INVESTIGATION OF BASE AND WALL PRESSURE IN SUDDENLY EXPANDED FLOW THROUGH DUCTS USING RIBS AS PASSIVE FLOW CONTROL

VIGNESHVARAN SETHURAMAN

UNIVERSITI SAINS MALAYSIA

2019

INVESTIGATION OF BASE AND WALL PRESSURE IN SUDDENLY EXPANDED FLOW THROUGH DUCTS USING RIBS AS PASSIVE FLOW CONTROL

by

VIGNESHVARAN SETHURAMAN

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

September 2019

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Ir. Dr. Parvathy Rajendran for her guidance and freedom provided to carry out this research work, co-supervisor Prof. Sher Afghan Khan for his valuable help in carrying out the experimental work, Assoc. Prof. Rakesh K. Mathpal for his generosity in permitting me to use the experimental facilities and Prof. K. Padmanaban for his critical review and feedback on my work, research articles and thesis.

I am extremely grateful to the Dean and Administrative staff, School of Aerospace Engineering as well as the Library staff, USM Engineering Library, for their valuable support. The technical support rendered by the laboratory staff and postgraduate students at Indian Institute of Technology, Kanpur, India, is gratefully acknowledged.

It is a pleasure to thank Dr. Ramgopal Sampath and Mr. Suren Bharadwaj for all their help in assisting with the data analysis, figures and diagrams.

On the personal side, I am indebted to Mr. Ramakrishnan Thothathri, Ms. Chan Wai Ching, Ms. Chan Kit Cheng, Mr. T.K. Vadivel Pillai, Mr. Nagarajan Subramanian, Ms. Na Mui Gee, Mr. Kathiravelu Murugiah, Dr. Feiziya Ahmed Patel, Ven. Gyaltsen Tsering and Mr. N.S.P. Sarathi for their kindness and moral support rendered during the course of this work.

I would like to thank my parents and well-wishers for their love and affection and the Almighty for His grace.

TABLE OF CONTENTS

ACKN	NOWLEDGEMENTSi	
TABL	E OF CONTENTSii	
LIST	OF TABLESv	
LIST	OF FIGURES ix	
LIST	OF SYMBOLS xiv	
LIST	OF ABBREVIATIONSxvii	
ABST	RAKxviii	
ABSTRACTxx		
CHAI	PTER 1 INTRODUCTION1	
1.1	A brief idea of the problem	
1.2	Research gap	
1.3	Research questions	
1.4	Research objectives	
1.5	Work methodology5	
1.6	Thesis layout7	

CHA	APTER 2	LITERATURE REVIEW	
2.1	Phenom	enon of sudden expansion	
2.2	Underst	anding base drag	
2.3	Oscillati	ons in flows	
2.4	Numeric	cal methods	
2.5	Experim	ental methods - Flow control strategies	
	2.5.1	Cavities	
	2.5.2	Ribs	
2.6	Summar	у	
CHA	APTER 3	RESEARCH METHODOLOGY	
3.1	Open jet	t test facility	
3.2	Converg	gent-divergent (CD) de Laval nozzle design	
3.3	Nozzle	calibration	
3.4	Stagnati	on pressure ratio across the normal shock (P_{02}/P_{01})	
3.5	Test mo	del	50
3.6	Experim	ental procedure	51
3.7	A cost-e	ffective DAQ	

CHAF	TER 4 RESULTS AND DISCUSSION	;
4.1	Validation of proposed DAQ	;
4.2	Base pressure (P _b))
4.3	Wall pressure (P _w)	ŀ
4.4	Summary of discussion)
CHAF	TER 5 CONCLUSIONS AND FUTURE WORK	j
5.1	Conclusions 116	5
5.2	Future work 118	;
REFERENCES 119		
APPENDIX A: UNCERTAINTY ANALYSIS		
LIST OF PUBLICATIONS		

