SEARCHABLE PUBLIC KEY ENCRYPTION

FINAL REPORT

SHORT TERM RESEARCH PROJECT
(304/PKOMP/636030)

? \/
PROJECT LEADER: ol 09/

PROF MADYA DR. AZMAN SAMSUDI 0
DATO’ PROF. MUHAMMAD IDIRIS SALEH

Timbglan Haib Canselor
{Penyelidikan & Inovasi)

COMPREHENSIVE TECHNICAL REPORT

10

sy

Table of Content:

Table of Content:

iy

Declaration:

Abstract:

~,
<

1 Introduction

2 Literature Survey

2.1 SWP Linear Scan

2.1.1 Basic Scheme

2.1.1.2 Basic Scheme Searching Technique

2.1.1.3 Basic Scheme Decryption Technique

2.1.2 Controlled Searching Scheme

2.1.3 Hidden Search Scheme

2.1.3.1 Hidden Search Scheme Searching Technique

2.1.4 Final Scheme

2.14.1 Final Scheme Encryption Technique

2.14.2 Final Scheme Decryption Technique

2.1.5 SWP Linear Scan Improvements

2.1.6 SWP Linear Scan Word Length

2.1.6.1 SWP Padded Length Word Linear Scan

2.1.6.2 SWP Variable Length Word Linear Scan

2.2 SWP Encrypted Index

22.1 SWP Encrypted Index Method

2.2.1 SWP Encrypted Index Advantages and Disadvantages

2.3 Goh Bloom Filter

2.3.1 Hash Coding

2.3.2 Conventional Hash Coding Method

O O\Y Vo 11 AA A NUDNBEWWLWWREN N N =

2.3.3 New Hash Coding Method

2.3.3.1 Method 1 — Hash Coding with Coded Message

2.3.3.2 Method 2 — Bloom Filter Hash Coding

2.3.4 Goh Bloom Filter Method

2.3.4.1 Design of Goh Bloom Filter method

23.42 Goh Bloom Filter Method Properties

3 Methodology

3.1 Scheme 1

3.1.1 Setup / Encryption Phase

3.1.2 Search Phase

3.1.2.1 Single Document Searching Mode

3.1.22 Multiple Documents Search Mode

3.1.3 Decryption Phase

3.1.4 Hash Method

3.1.4.1 Hash Coding on Hash Table with Separate Chaining

3.142 Pearson Perfect Hash

4 Discussion

4.1 Search Properties

4.2 Data Type

43 Key Management

4.4 Time/Work Cost

— etk ok ok
WN— O OO

I~y
(Y

Pk et ek et et e e ek
N0 00 00~~~ un W

N N BN NN
(770 "G "G S Y

44.1 Setup

4.4.2 Deletion

NN
A L

5 Prototype and Results

5.1 SWP Linear Scan Prototype
5.1.1 Pseudo Coding

6

References

Appendices

44.3 Searching
4.5 Space Cost
4.6 Encryption Methods
4.7 Decryption
4.8 Precision

49 Summary of Properties

5.2 SWP Encrypted Index Prototype
5.2.1 Pseudo Coding

5.3 Goh Bloom Filter Prototype
5.3.1 Pseudo Coding

5.4 Scheme 1 Prototype
5.4.1 Pseudo Coding

5.5 Results

26
27

28

28
29

29
30

30
30

30

30
30

5.5.1 Number of Words

5.5.2 Preparation Time
5.5.3 Post Processing Time
5.5.4 Processing Time
5.5.5 Method Comparison Discussion

Summary and Future Work

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Appendix H
Encryption

Mathematic of XOR

30

31
31

31
32
32
32
33
34

36
38
39
39

Mathematic of Pseudorandom Number Generator

Scheme 1 — Setup / Encryption Phase

40
41

Scheme 1 — Search Phase (Single Mode)

Scheme 1 -~ Search Phase (Multi Mode)

