reinforced polyurethane (KCP) composites were discussed. The composite was 

prepared using one shot process. Firstly, polyurethane (PU) was prepared from 

methylene diphenyl diisocyanate (MDI) and glycerol using different NCO/OH ratio 

and KCP composites with different KC loadings were prepared using a suitable 

NCO/OH ratio. From the mechanical properties measurement, it was found that 

NCO/OH ratio of 1.5 and KC loadings of 20% were suitable to be studied. In the 

next phase, KC was treated with different types of silane (1 – 3%); which were 

vinyltrimethoxysilane (VTMS), trimethoxyphenylsilane (TMPS), and tetramethoxy 

orthosilicate (TMOS) using hydrolysis method with ethanol/water (80:20 volume) as 

silanization medium for KC The properties of untreated KC (UKC) and treated KC 

(TKC) were investigated through filler morphology analysis, Scanning Electron 

Microscopy – Energy Dispersive X-ray (SEM – EDX) mapping element analysis, 

Fourier Transform Infrared (FTIR) analysis, and Thermogravimetric Analysis (TGA) 

analysis. UKC and TKC surface morphology and SEM – EDX mapping analysis 

showed the presence of Si element on the TKC surface. Thermal analysis revealed 

that, silane treatment had enhanced the thermal stability. The visco-mechanical 

properties of kenaf core treated with silane – polyurethane (TKCP) composite were 

measured by Dynamical Mechanical Analysis (DMA). TKCP exhibited high storage 

and loss modulus compared to the composite with UKC due to the enhanced 
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interfacial chemical bonding and stiffness of the KCSP composite. Thermal stability 

study had shown TKCP has higher thermal stability and produced higher amount of 

char residual. The flame retardancy on TKCP was improved too. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Nowadays natural filler is the most attractive as potential materials as 

reinforcement in composite and has been well known a long time ago. With the 

development of durable materials such as metal, the interest in natural materials 

decreased. It was not until the early 1900s when natural materials remerged as 

possible future materials for a lot of advanced applications such automobile, 

furniture, ordinary applications like consumer goods [1], low-cost housing, civil 

structure [2], aircraft, and aerospace structures [3]. 

Natural filler is a valuable material which has served human beings for 

thousands of years. Today, natural filler is not only used as in its original solid form, 

but also is used to make a variety of composite material. these materials have been 

developed in response to the decreasing supply of the high-quality virgin natural 

filler materials [4]. Although many natural filler composites have been 

commercialized, much work remains to more fully utilize the lower quality of natural 

filler materials [5]. 

In the natural filler industry, traditional natural filler composites are systems 

in which elements such as fiber, flakes, particles, chips, and strands, are the load 

carrying component materials, while the polymer resin act as adhesives to bond the 

filler elements together [6]. Although they are both called composites. Natural filler 

is a thermal degradable and combustible material. Natural filler like other cellulosic 
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materials, when exposed to fire or any other high-intensity heat source, are subject to 

thermal decomposition and combustion depending on conditions [4,7]. 

Kenaf is an herbaceous annual plant originating in Asia and Africa is a 

member of the Malvaceae family. Kenaf has a single, straight, and unbranched stem 

consisting of an outer fibrous bark and an inner core (wood). Kenaf grows 1.5 to 3.5 

m tall, with stems 1 to 2 cm diameter and leaves 10 to 15 cm long. The flowers are 8 

to 15 diameters. Kenaf or Hibiscus Cannabinus L is a fast-growing fibrous plant 

within 3 to 4 months [8]. Kenaf is green, renewable, and sustainable products which 

definitely have a market premium in future [9]. 

Kenaf is an industrial crop with high potential for cultivation in a tropical 

climate. It is a source of raw material for paper production and fiber-based industries. 

Considerable research has been conducted to explore its adaptability and utilization 

in Malaysia since 2000, under the supervision of governmental and private 

organizations. A number of technologies and expertise among researchers have been 

developing to enhance kenaf production in Malaysia [10]. 