LIST OF TABLES

	Page
Table 3.1	Nozzle design dimensions for supersonic Mach numbers45
Table 3.2	Calibrated Mach number and corresponding stagnation pressure
	ratio (P_0/P_a) for correct expansion
Table 3.3	Test model - specifications51
Table 4.1	Base pressure data obtained from validation using low-cost DAQ64
Table 4.2	Base pressure error percentage (%) – Fabricated DAQ65
Table 4.3	Wall pressure data obtained from validation using commercial
	pressure transducer
Table 4.4	Wall pressure error percentage (%) – Fabricated DAQ67
Table 4.5	Cost comparison - Commercially available DAQ (vs) Cost-
	effective fabricated DAQ
Table 4.6	% Change in base pressure (vs) NPR – Mach 1.00, $h/H = 0.10 \dots 71$
Table 4.7	% Change in base pressure (vs) NPR – Mach 1.00, $h/H = 0.16$ 72
Table 4.8	% Change in base pressure (vs) NPR – Mach 1.00, $h/H = 0.23$ 73
Table 4.9	% Change in base pressure (vs) NPR – Mach 1.36, $h/H = 0.10 \dots 74$
Table 4.10	% Change in base pressure (vs) NPR – Mach 1.36, $h/H = 0.16$ 75
Table 4.11	% Change in base pressure (vs) NPR – Mach 1.36, $h/H = 0.23$ 76
Table 4.12	% Change in base pressure (vs) NPR – Mach 1.64, $h/H = 0.10$ 77

Table 4.13	% Change in base pressure (vs) NPR – Mach 1.64, $h/H = 0.16$ 78
Table 4.14	% Change in base pressure (vs) NPR – Mach 1.64, $h/H = 0.23$ 79
Table 4.15	% Change in base pressure (vs) NPR – Mach 2.01, $h/H = 0.10 \dots 80$
Table 4.16	% Change in base pressure (vs) NPR – Mach 2.01, $h/H = 0.16$ 81
Table 4.17	% Change in base pressure (vs) NPR – Mach 2.01, $h/H = 0.23$ 82
Table 4.18	Lower and higher NPR values considered for assessment
Table 4.19	% Change in wall pressure (vs) $x/H - NPR$ 2, Mach 1.00, $h/H =$
	0.10
Table 4.20	% Change in wall pressure (vs) $x/H - NPR$ 4, Mach 1.00, $h/H =$
	0.10
Table 4.21	% Change in wall pressure (vs) $x/H - NPR$ 2, Mach 1.00, $h/H =$
	0.16
Table 4.22	% Change in wall pressure (vs) $x/H - NPR$ 4, Mach 1.00, $h/H =$
	0.16
Table 4.23	% Change in wall pressure (vs) $x/H - NPR$ 2, Mach 1.00, $h/H =$
	0.23
Table 4.24	% Change in wall pressure (vs) $x/H - NPR$ 4, Mach 1.00, $h/H =$
	0.23
Table 4.25	% Change in wall pressure (vs) $x/H - NPR$ 3, Mach 1.36, $h/H =$
	0.10
Table 4.26	% Change in wall pressure (vs) $x/H - NPR$ 5, Mach 1.36, $h/H =$
	0.10

Table 4.27	% Change in wall pressure (vs) $x/H - NPR$ 3, Mach 1.36, $h/H =$
	0.16
Table 4.28	% Change in wall pressure (vs) $x/H - NPR$ 5, Mach 1.36, $h/H =$
	0.16
Table 4.29	% Change in wall pressure (vs) $x/H - NPR$ 3, Mach 1.36, $h/H =$
	0.23
Table 4.30	% Change in wall pressure (vs) $x/H - NPR$ 5, Mach 1.36, $h/H =$
	0.23
Table 4.31	% Change in wall pressure (vs) $x/H - NPR$ 4.5, Mach 1.64, $h/H =$
	0.10
Table 4.32	% Change in wall pressure (vs) $x/H - NPR$ 7, Mach 1.64, $h/H =$
	0.10
Table 4.33	% Change in wall pressure (vs) $x/H - NPR$ 4.5, Mach 1.64, $h/H =$
	0.16
Table 4.34	% Change in wall pressure (vs) $x/H - NPR$ 7, Mach 1.64, $h/H =$
	0.16
Table 4.35	% Change in wall pressure (vs) $x/H - NPR$ 4.5, Mach 1.64, $h/H =$
	0.23
Table 4.36	% Change in wall pressure (vs) $x/H - NPR$ 7, Mach 1.64, $h/H =$
	0.23103
Table 4.37	% Change in wall pressure (vs) $x/H - NPR$ 8, Mach 2.01, $h/H =$
	0.10