Scheme 1 — Decryption Phase

Sample Test File

SWP Linear Scan Pseudo code

Search

Decryption

Appendix I
Encryption

SWP Encrypted Index Pseudo code

Search

Decryption

Appendix J
Encryption

Goh Bloom Method Pseudo code

Search

Decryption

Appendix K

Scheme 1 Method Pseudo code

ii

42
43
44
45

46
46
46
47

48
48
48
49

50
50
50
51

52

,..u_»_.,k.,
i

e oy

Encryption

Search

Decryption

Appendix L
Appendix M
Appendix N
Appendix O
Appendix P
Appendix Q
Appendix R
Appendix S
Appendix T

SWP Linear Scan

SWP Encrypted Index

Goh Bloom Method

Scheme 1 Method

Comparison of Methods

Comparison of Methods (Encryption)
Comparison of Methods (Decryption)

Comparison of Methods (Search)

Comparison of Methods (Total Time)

iii

52
52
53

54
55
56
57
58
59
60
61
62

i 1

Abstract:

Encrypted data are being kept in remote server for purposes like backup and space savings. In
order to retrieve these encrypted data, efficient search methods were proposed that enable the retrieval
of the dataset without leaking too much information thus ensuring better security and less information
leakage.

Some of the current searching methods were proposed by Song, Wagner and Perrig (SWP)
which is SWP Linear Scan and SWP Encrypted Index [1]. SWP Linear Scan is a method that encrypts
the words in the document one by one and then sent to the server for safekeeping. To retrieve the
document, a search is performed on each of the encrypted word until a match is found. SWP Encrypted
Index was proposed later on to speed up the search where selected keywords are chosen and encrypted
with a list of pointer to documents that contains the keywords.

In the year of 2003, Eu-Jin Goh proposed a new search method that utilizes bloom filter hash
coding method with allowable error by Burton B. Bloom [3]. This search method is referred as Goh
Bloom Filter [2], where each document will have a set of keyword that is hash coded into a bloom
filter. Each document will be link to a bloom filter where the search is done on the bloom filter for a
matched keyword.

An improved method is proposed here-on for an efficient search on encrypted data which
implements a keyword list in a hash table for each encrypted document. The keyword is encrypted in
such a way that by providing the file server with required search information known as “a capability for
a certain keyword” [11], searches can be performed without leaking any information.

Changes to the way of encrypting the keyword list in the improved method allows the usage of
different hash techniques like Pearson Perfect Hash Function [10] for keeping the keyword list enables
fast searches and space savings. The actual data is unhampered thus not limiting the data type to only
text document and can be compressed and encrypted with any method of the users’ choice.

Keywords: Search, Encrypted Data, Bloom Filter, Linear Scan, Encrypted Index

1 Introduction

As we advance into the digital age, more and more information are stored in computers. These
data are becoming much increasingly important as it consists either personal details, money account or
technology researches. To thwart people from reading the contents of the information stored,
encryption is introduced where the owner have the ‘key’ that allows the accessing of the information.
These encrypted data is stored in a database for safekeeping. In order to retrieve the information, the
owner will have to select the correct file and decrypt it. As the amount of documents grow, it would not
be feasible to decrypt all documents to find the needed document. Furthermore, if the encrypted data is
kept in an untrusted storage on a different location, it would be unwise to decrypt the data. Therefore a
search method is needed to find the needed document without decrypting first to ensure better security
and less information leakage.

Due to this an efficient search method in getting the correct encrypted document based on
certain keyword by the user is needed. This saves time involving in decrypting the documents and does
not leak any information on the untrusted storage area.

-

i

st sy

PRSP,

“—w.

ponn o s e

necumny

2 Literature Survey

Song, Wagner and Perrig (SWP) [1] presented two methods of searching encrypted data,
which are Linear Scan and Encrypted Index method. The first method will be known as SWP Linear
Scan (Section 2.1) while the later as SWP Encrypted Index (Section 2.2). Other than SWP methods,
Goh[2] presented a method that uses Bloom Filter[3] to search on encrypted data. This method will be
known as Goh Bloom Filter (Section 2.3).