Polyurethane products historically have been proven to be one of the most 

versatile polymers available. The wide range of physical properties from super soft 

flexible foams, to tough elastomers, and to long-wearing coating has resulted in 

many application [11]. Polyurethanes are prepared by reacting polyfunctional 

isocyanates with polyfunctional active hydrogen-containing compounds such as R—

SH, R—NH, and R—OH. Thus, an active hydrogen-containing compound is 

suspected to be able to react with isocyanates to form polyurethane. 
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1.2 Problem statement and justification 

A major drawback of natural filler-polymer composite is their vulnerability to 

degradation by moisture. The hydrophilic behavior of natural fillers affects the 

properties of the composites. These limitations of natural filler-polymer composites 

can be improved through chemical treatment of natural fillers [12]. The main 

difficulty of natural fillers is their tendency to entangle with each other and form 

filler agglomerates during processing. The formation of agglomerates prevents 

uniform filler dispersion in polymer matrix and affects the properties and appearance 

of the finish products [13]. Natural filler like kenaf core has natural combustibility 

and vulnerability in a fire. However, the natural filler is excellent resistance to fire 

penetration due to low thermal conductivity and ability to form super facial char 

layer and allow natural filler to maintain the physical-mechanical properties. 

However, protection of natural filler against fire is limited to a retardancy effect, 

since no chemical can transform natural filler into the non-combustible material but 

it can reduce or delay the combustion of the material [14]. Nowadays, many 

organosilane compounds are chosen as an environmental friendly flame retardant to 

replace the traditional halogenated ones, for served material protection including 

kenaf core [15]. 

Being aware of this Sumaila et al. (2006) proposed a natural filler-

polyurethane composite system act as the structural material and polyurethane as the 

continuous matrix phase. their goal was to utilize the low filler content to make high 

performance natural filler-polymer composites. Through their studies, the interaction 

between natural fillers and matrix were observed. However, tensile of the composites 

decreased as the amount of natural filler added to the polyurethane increased. They 
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suggested that there is a need to adjust isocyanate to polyol ratio when natural fiber is 

added into the system in order to obtain good strength properties of the composites 

[16]. 

Meanwhile, Ismail et al. (2015) found there were some problems in using 

natural fillers, such as interfacial adhesion and water absorption. These problems 

must be solved. They suggest a further study is a must, therefore, be conducted to 

improve the physical and mechanical properties of the kenaf-thermoset composite to 

the desired level [17]. 

Other studies have been conducted on using natural fillers reinforced 

polyurethane composites using different types of natural filler such as flax [18], sisal 

[19,20], jute [21] , oil palm empty fruit bunch [22–24], kenaf bast [25–27], and kenaf 

core [28,29].  

Nar et al. (2015) studied the production of higher volume in composite 

production of kenaf core. They found out that naturally porous structure of kenaf-

core provides a novel reinforcement particle. In their work, foams of rigid 

polyurethane with 5, 10, and 15% kenaf core were formed. To date efforts at using it 

as reinforcement have proven unsuccessful. However, introducing constraint during 

foaming resulted in reinforcement. The results show that free foaming resulted in 

poor reinforcement while a constrained expansion on the foam increased the 

reinforcement potential of the kenaf core [29].  
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Meanwhile, Batouli et al. (2014) reported that outstanding thermal, 

mechanical, and environmental properties of kenaf core based polyurethane 

insulation board in structural insulated panels. The composite foams made of rigid 

polyurethane (PU) reinforced with 5 - 15% of kenaf core and they found that kenaf 

core does not replace the PU; instead, it mostly fills the void space, which is initially 

filled with air and, hence, the kenaf core decreases the porosity of PU composites 

and increases the density without improving thermal resistance [28].  

Kenaf core is environmental friendly materials and it consists of three major 

hydroxyl-containing components which are known to be cellulose, hemicellulose, 

and lignin. These components have the potential to react with isocyanates to form 

kenaf core-urethane materials. It is suspected that the interaction of hydroxyls from 

kenaf core with isocyanates will result in good mechanical performance of the 

composite materials due to the good interfacial bonding properties. It is believed that 

the interaction can be enhanced if kenaf core is treated with silane coupling agent. 