Table 4.38	% Change in wall pressure (vs) $x/H - NPR$ 9, Mach 2.01, $h/H =$
	0.10
Table 4.39	% Change in wall pressure (vs) $x/H - NPR$ 8, Mach 2.01, $h/H =$
	0.16
Table 4.40	% Change in wall pressure (vs) $x/H - NPR$ 9, Mach 2.01, $h/H =$
	0.16
Table 4.41	% Change in wall pressure (vs) $x/H - NPR$ 8, Mach 2.01, $h/H =$
	0.23108
Table 4.42	% Change in wall pressure (vs) $x/H - NPR$ 9, Mach 2.01, $h/H =$
	0.23
Table 4.43	Maximum and minimum % change in base pressure for different
	Mach numbers, rib heights and rib locations112
Table 4.44	Maximum and minimum % change in wall pressure fluctuations
	for different Mach numbers, rib heights and rib locations113

LIST OF FIGURES

	Page
Figure 1.1	Work methodology – Flow chart6
Figure 2.1	Backward facing step in subsonic flow9
Figure 2.2	Sudden expansion phenomenon in supersonic flow9
Figure 2.3	Base drag in the downstream region of (a) an enlarged duct in the
	case of suddenly expanded flows, (b) rear portion of trucks, (c) rear
	portion of rockets and (d) vortex generated at the base
Figure 2.4	Subsonic flow14
Figure 2.5	Underexpanded sonic flow15
Figure 2.6	Correctly expanded sonic/supersonic flow15
Figure 2.7	Underexpanded supersonic flow16
Figure 2.8	Overexpanded supersonic flow16
Figure 2.9	Amplitudes of base pressure oscillations
Figure 2.10	Sound level (vs.) NPR
Figure 2.11	Cavities in an enlarged duct25
Figure 2.12	Presence of smaller vortices generated during sudden expansion in
	the presence of cavities as control devices, leading to lower suction
	reducing oscillatory nature of flow26

Figure 2.13	Presence of larger vortices generated during sudden expansion
	without any cavities, leading to higher suction and higher
	oscillations generated by the flow27
Figure 2.14	(a) Closed-loop (b) Open-loop and (c) Reverse open-loop cavity29
Figure 2.15	Schematic sketch of enlarged duct with ribs positioned as
	projections at regular intervals
Figure 2.16	Secondary vortices generated by ribs
Figure 3.1	Two-stage air cooled reciprocating compressor
Figure 3.2	Storage tanks
Figure 3.3	75 mm diameter pipe connected from storage tanks, followed by a
	pressure regulating valve, mixing length, wide-angle diffuser and
	settling chamber40
Figure 3.4	Pressure Systems NetScanner [™] Model 9116 pressure transducer41
Figure 3.5	Nozzle for M = 1.046
Figure 3.6	Nozzle for M = 1.346
Figure 3.7	Nozzle for M = 1.646
Figure 3.8	Nozzle for M = 2.046
Figure 3.9	C-D nozzle calibration setup
Figure 3.10	Schematic of nozzle and duct with base and wall pressure tappings
Figure 3.11	Nozzle connected to the duct by flanges with a pitot probe at the
	duct exit, fixed to the traverse mechanism