2.1 SWP Linear Scan

In the paper by SWP, four schemes were introduced as proof of concept for SWP Linear Scan.
The four schemes; Basic Scheme (Section 2.1.1), Controlled Searching (Section 2.1.2), Hidden
Searches (Section 2.1.3), Final Scheme (Section 2.1.4) will be studied in detail below

2.1.1 Basic Scheme

In this scheme, we have Alice, owner of a set of documents D represented as d;, ds,..., d,
where ¢ represents the number of documents and Bob the owner of the file server FS where the
documents are to be kept. Before Alice gives the document to Bob, the document is arranged in a
sequence of words W, W,, ..., W, where [is the number of words in a document. Each of this word
will be allocated a fixed length of » bits. The encrypted document that is sent to Bob is derived from an
XOR function of each word #; with another fixed length random bit array T; for every position i in the
document. The result of the XOR function will be the c1pher text C; = W; @ T,. See Appendix A on
“Mathematic of XOR Function”.

D> C

Figure 1: Basic Scheme

In order to generate the 7; inputs for the XOR function, a stream of pseudorandom bits S;, S,

., 8y where / is the number of words in the document will be generated from a pseudorandom number

generator G; with a secret seed. These pseudorandom bits are » - m bits long. See Appendix B on

“Mathematic of Pseudorandom Number Generator”. The pseudorandom bit S; will act as an input for a

function F with a key &; to generate the rest of the m bits. The key ; used here can be same or different

for all i position. Both the combined pseudorandom # - m bits S; and the generated m bits Fi(S;) will
serve as the input of the XOR function 7, := (S;, Fi(S))) (Figure 2).

With the generated input 7; and word W,, Alice can now XOR every word in the document

and sent the list of cipher text C; to Bob for safekeeping. The same process is done to every document
inset D.

Q
®
5
e
—I_ -
e
=
=
7
~

Figure 2: Value of Ti

2.1.1.2 Basic Scheme Searching Technique

Now that the documents are with Bob, Alice would like to find documents that contain a
certain word W, that Alice wants. Here, Alice will send the key %; with the word W; where Bob can do
an XOR function to get the value of 7; = W;@® C; where T; :==(L, , R;) and L; = S; ; R, = Fi(S)). By
using the key k; with the function F, Bob will be able to check whether F(S;) equals to R;, the m bits of
the cipher text block (Figure 3).

- From the Fileserver FS W, by Alice
. AW :
: - m bits T,-/:/q@—_" C —> P W,
| S, Ful$) 1 4
: > T A ainatin At |
|

.
Ri=Fu(L)? : < H-mbits y T;

I

e e 1 I
| L R, |

k,-byAlice/ : L bit J I

n bits I

Figure 3: Basic Scheme Searching Technique

However, SWP found that this scheme has the problems as below to Alice

1. Alice has to disclose the word W, that she wants. This allows Bob to know the word and know
which documents contain W,. (Problem I)

2. Alice have to provide all the key k; for Bob to be able to check R; = Fy(L;) and thus risks
exposing the whole document (if k; same for every instance of i). (Problem 2)

3. Knows the position ; of the word W, to provide key £; for the comparison as not to reveal other
key k; where j # i. (if k; different for every instance of 7). (Problem 3)

2.1.1.3 Basic Scheme Decryption Technique

Searches that return the cipher text C;, Cs, ..., C; will be split into two blocks, C; s, which
size is equal to L, and C; gn) Which size is equal to R; . Using the pseudorandom number generator G
with function F will generate the required T, := (L, , R;) where Alice will decrypt the cipher text by
applying XOR function to find two blocks of the word, W, en) = Ci1en, @ Li and Wi rigne) = Cirigny ©
R; . The original word is W; = W; (iefi) + Wi rigi) (Figure 4).