Although some knowledge have been obtained through these excellent 

studies, there is still a large body of information to be studied concerning natural 

filler and urethane chemistry, especially the knowledge about the interfacial 

characteristics between natural filler and isocyanates or polyurethane in the natural 

filler-polyurethane composite system. Therefore, it is necessary to carry out a study 

on this subject to understand the performance of natural filler-polyurethane-

isocyanate composite system. 
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Chemical treatments on the natural fillers are very important to increase the 

adhesion between the hydrophilic natural filler and the hydrophobic polymer matrix 

at the interface. Resistance to moisture absorption of natural filler composites can 

also be improved by treating these fillers with suitable chemical treatments. At the 

same time to give a protection on natural filler against fire to reduce and delay the 

combustion of natural fillers. Many investigations have been carried out by a number 

of researchers with different methods and chemicals were used especially to treat 

kenaf core such as alkaline treatment sodium tetraborate decahydrate (borax) [30], 

benzoyl chloride [31], phosphate [32,33], and silane [15]. 

Ismail et al. (2010) studied the effect of kenaf core filler loading and silane 

treatment from FTIR and SEM observations indicate that better adhesion was 

observed for the composite with chemically treated kenaf core filler. Chemical 

treatment of kenaf core caused a significant increase in stabilization torque, water 

resistance and the mechanical properties of HDPE/soya powder/kenaf-core 

composites. The treatment reaction was carried out in a mixture of water/ethanol 

(40/60 volume). 3 g of γ-aminopropyltri-thoxysilane was first introduced into 1000 

mL of the mixture water/ethanol and was allowed to stand for 1 hour. The pH of the 

solution was maintained at 4 with the addition of acetic acid. Then, 10 g of kenaf 

core powder was added into the solutions and the solutions were continuously stirred 

for 1.5 hours. The filler was filtered and was dried in the air and then in the vacuum 

oven at 80°C for 24 hours [15]. 
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Thus, this study will focus on several attempts to address these issues. A 

better interface between filler and polymer matrix can be obtained by chemical 

treatments on the filler. The introduction of reactive sites in the matrix with a higher 

chemical affinity toward the fillers can improve filler-matrix interfacial strength. 

Flammability is one of the very vital parameters, restricting the utility of a composite 

to a given application area. It is regarded that additions of natural filler to polymer 

matrix alternate the mechanical as well as flammable properties of the composite 

which is different from those of the components. Thus, appropriate treatment of the 

filler is warranted to enhance the above-mentioned properties. 

 

1.3 Objective 

Given the gaps in knowledge of kenaf core and its potential as reinforcement 

material for polyurethane composite has drawn much interest. Extensive literature 

review reveals the methods for simultaneous improvement of the mechanical, 

physical and flame retardancy of kenaf core reinforced polyurethane are limited. In 

this study, several novel coupling agents were investigated for the chemical 

treatment of kenaf core.  

The main objective of this study is to enhance the mechanical and flame 

retardancy performance of kenaf core reinforced polyurethane composite. In order to 

achieve the objective, approaches centering on silane treatment of kenaf core and 

manufacturing process of the composite were implemented. In this study, four 

aspects of composite performance were (i) investigated the effect of silane treatment 

of kenaf core, (ii) to develop kenaf core reinforced polyurethane composite and their 
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characterization in terms of mechanical, physical, and thermal properties. The effect 

of filler concentration and isocyanate index formulation on polyurethane composite 

properties are defined, (iii) to increase understanding of the viscoelastic properties of 

the composite, and (iv) to evaluate FR properties of KCP composite prepared from 

untreated and treated KC. 

 

1.4 Scope of study 

The overall goal of this study is to fabricate and characterize composite from 

natural filler utilizing from kenaf core (KC) and polyurethane (PU). The aim of the 

study is to reduce the fire risk of composite reinforced with natural filler by using 

constructional concepts of flame retardancy. Furthermore, the mechanism leading to 

enhanced material properties should be examined. 