Figure 3.12	DAQ control panel	53
Figure 3.13	HSC Series TruStability® Pressure Sensor, DIP package, AN	
	single-axial, barbed-port, analog output type, 10% to 90% of	
	V _{supply} transfer function, 5V DC supply voltage	55
Figure 3.14	Circuit diagram	57
Figure 3.15	Output transfer function	57
Figure 3.16	Cost-effective DAQ instrumentation	59
Figure 3.17	Schematic of the cost-effective DAQ connected to the test model	59
Figure 3.18	NI 9215 DAQ	61
Figure 3.19	LabVIEW TM DAQ – Process flow chart	62
Figure 3.20	LabVIEW TM – Control panel for DAQ	62
Figure 4.1	Base pressure data validation for L/D = 6	64
Figure 4.2	Wall pressure data validation for L/D = 6	66
Figure 4.3	Base pressure (vs) NPR – Mach 1.00, h/H = 0.10	71
Figure 4.4	Base pressure (vs) NPR – Mach 1.00, h/H = 0.16	72
Figure 4.5	Base pressure (vs) NPR – Mach 1.00, h/H = 0.23	73
Figure 4.6	Base pressure (vs) NPR – Mach 1.36, h/H = 0.10	74
Figure 4.7	Base pressure (vs) NPR – Mach 1.36, h/H = 0.16	75
Figure 4.8	Base pressure (vs) NPR – Mach 1.36, h/H = 0.23	76
Figure 4.9	Base pressure (vs) NPR – Mach 1.64, h/H = 0.10	77
Figure 4.10	Base pressure (vs) NPR – Mach 1.64, h/H = 0.16	78

Figure 4.11	Base pressure (vs) NPR – Mach 1.64, h/H = 0.2379
Figure 4.12	Base pressure (vs) NPR – Mach 2.01, h/H = 0.1080
Figure 4.13	Base pressure (vs) NPR – Mach 2.01, h/H = 0.1681
Figure 4.14	Base pressure (vs) NPR – Mach 2.01, h/H = 0.2382
Figure 4.15	Wall pressure (vs) x/H – NPR 2, Mach 1.00, h/H = 0.1086
Figure 4.16	Wall pressure (vs) x/H – NPR 4, Mach 1.00, h/H = 0.1087
Figure 4.17	Wall pressure (vs) x/H – NPR 2, Mach 1.00, h/H = 0.16
Figure 4.18	Wall pressure (vs) x/H – NPR 4, Mach 1.00, h/H = 0.1689
Figure 4.19	Wall pressure (vs) x/H – NPR 2, Mach 1.00, h/H = 0.2390
Figure 4.20	Wall pressure (vs) x/H – NPR 4, Mach 1.00, h/H = 0.2391
Figure 4.21	Wall pressure (vs) x/H – NPR 3, Mach 1.36, h/H = 0.1092
Figure 4.22	Wall pressure (vs) x/H – NPR 5, Mach 1.36, h/H = 0.1093
Figure 4.23	Wall pressure (vs) x/H – NPR 3, Mach 1.36, h/H = 0.1694
Figure 4.24	Wall pressure (vs) x/H – NPR 5, Mach 1.36, h/H = 0.1695
Figure 4.25	Wall pressure (vs) x/H – NPR 3, Mach 1.36, h/H = 0.2396
Figure 4.26	Wall pressure (vs) x/H – NPR 5, Mach 1.36, h/H = 0.2397
Figure 4.27	Wall pressure (vs) x/H – NPR 4.5, Mach 1.64, h/H = 0.1098
Figure 4.28	Wall pressure (vs) x/H – NPR 7, Mach 1.64, h/H = 0.1099
Figure 4.29	Wall pressure (vs) x/H – NPR 4.5, Mach 1.64, h/H = 0.16100
Figure 4.30	Wall pressure (vs) x/H – NPR 7, Mach 1.64, h/H = 0.16101

Figure 4.31 Wall pressure (vs) x/H - NPR 4.5, Mach 1.64, h/H = 0.23102

- Figure 4.32 Wall pressure (vs) x/H NPR 7, Mach 1.64, h/H = 0.23103
- Figure 4.33 Wall pressure (vs) x/H NPR 8, Mach 2.01, h/H = 0.10104
- Figure 4.34 Wall pressure (vs) x/H NPR 9, Mach 2.01, h/H = 0.10105
- Figure 4.35 Wall pressure (vs) x/H NPR 8, Mach 2.01, h/H = 0.16106
- Figure 4.36 Wall pressure (vs) x/H NPR 9, Mach 2.01, h/H = 0.16107
- Figure 4.37 Wall pressure (vs) x/H NPR 8, Mach 2.01, h/H = 0.23108
- Figure 4.38 Wall pressure (vs) x/H NPR 9, Mach 2.01, h/H = 0.23109