W, From the
: \ G “—I~ Fileserver FS
Fm—m—m————————— g 4
: M} Tt/lﬂ / C,- (left) C,- (right)
: S; Ful(S) [<« fombits
«—
: n bits } L; R,
- n bits "
W,

Figure 4: Basic Scheme Decryption Technique

2.1.2 Controlled Searching Scheme

Due to the Problem 2 and Problem 3 of Basic Scheme Searching Technique (Section 2.1.1.2),
SWP made improvement by introducing controlled searching. Here, another function f is used to
generate the value of ;. The word W, will be applied to the function resulting a newly generated key &;

= fi{ W;) (Figure 5). The value of &’ is kept secret from Bob, and only the generated value £; is given to
Bob. By doing this, the value £; is independent on the position of words and thus Alice does not need to
know the location of the word prior to the search. The search is performed identical to the Basic
Scheme Searching Technique (Section 2.1.1.2). The values of f;{W) is dependent on word W and this
allow Bob to reveal all the position i where W occurs but not other position where W, # W (Figure 6).

ki=fid W;)
e nombits, g AN K={k ...k}
|
| s, F8) g W,
< - >» |
| n bits |
e {
Ci
Figure 5: Controlled Searching Scheme
+
Ceeay Ceana) Cleaty
< i < i \% C = {cat, and, cat}
Tecaty = Recaty Liear T = Reom Lo Ticat) = Recaty Lica
Reeay = Fk(cat)(L(cat)) =V Roay = Fk(cat)(L(xxx)) =X Recaty = Fk(cat)(L(cat)) =v Bob
A S e T o
Wiean Keaty = il Wiean)\apher text Returned to Alice Alice

Figure 6: Controlled Searching Scheme Example

From this scheme SWP also presented further improvement of search method by changing the
way key k; is generated. Search can be focused when documents are divided into blocks like chapters.
In order to group cipher text into chapters, the key is constructed by having an additional parameter, £;
=fir ({C, W), where C is the chapter and W the word in that chapter. This controls the result of
search done by Alice where only words W for chapter C; is returned and not for other chapters C;, i # j.
The key can be created hierarchical based on the document where a key k; can act as a key for another
key such as k' = fi- ({1, W)) be used for k; = f;-- ({0, C)). This allows word W be search in chapter
C; by revealing &; = f g 1wy ((0, C)) or just k; = fi- ({1, W)) for Bob to search in all chapters for
word W.

2.1.3 Hidden Search Scheme

Both the Basic Scheme (Section 2.1.1) and Controlled Search Scheme (Section 2.1.2) allows
Bob to know what word W that Alice is searching (Problem 1). To prevent this, hidden searches
method is introduced where the W is first encrypted using a deterministic algorithm E,.. The
prerequisite in this method is that the encryption method E is not allowed to use any randomness and
must rely on # only without the knowledge of position i of the word. An implementation of this
scheme is to use Electronic Codebook mode (ECB) on the word W. For a longer document, the Cipher
Block Chaining Mode (CBC) can be used where word W is encrypted using a constant initialization
vector (V) but must be same for every position.

Now Alice will take every word in the document W,, W,, ..., W, and encrypt it using the
function E with a key &£’". This will result in the cipher text X, X, ..., X; where X = E;.(W). The input
for the XOR operation, 7; is generated with a change where encrypted word X; is used with
pseudorandom bits S, resulting T; := (S;, Fi(S})), & =fi{ X,).

2.1.3.1 Hidden Search Scheme Searching Technique

With this scheme, Alice will send the encrypted word X; and the key &; = f,{ X;) and sends it
to Bob. This allows Bob to search for W without revealing W because it is encrypted by function E
(Figure 7). This fixes the Problem 1 of Basic Scheme Searching Technique (Section 2.1.1.2).

W,
\ Fi (W) From the Fileserver F'S
|
\‘@* G
r-—-——————"———/—/—™— 1
: 1= bits I T,/ / \
: S; Fi(S7) : Citten) Ci ¢ rioha)
| * » | D
______nthsA I AN X
n - m bits
ki~ i(XD) L; R, = Fiu(L))

Al

n bits ; i

Figure 7: Hidden Search Scheme Searching Technique

2.1.4 Final Scheme

The Final Scheme presented by SWP allows the returned cipher text of the document to be
decrypted. The words other than what Alice searched for cannot be decrypted because Alice is unable
to determine the value of k; = fi{ E,{W;)) to generate the R; m bits of T;. Alice will not know the
encrypted word E,.{W)) for every position i of the document (Figure 8).