This study would emphasize the mechanical properties of treated and 

untreated KCP composite. In order to achieve these objectives, the work would be 

divided into various scopes. In first step, basic principles of KC and PU were 

investigated to obtain fundamental knowledge to build on the development of 

polyurethane-kenaf core (KCP) composite. In a second step, to determine the effect 

of filler loading on KCP composites from 0 to 30% by weight would be employed. In 

the third step, three different type of silane additives were treated the KC to increase 

interaction and flame retardant properties. The comparison between untreated and 

treated composite would be done to study the change in trend in mechanical and 

flame retardant behavior of composite. 
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The mechanical properties of the composite were characterized by tensile and 

flexural tests. Meanwhile, physical properties analyses were carried out by water 

absorption and thickness swelling tests. The structural and microstructure of the 

composite were characterized by Fourier-transform infrared spectroscopy (FTIR), a 

degree of curing determination, scanning electron microscopy (SEM), and energy-

dispersive X-ray spectroscopy (EDX). Thermal properties of composites were 

analyzed using dynamic mechanical analysis (DMA) and thermogravimetric analysis 

(TGA) studies. Whilst, flame retardancy (FR) of composites were tested using 

limited oxygen index (LOI), Underwriters Laboratories 94 (UL94) and Methenamine 

pill test. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

Recently, environmental awareness throughout the world has impacted 

material design and engineering. The interest in the utilization of natural material can 

handle ecological issues such as environmental protection, recyclability, and 

renewability. Synthetic materials such as aramid, glass, and carbon are getting 

utilized extensively in polymer-based composites due to their strength and stiffness 

properties [34,35]. However, synthetic materials give averse to environmental and 

ecological impact alters the attention to natural or renewable materials usually 

natural materials. Besides that, synthetic materials have extreme disadvantages in 

term of recyclability, their processing cost, recyclability, biodegradability, machine 

abrasion, energy consumption, health risks, and many others [36,37]. However, the 

introduction of natural materials as reinforcing material in the polymer matrix give 

great attention recently especially with its advantages [38–40]. 

Natural fillers such empty fruit bunch (EFB), jute, sisal, kenaf, coconut, rice 

husk, and many others, are well known as appropriate potential reinforcements 

materials for engineering composite resources. The use of those fillers are that they 

might easily to be processed, light in weight, non-toxic, and have a high specific 

modulus [41,42]. These properties can open up a large area to applying natural fillers 

into composite field and will encounter the used of synthetic fillers in this matter. 
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However, natural fillers also own certain drawbacks in properties itself. 

Natural fillers consist of structural components such as cellulose, hemicellulose, 

lignin, waxy, and pectin materials, which can allow moisture absorption from the 

surroundings will results in dimensional instability and reduced bonding with the 

hydrophobic polymer matrix materials mainly, the tendency to form aggregate during 

processing, and poor resistance to moisture significantly ease the ability of natural 

fillers to be used as reinforcement in polymer [43–45]. 

As a result, a suitable chemical treatment on the surface is required. Those 

chemical treatments are primarily based on the usage of reagent functional groups 

which might be able to be reacting with the filler systems hence converting their 

behavior. The treatment is to reduce the tendency of moisture absorption of the fillers 

and facilitate better compatibility with the polymer matrix [46–48]. Many sorts of 

research have been targeted on the improvement of compatibility of filler and the 

polymer matrix [15,49,50]. 

 

2.2 Composite from lignocellulosic/natural filler 

Usually, natural materials were derived from plants, animals, and mineral 

resources. They can be characterized accordingly followed to their own origin itself 

as depicted in Figure 2.1. The advantages of using natural fillers comprised of sustain 

the environment of the parts being built in the automotive industries. In the building 

industry, the utilization of natural fillers is most cost-effective. As well as in the 

aerospace industry, utilization Natural fillers are light in weight on a par with 

lightweight and tough materials commonly used in these industries [51,52]. 
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Figure 2.1 Classification of natural materials [51] 

 

Advanced composites are high-performance materials that benefit from the 

high stiffness of fibrous materials embedded in the polymeric matrix; filler 

reinforced polymer composites and composite foam are examples. Filler reinforced 

composites are used in a wide range of applications such as aerospace [53], 

automobile [54], electronic [55], structural [56], industrial [57], and marine [58] 

industry[57,59–61]. As environmental are most concerns nowadays, it becomes a 

crucial point in the industries and ‘green’ products attract most environmentally-

conscious consumers. Hence, composites reinforced with natural fillers are used to 

replacing those composite with synthetic fillers. The application area and market for 
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natural filler reinforced composites are expected to grow at a steady pace for the 

future decade [37,50,62,63]. 