LIST OF SYMBOLS

Re	Reynolds number
М	Mach number
C _p	Pressure co-efficient
C_{f}	Skin friction co-efficient
P _b	Base pressure
P_{w}	Wall pressure
Pa	Ambient/ atmospheric pressure
Pe	Exit pressure
P ₀₁	Stagnation pressure
P ₀₂	Duct exit pressure
L/D	Length-to-Diameter ratio of the duct
CD	Convergent-Divergent/ de Laval nozzle
Р	Pressure (Static)
ρ	Density (Static)
Т	Temperature (Static)

\mathbf{P}_0	Pressure (Stagnation)
$ ho_o$	Density (Stagnation)
T ₀	Temperature (Stagnation)
γ	Specific heat ratio
'n	Mass flow rate
А	Area
v	Flow velocity
A _t	Throat area
1	Nozzle length
D	Nozzle diameter
h	Rib height
Н	Duct height
L	Duct length
x	X-axis direction
x/H	Pressure tapping position along the length of the
V	Voltage
$\mathbf{V}_{\mathrm{supply}}$	Supply voltage

duct

V _{out}	Output voltage
GND	Ground
P _{max}	Maximum pressure
P _{min}	Minimum pressure
Papplied	Applied pressure

LIST OF ABBREVIATIONS

NPR	Nozzle Pressure Ratio/ Stagnation Pressure Ratio
SFC	Specific Fuel Consumption
BFS	Backward Facing Step
DAQ	Data Acquisition System
DC	Direct Current
SAR	Successive Approximation Register
ADC	Analog-to-Digital Converter
BNC	Bayonet Neill–Concelman Connector
DNS	Direct Numerical Simulation
CFD	Computational Fluid Dynamics

KAJIAN TEKANAN PADA TAPAK DAN DINDING DI DALAM SALURAN DENGAN PENGEMBANGAN ALIRAN DRASTIK MENGGUNAKAN TETULANG SEBAGAI PENGAWAL ALIRAN

ABSTRAK

Pengembangan aliran secara drastik memainkan peranan penting di dalam pelbagai aplikasi di bidang automobil, keretapi, pesawat udara, peluru berpandu dan kenderaan angkasa. Seretan asas adalah masalah lazim yang mengurangkan prestasi didalam aplikasi-aplikasi seperti yang disebutkan diatas dan menjadi penyumbang yang ketara terhadap daya seretan jumlah. Tekanan asas yang wujud didalam aliran di belakang jasad adalah punca penghasilan daya seretan asas yang merupakan sebahagian daripada data seretan keseluruhan. Terdapat situasi dimana tekanan asas dinaikkan untuk menurunkan daya seretan asas. Terdapat juga situasi dimana tekanan asas diturunkan supaya pencampuran bahan api yang lebih baik untuk proses pembakaran dapat dicapai. Jadi adalah penting untuk mengawal tekanan asas berdasarkan kehendak aplikasi. Kajian ini membentangkan analisis mengenai tekanan asas aliran supersonik yang berkembang secara drastik di dalam saluran segiempat tepat. Tekanan asas diubah dengan meletakkan rusuk dengan ketinggian yang berbeza di tempat-tempat yang tertentu disepanjang saluran. Pada permulaan, tekanan asas didapati menurun dengan penambahan nisbah tekanan pada nozel (NPR) didalam aliran pengembangan terlampau manakala tekanan asas meningkat didalam aliran pengembangan terkurang. Taburan tekanan pada dinding menunjukkan bacaan turunnaik manakala tekanan asas meningkat dengan kehadiran rusuk.

Rusuk dengan ketinggian 10% dari ketinggian saluran diletakkan tidak jauh dari bukaan keluar nozel di dalam aliran pengembangan terkurang menghasilkan

taburan tekanan asas yang mencukupi terhadap dinding sepanjang saluran tanpa sebarang turun-naik yang tidak wajar. Pada kenderaan berhalaju tinggi seperti roket dan peluru berpandu, kehadiran daya seretan asas menyebabkan pengurangan kecekapan prestasi. Masalah ini menuntut pengawalan jet yang dapat membantu meningkatkan karakter prestasi kenderaan tersebut. Didalam ruang pembakaran, peningkatan gelora setempat akibat pengembangan mendadak bendalir menyumbang kepada pencampuran bahan api yang tidak sempurna, sekaligus menaikkan kadar penggunaan bahan api spesifik dan kos operasi. Kajian ini mencadangkan cara yang munasabah untu mengatasi masalah tersebut dalam keadaan sebenar dengan perubahan terhadap konfigurasi dan kos yang minima.