/ Ciflp.ft) Ci/riohr)
EB\‘ n - m bits et P 2 C O R 2
:
L, [. :

ki = fe(X))

Figure 8: Final Scheme

2.1.4.1 Final Scheme Encryption Technique

To enable Alice to do the decryption on the document, the setup of this method has to be
changed. The encrypted E, {(W;) will need to be split into two blocks with the size same as T; blocks,
resulting Egepy ¢ (Wepy) With size of n - m bits and Egny k (Wpigny) size of m bits. Now, the key k;
generation will be on just the n - m bits &; = fi (Ege 1 (Wpepy)) instead of the full word W, Both this two
blocks are then XOR with L, and R, to generated the cipher text C; of n bits (Figure 9).

oy

mttcarcremny
‘

[r—

Epepy 1 (W) Erighy 1AW prigny)) ~—

. 7 - m bits R Tr/ \
~ |

A

e
i
&=
o
~
n
<
=

ki=filEaepy 1 Waepy))

(" Figure 9: Final Scheme Encryption Technique
.
. 2.1.4.2 Final Scheme Decryption Technique

The key generation using just the encrypted word of #n - m bits allows Alice to use the
pseudorandom bits S; generated by Alice to be XOR with C; 4,5 and thus recovering the encrypted
[} word Egesy g (Wge) This is then applied the key generator k; = fidEgpepy & (Waepy)) for the
‘ pseudorandom function Fi(S,) to generate the remaining m bits which is cipher text C; (righy- Next, the
cipher text C; g1y is then XOR with the m bits to get the encrypted word Eigng & (W pigny). With both
N the blocks of encrypted words, using the decryption function will result the original word W, (Figure
' 10). All other encrypted words are decrypted using this method.

i / Citten) Ci (righy
L? ®\< n - m bits o
{' S =L .
: ¢ bits r o
[i = fe(Ege kf(Wigew)) Fiu(S) =R,
™~ Eqepy ki (Wigeny) Erigny & (Wigrighy)
’ ¥
i v _E'vAEe (W)
J Wi
&
; Figure 10: Final Scheme Decryption Technique
L.
? 2.1.5 SWP Linear Scan Improvements
L ‘
| This scheme can be further improved to support queries as below
¥
, 1. Boolean Operators = W AND W; by providing both encrypted word and their respective keys

- k
2. Proximity Queries =» W near W, by searching on position i and i+1 on both words
Limited Wildcard Queries =» W = a[a-z] = {aa, ab, ... az} by sending "C; of words
" . Word Occurrences =¥ by providing a counter for the number of the same word W = (0, cat)
and W, = (1, cat).

-
= W

2.1.6 SWP Linear Scan Word Length

Other than that, this scheme can only use fixed length words. This poses a problem of having
a document with every word sharing a same length and for different language. Furthermore some
languages other than English might have difficulty in separating each word to be encrypted. Due to this
SWP presented two varieties to support variable length words, which are SWP Padded Length Word
Linear Scan (Section 2.1.6.1) and SWP Variable Length Word Linear Scan (Section 2.1.6.2)

2.1.6.1 SWP Padded Length Word Linear Scan

SWP proposed a method that uses a fixed size length » based on the longest word in the
document. Shorter words are then padded with characters that only Alice will know. To search for the
word shorter than the fixed size #, Alice will need to pad it with the character before performing the
search. This method generates a bigger size document and therefore wastes space and processing time
linear to the size of n.

2.1.6.2 SWP Variable Length Word Linear Scan

Another alternative to this method is to use a variable size length. The encrypted word will
need to be attached together with the word before performing the XOR operation to create the cipher
text (Figure 11).

1 bits

A

\ 4

Wi~ Waepy » Wirighy

x bits n - m-x bits ~ \

/ Egemy 1 (Waem) Erighy & (W righyy)

A

S

]

Ry

g,

7

X

=

X_!