Plant-based totally natural fillers are lignocellulosic in nature and composed 

of cellulose, hemicellulose, lignin, pectin, and waxy constituents. The structural 

elements of fillers are presented in Table 2.1. The contents of structural elements are 

numerous in accordance to distinct natural filler. 

 

Table 2.1 Structural constituents of plant filler 

Name 
Cellulo

se (%) 

Lignin 

(%) 

Hemi-

cellulos

e (%) 

Pectin 

(%) 

Wax 

(%) 

Micro-

fibril/sp

iral 

angle 

(
o
) 

Moistur

e 

content 

(%) 

Ref

. 

Jute 41-53 21-26 14-20 0.2 0.5 8.0 12.6 [64] 

Flax 71 2.2 19-21 2.3 1.7 10.0 10.0 [36] 

Hemp 70-74 4-6 18-22 0.9 0.8 6.2 10.8 [64] 

Ramie 69-76 0.6-0.7 13-17 1.9 9.3 7.5 8.0 

[36] 

[64] 

[65] 

Sisal 67-78 8-11 10-14 10.0 2.0 20.0 11.0 
[36] 

[64] 

PALF 70.82 5-12 − − − 14.0 11.8 [64] 

Cotton 82.7 0.7-1.6 56 − 0.6 − 33-34 
[36] 

[64] 

Kenaf 31-40 15-21 22 3-5 − − − 
[64] 

[65] 

Banana 63-64 5 10 − − − 10-12 [65] 

Abaca 56-63 12-13 − 1 − − 5-10 [65] 
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Natural filler in polymer composites serves as reinforcing agents to achieve 

the desired characteristics of composites and thus are widely used in several 

industries [66]. Natural fillers have high stiffness, low in cost and most abundant 

materials available to be used in processing a composite product. However, natural 

filler reinforced composites have some limitations such as follows; can reduced 

ductility, low resistance under impact and in moist conditions, brittle, a most 

vulnerability in fire, and high in density compared with those of pure thermoplastics. 

In order to solve the above-mentioned problems, composite foams were developed 

[67]. 

It was demonstrated that composite foams have enhanced fatigue life [68], 

impact strength, toughness, and most importantly, reduced in density [69]. Natural 

fillers are added to composite foams as reinforcing fillers. The advantages of using 

the natural fillers are low cost, renewable sources, and small environmental burden. 

In addition, the density of the fillers is less than glass fibers and the fillers have better 

adhesive property between fillers and polymer matrix [35,70,71]. 
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2.3 Kenaf  

2.3.1 Origin of kenaf 

Kenaf or hibiscus cannabinus is lignocellulosic material, which extracted 

from kenaf plants. Kenaf is annual plants and can grow more than 3 m high within 3 

month with a stem diameter of 25 mm to 51 mm [8,72,73]. Kenaf has been used as 

raw materials as cordage crop to produce twine, rope, and sackcloth and food for 

many years [74].  

Kenaf is a promising of raw materials for various applications such as pulp, 

paper, and cardboard, panels, mass uses as an absorbent agent [75], natural fuels 

[50], cellulose product [76], animal fodder and feed [77], seeds [78], and biomass 

[79]. Kenaf is made up of 40% cellulose, 21.6% lignin and pectin, and other 

constituents such as ash and silica. However, the amount of these constituents may 

differ depending on several factors including the climatic and soil conditions, the age 

of the plant and the stage of the growing season [80]. The chemical composition of 

kenaf in comparison with other natural filler is shown in Table 2.2, where the 

mechanical properties of kenaf in comparison with other natural filler are shown in 

Table 2.3. 
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Table 2.2 Chemical composition of kenaf in comparison with other natural 

fillers 

Type of filler 
Cellulose 

(%) 

Lignin 

(%) 
Ash (%) Silica (%) 

Ref. 