INVESTIGATION OF BASE AND WALL PRESSURE IN SUDDENLY EXPANDED FLOW THROUGH DUCTS USING RIBS AS PASSIVE FLOW CONTROL

ABSTRACT

Suddenly expanded flows play a vital role in many important applications in the fields of automobiles, trains, aircraft, rockets, missiles and space vehicles. Base drag is a common problem that hinders the performance in the above-mentioned applications, and contributes significantly to the total drag. The base pressure which exists in flows over a body at the rear is responsible for base drag which is a considerable proportion of the total drag. There are situations where the base pressure has to be increased to reduce base drag and decreased to achieve better fuel mixing in combustion processes. It becomes necessary then to control the base pressure depending upon the application. An analysis of the control of base pressure in suddenly expanded supersonic flows in a rectangular duct is presented. The base pressure is altered by placing ribs of different heights at specific locations along the length of the duct. Ribs of 3 different heights namely 10%, 16% and 23% of the duct height have been used. Each rib was in turn placed at 0.283H, 1.75H and 2.75H along the length of the duct. The setup was tested in Mach numbers of 1.00, 1.36, 1.64 and 2.01 individually. The interaction of secondary vortices due to the presence of ribs placed at different locations and varied heights with the primary vortex at the nozzle exit, is the main factor altering the base pressure either increase or decrease. It is observed that the base pressure decreases initially with increase of nozzle pressure ratio (NPR) in overexpanded flows and exhibits an increase in underexpanded flows. The distribution of wall pressure exhibits fluctuations with base pressure increase in the presence of ribs. These observations

have been supported by quantitative data as percentage increases above the base values. The corresponding effect on the wall pressure distribution due to placing of ribs of different heights and locations in the duct have also been quantified. With the placement of ribs, increases in base pressure as high as 57% for rib height (h/H) of 0.23 and wall pressure fluctuations up to 30% for the same height were observed. A rib height of about 10% of the duct height placed not far from the nozzle exit in underexpanded flows yields sufficiently high values in base pressure without undue fluctuations in wall pressure distribution along the duct. In high-speed vehicles such as rockets and missiles, the existence of base drag leads to reduction in performance efficiency. This problem also calls for controlling of jets which can assist in improving the performance characteristics of these vehicles. In combustion chambers, an increased level of local turbulence due to sudden expansion of the fluid leads to improper fuel mixing conditions thereby, increasing specific fuel consumption (SFC) and higher operational costs. Commercial data acquisition system has been used in the present study while the design of a cost-effective DAQ accommodating more channels has been included. The present work suggests feasible methods of overcoming problems in realistic situations with minimal changes in configuration and costing.

CHAPTER 1

INTRODUCTION

This Introductory chapter explains the phenomenon of sudden expansion followed by detailing the different aspects of flow over a backward facing step and its equivalence to that of a suddenly expanded flow in a duct. A discussion on the occurrence of base drag under various conditions; both subsonic and supersonic is also included. The research objectives and research questions have been highlighted at the end of chapter 1.

1.1 A brief idea of the problem

Suddenly expanded flows play a vital role in many important applications in the fields of automobiles, trains, aircraft, rockets, missiles and space vehicles. Base drag is a common problem that hinders the performance in the above-mentioned applications, and constitutes to about 30% of the total drag (Sethuraman and Khan 2016). Controlling of base pressure leads to reduction in base drag, which is needed in terms of operational as well as performance efficiency.

Fundamental challenges limiting the performance of automotive, aircraft and space applications can be attributed to the pressure at the external base region of the vehicles characterized by sudden expansion of the flow. Flow separation close to the base could cause a region of low-speed recirculation. Lower than atmospheric pressure exists in the base region. The total drag in the transonic region is attributable up to 50 – 60% of the base drag due to pressure differences. In supersonic region, similar