L%
|
=
-
A~
(%)
(N
1
=

o ! C
< > 5 !
_______________ n! bi%________l Ci
A/ ¢ C:‘+7
ki = fi(Egepy - Waem))

Figure 11: SWP Linear Scan Variable Word Length

The length of the words in the document needs to be kept secret from Bob in order to prevent
statistical attack on the knowledge of the words’ length [1] [2]. With variable length cipher text, Bob is
unable to search on # bits size blocks and need to search on bits boundary instead. This increases the
cost of search as it is now done in bits and not blocks while provide better space savings. The

decryption method was not mentioned by SWP; a proposed method of decryption is as below (Figure
12)

s v,

s om
! B

N

e

From the Fileserver FS —, Ci, G, ... Gy

é A \
Citie)
\ n - m bits Ci (righ
Si=1L

A
v

I /"
ki = filEgepy k- Wigem)) Fu(S) = R
= m bits E ety i (Wigesy) Etrigh) i (Wigrighy)
v E'AEAW))
4

Figure 12: SWP Variable Word Length Linear Scan Decryption Technique

2.2 SWP Encrypted Index

2.2.1 SWP Encrypted Index Method

SWP proposed the use of an index to speed up the search for document based on keywords. In
this method each keyword W; is attached to a list of document pointer P where each pointer in the list p,
points to a document d;, p; > d;. The keywords and pointers form the rows of the index I (Figure 13).

1
W, P, d;
W, P- d>
W P. d-
w. P. d.

Figure 13: SWP Encrypted Index

The keyword and the document pointers in each list in the index are first encrypted. Alice will
send the encrypted word E(W;) and E(P;) to Bob for safe keeping. When Alice wants to retrieve the
documents, Alice will send the encrypted word E(W;) and get the returned encrypted list of pointers
E(P;). With this, Alice can decrypt the encrypted list and send another request for the documents. As
noted, this method will take two trips.

To save a trip, Alice can encrypt the list of document pointer in the index E,(P;) using key kp
= Fp(E(W)) related to the encrypted word. Searching can be done when Alice reveal {E(W), kp}. Bob
will be able to decrypt the encrypted pointer list Ey,(P;) and perform another search for the document
on behalf of Alice (Figure 14).

Bob can be prevented from doing a statistical analysis on the index if the list of pointers is
kept in fixed size list where infrequent keywords are padded up to fixed size with false documents
(document that does not contain the keyword). Common words are split into few where several search
queries have to be merged and done in parallel. '

VE(P) =2

1
E(W) E(P) d
E(W>) E(P>) d>
E(W3) E(P2) ds
E(W.) E(P) ds

Figure 14: SWP Encrypted Index with Encryption

2.2.1 SWP Encrypted Index Advantages and Disadvantages

Using this method allows all documents to be searched at once, therefore making this method
the best no matter how many words or documents contained in Bob’s fileserver. Keywords are shared
among all documents reducing the space needed.

However, SWP Encrypted Index suffers when there are changes to the document where the
index has to be update as well. By observing the changes in the length of the list, Bob can deduce how
many keywords are contained in the new document and the codeword for the keyword. With enough
sampling, Bob can find out the values based on Goh [2]. To prevent this, Alice need to do a mass
update of the pointers in the index to hide real updates. This leads to costly update on both time and
workload.

2.3 Goh Bloom Filter

When searches are performed, efficient search can be achieved by utilizing hash table
technique. The definition of hash table can be summarized as

“Hash table is a data structure that implements an associative array. Like any associative
array a hash table is used to store many key - value associations (this is a many to one relationship as
the hash table is almost universally smaller than the number of keys)” [9]

2.3.1 Hash Coding

In a hash coding method, the hash area is organized into cells where messages are stored. An
iterative pseudorandom computational process is used on the messages to generate the hash address to
each cell of the hash area.

2.3.2 Conventional Hash Coding Method

In the conventional hash coding method, each messages m;, m,, ..., m, are b bits long. The
hash area in this method is prepared by dividing the area into # number of cells where each is 5+1 bits
long, therefore the length of the cells are longer than the message. The number of cells are also more
than then number of messages | # | > | n |. The extra bit for each cells acts as an indicator whether the
cell is empty or occupied. Due to this, messages in the occupied cells are treated as first bit always
being the value of 1.