Kenaf 
Bast 31-39 15-19 22-23 5 

[81] 
Core 31-34 15-21 ̶ - 

Jute 
Bast 45-53 21-26 18-21 0.5-2 

[82] 
Core 41 24 22 0.8 

Wood 
Coniferous 40-45 26-34 7-14 ̶ 

[42] 
Deciduous 38-49 23-30 19-26 ̶ 

 

Table 2.3 Properties of natural fillers with conventional fillers 

Name 
Density 

(g/cm
3
) 

Tensile 

strength 

(MPa) 

Young’s 

modulus 

(GPa) 

Specific 

strength 

(GPa/g/c

m
3
) 

Specific 

modulus 

(GPa/g/c

m
3
) 

Elongati

on at 

break 

(%) 

Ref. 

Jute 1.3-1.4 393-773 13-26.5 0.3-0.5 10-18.3 1.16-1.5 [54] 

Kenaf 1.5 450.24 43.36 319.4 28.9 3.1 [83] 

Flax 1.5 
345-

1100 
27.6 0.2-0.7 18.4 2.7-3.2 [84] 

Hemp 1.1 690 30-60 0.6 
26.3-

52.6 
1.6 [54] 

Sisal 1.5 468-640 9.4-22.0 0.3-0.4 6.4-15.2 3-7 [85] 

E-glass 2.5 
2000-

3500 
70 0.8-1.4 28 2.5 [54] 

Aramid 1.4 
3000-

3150 
63-67 2.1-2.2 45.47.8 3.3-3.7 [54] 
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The processing technique to extract kenaf plant has significantly improved. 

For example, the separation process of an inner woody core material (which 

constitutes the 60% of the plant,) from the outer bark (which constitutes the 

remaining 40%) has significantly improved in such a way that different types of 

processing either the entire plant or its constituents [74,86]. 

Kenaf bast is like a conventional textile obtained in bundles and can be cut 

into a specific length. These fibers are coarse and brittle in nature and are made soft 

and flexible by adding alkali in water emulsions. The density of the bast fiber is 

1.293 + 0.006 g/cm
3
 [87]. They were traditionally used in making Cordage yarns, 

Canvas, Sacking, Carpet backing, padding lignocellulosic composites, door and 

instrument panels [8]. More recently they are being used as a noise insulation 

material and fiber mat in automobiles [80]. The kenaf bast also offers a very good 

alternative for making specialty paper and has excellent properties in terms of 

papermaking [88]. 

Kenaf core, on the other hand, is a hardwood like material and very porous. 

The density of the core is 0.09 – 0.11 g/cm
3
 and the length of refined fillers is 0.6mm 

[89]. Kenaf core is mainly used in absorbent application like additive for, potting 

mixes [90], animal bedding [77] and some wood-based composite [91,92]. Kenaf 

could have undeniable advantages in the field, but also in organic farms because it 

could be used as geotextile, used on soil for mulching, erosion control, or soil filters. 

Kenaf would be promising as biodegradable and competitive material [93,94] 
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2.3.2 Utilization of kenaf as reinforcing material 

The composite industry is actively considering the use of lignocellulosic 

material such as kenaf, jute, flax, hemp, and coir; as substitutes for synthetic 

materials. Suddell (2008) reported that about 20 kg of lignocellulosic filler could be 

used for the parts that do not require high bearing load in each of the 53 million 

vehicles produced each year [95]. Different automotive manufacturers already make 

use of lignocellulosic material considering the environmental and economic 

advantages of natural filler over synthetic filler in conjunction with the public 

awareness towards green products, it is evident that kenaf has a potential prospective 

in the composite industry [45,95,96]. 

 

2.3.3 Previous work of kenaf core as reinforcing material 

Other studies have been conducted on using kenaf core as reinforcing 

polymer composites. Rizwan (2007) studied the comparison of mechanical properties 

and microstructure between kenaf core and kenaf bast reinforced polyester 

composites. They randomly oriented core and bast filler between 5 to 40% filler 

loading. From mechanical testing shows that higher strength provides from kenaf 

bast. However, kenaf core is found lead in high absorbent rate due their geometry 

structural after being water absorption test. SEM analysis for surface topography 

found that the clean surface of bast and non-uniform in term of filler shape and size 

of core fiber [97]. 
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Ishak et al. (2010) studied was to compare the mechanical properties of short 

kenaf bast and core filler reinforced unsaturated polyester composites with varying 

filler weight loading (0 to 40%). Overall results showed that the composites 

reinforced with kenaf bast had higher mechanical properties than kenaf core filler 

composites with optimum filler content for achieving highest tensile strength for both 

bast and core composites was 20%. It was also observed that the elongation at break 

for both composites decreased as the filler content increased [98]. 

Meanwhile, Batouli et al. (2014) reported that outstanding thermal, 

mechanical, and environmental properties of kenaf core based polyurethane 

insulation board in structural insulated panels. They have succeeded to create 

environmentally friendly building material from kenaf core based polyurethane. The 

rigid polyurethane reinforced with 5 - 15% of kenaf core. In current practice of 

making the composites, kenaf core does not replace the polyurethane; instead, it 

mostly fills the void space, which is initially filled with air and, hence, the kenaf core 

decreases the porosity of polyurethane composites and increases the density. The 

flexural results show that the more the kenaf loading, the less porous the composites 

[28]. 

Nar et al. (2015) studied the production of higher volume in composite 

production of kenaf core. They found out that naturally porous structure of kenaf 

core provides a novel reinforcement particle. In their studied, foams of rigid 

polyurethane with 5 to 15% filler loading. Up till now, efforts at using it as 

reinforcement have proven unsuccessful. However, kenaf core introducing constraint 

during foaming resulted in reinforcement. The results show that free foaming 
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resulted in poor reinforcement while a constrained expansion on the foam increased 

the reinforcement potential of the kenaf core [29]. 

Ismail et al. (2010) studied high density polyethylene/soya powder reinforced 

kenaf core composite with different kenaf loading. The effect of kenaf core filler 

loading and silane treatment from FTIR and SEM observations indicate that better 

adhesion was observed for the composite with chemically treated kenaf core filler. 

Chemical treatment of kenaf core caused a significant increase in stabilization 

torque, water resistance and the mechanical properties of HDPE/soya powder/kenaf-

core composites [99] 

 

2.3.4 Interfacial filler – matrix studies 

The interface is a boundary region where filler and matrix phases come in 

contact with zero thickness [100]. An interface between any two phases can be 

defined as a surface which is common to both filler and matrix and the immediate 

region about this surface [101]. Theories of mechanisms at the interface were 

summarized by Plueddemann (2016), mainly as: chemical bonding theory; surface 

wettability theory; mechanical interlocking mechanism; deformation layer theories; 

and restrained layer theory [101]. A filler composite material usually consists one or 

more filamentary phases embedded in a continuous matrix phase [102]. In the filler 

reinforced polymer composites, two distinct phases, i.e., filler and matrix, and 

interphase and interface can be recognized. 
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The chemical bonding theory is chemical bonding through covalent bonds, 

which can be formed by the reaction of the functional groups of one phase with the 

ones of the other phase or through coupling agents [103]. Wettability refers to the 

intimate contact possible at the molecular level, which defines the liquid phase will 

wet a solid phase by involve physical adsorption. Theoretically, complete wetting of 

would provide adhesive strength by physical adsorption that would exceed the 

cohesive strength of resin and it is measured by the contact angle. A low contact 

angle indicates good wettability [104]. The deformable layer theory was based on the 

different finishes on the fillers have the power to deactivate, destroy or absorb certain 

constituents out of the uncured liquid resin to form a plastic layer at the interface, 

which can provide a mechanism for local relief of residual stresses formed by the 

different thermal expansion coefficients of the filler and matrix [104]. Theories of 

mechanisms at the interface described are the general cases involved in the filler-

resin composite systems. 

 

2.3.5 Problems in natural filler reinforced polymer composites 

The properties of the composites are controlled by the properties of the filler 

and the quality of interfacial bonding between filler and matrix. The factors of 

reduction of the composites properties were caused by the hydrophilicity of filler, 

poor filler compatibility into matrix, and inconsistent filler structure of the filler 

[105]. 
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Natural filler consists of cellulose which are cover with hemicellulose and 

lignin. In cellulose crystalline region are present of strong linked hydroxyl group, 

which inaccessible and difficult to other chemicals penetrating the crystalline region 

as shown in Figure 2.2. However, in amorphous region the hydroxyl groups are 

loosely linked with the filler structure are free to react with other chemicals 

especially water molecules from the atmosphere [106–108]. 

 

 

Figure 2.2 Schematic presentation of the orientation of the fiber constituents that 

absorb moisture [106] 

 

The hydrophilic fillers are incompatible with most hydrophobic thermoset 

and thermoplastic matrices. As a result, incomplete filler wetting into the matrix 

takes place and weak bonding exists at their interfaces. In addition, the hydrophilic 

filler causes filler swelling within the matrix and generates extra stresses on the 

surrounding matrix. Weak interface bonding and the induced swelling stress results 
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in propagation of debonding, cracks and severe deterioration mechanical properties 

of the composite. 

Incorporation natural filler into matrix is often associated with poor 

compatibility. Cellulose surface from natural filler is covered by hemicellulose and 

lignin. Both act as weak boundary layer between cellulose and the matrix. due to the 

weak boundary layer at the filler-matrix interface, the stress distribution capability 

throughout composite are is decreased [109]. A weak boundary layer can be removed 

and coverings through different chemical treatments of the filler. 

Inconsistency of natural filler physical dimensions are not uniform 

throughout its length because natural filler comes from different parts of plant has 

various length and width. The fiber aspect ratio (length/diameter) is one of critical 

parameter for determine composite properties. It is define as the minimum ratio in 

which the maximum filler stress can be achieved for given load [110] 

 

2.3.6 Chemical treatment on natural filler reinforced composite 

To optimize the properties of the composites, several treatments can be used 

to enhance the reinforcing material specially to create better filler-matrix interfacial 

properties. The reinforcing materials can be treated by chemical and physical 

methods [111]. Reinforcement filler can be treated with a suitable chemical to 

increase compatibility between filler and polymer matrix. Usually, chemical 

treatment on the fillers will clean the surface and increased the surface roughness of 

the filler, which would delay the moisture absorption. 
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There are various types of chemical treatments on natural fillers that lead to 

enhanced compatibility at the interface of filler-matrix. Different chemical treatments 

on the filler lead to certain effect on the properties of composite. Chemical treatment 

on filler surface consists of alkaline treatment by sodium hydroxide (NaOH) [112], 

isocyanate treatment [113], benzoyl treatment [31], and silane treatment [107]. 

 

2.3.6(a) Silanes 

In principle, silanes are compounds of silicon and hydrogen, of the formula 

SinH2n+2 analogues of alkanes. Silane tend to be less stable than their carbon 

analogues because Si–Si bond has slightly lower strength than C–C bond [114].  

In practice, terminology has been extended and it includes also compounds in 

which any or all of the hydrogen have been replaced. A silane that contains at least 

one carbon-silicon bond structure is known as an organosilane. Carbon-silicon (CH3–

Si–) bond is very stable. Very non-polar and give rise to low surface energy and  

hydrophobic effects as a consequences of silicon’s more electropositive nature when 

compared to carbon [115]. 

The silicon hydride (–Si–H) structure is very reactive. It reacts with water to 

yield reactive silanol (–Si–OH) species and additionally will add across carbon-

carbon double bonds to form new carbon-silicon-based materials. The methoxy 

group on the carbon compound gives a stable methyl ether, while its attachment to 

silicon gives a very reactive and hydrolyzable methoxsilyl structure [116]. 
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2.3.6(b) Silane chemical treatment on natural filler 

Monomeric silicon chemicals are also known as silanes, typically used as a 

coupling agent. Silane consist at least one silicon-carbon bond (Si − CH3) also 

known as organosilane. Silane treatment on reinforcing filler will form a chemical 

link siloxane bridge between the surfaces of filler and matrix [117]. 

Silanes go through numerous stages during the treatment process, such as 

hydrolysis, condensation, and bond formation at the final stages. In the hydrolysis 

process, silane will form silanol as explained in Equation 2.1 [118]. 

 

 

 

Through the condensation process, one end of silanol reacts with the OH 

groups, which consist in cellulose, hemicellulose and lignin as shown in Figure 2.3 

and the other end reacts (bond formation) with the matrix (Si − matrix) functional 

group. This co-reactivity provides molecular continuity across the interface of the 

composite. It also provides the hydrocarbon chain that restrains the filler swelling 

into the matrix [46,119]. As a result, filler-matrix adhesion improves and stabilizes 

the composite properties [120]. 
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