The process of allocating the message is done with a pseudorandom number called hash
address k that will be generated from a function F where £ is in the range of the hash area cells 0 < k <
h-1. Once the hash address k is generated from the messages, the &™ cell in the hash area is checked to

see if it is empty (first bit equals 0). If the cell is empty, the message is then stored with the additional
first bit value of 1.

For occupied cells, the hash address is regenerated again until an empty cell is found for the
message (Figure 15).

[PRSE—
f

P

o e

=

m
! 1 ms
m; 1 mj
hcells
0
ms
1 m;
b bits v 1 bits b bits

Figure 15: Conventional Hash Coding

The messages are tested by similar process ¢ of hash address creation, where the hash address &
of the message to be tested is compared with the ™ cell in the hash area. A match indicates the test
message is a member of the set. Empty cell indicates otherwise.

2.3.3 New Hash Coding Method

Bloom then presented two new methods, Method 1 and Method 2, which will be known as
Hash Coding with Coded Message method and Bloom Filter Hash Coding method.

2.3.3.1 Method 1 - Hash Coding with Coded Message

The change in this method is a reduction in hash area size. In this method, the hash area is
divided into cells that are smaller and only keep a code instead of the entire message like the
conventional method. Here a function F: {0,1}“ = {0,1}° where a > c is used to generate a code with a
length shorter than the original message. Bloom noted that the allowable fraction of error is defined as
P where the range is of P is (1 >> P >> 2%) [2]. The size of cell ¢ will be chosen that the fraction of
error will be close to or smaller than P. The hash area is then divided into 4 cells based on the
allowable error size of cells c. Each message are encoded into ¢ bit using the function F. Due to shorten

message code; it would not be entirely unique and allow error in testing the membership of message
(Figure 16).

m;

__r_n,’——j\
o 4
v,j/ Flm)) = F(m.)
my
— b bits > ¢ bits ——

< b b > 1 bits ¢ bits
its Figure 16: Hash Coding with Coded Message

F(m 1)
E(m>) hcells

—_ D et [

2.3.3.2 Method 2 - Bloom Filter Hash Coding

Burton Bloom first introduced Bloom filter as a technique that test a series of messages one by
one for membership in a given set of message with tradeoffs in hash coding computational factors. The
factors considered here are hash area (space) and time required to identify a message as a nonmember
of a given set (reject time and an allowable error frequency [3].

In this method, instead of dividing the hash area into cells, it is divided into N individual bit

addresses from O to N-1. Here the hash area bit addresses are all set with the value of 0. Each message
in the set that need to be stored is hash coded into a distinct bit address d;, &5, ..., d; where [is the bit

10

length of the message. The hash area bit addresses that matches the bit addresses of the message from
the hash function method are set to the value of 1 (Figure 17).

Ml M2
0 A 0 A
1 1
H(M) =d, 0 H/(M) =4,)
Hy(M) =d, 1 H{M) =d, 1
H{M) = d,) N bits HiM) =d;) N bits
H{(M) =d, 0 H{M) =d, I]
=4 0 =4 0
I v 1 |vw

Figure 17: Bloom Hash Coding

To test whether a message belongs to the set, the message will be arranged in a sequence of /
bit address d’; to d’; and hash coded to the respective bit address in the hash area. The bits are tested
individually with the value of the bit address in the hash area. If either one of the value of the bit
address in the hash area is 0, it is proven that the message is not a member in that set (Figure 18).

M2 M3

0 0 |x

1 |V 1 |V
HI(M)=dy1 1 v HI(M)‘_‘d’I 1
H{My=d’> 1 v H?(M=d7 1 v
HAM)Y=d’- 1 H:(]m:d’: 1
HJ(M) = d’A HA(M) = d’d

1 |v \ 1
=4 0 I=4 0 jx
MZGM 1 MJEM 1

Figure 18: Bloom Hash Coding Membership Test

2.3.4 Goh Bloom Filter Method

Goh introduced the method that uses the bloom filter hash coding by Bloom. In this method
the document D are represented with a set of words S = {s, 53, ..., 5,} where n is the number of words
chosen by Alice. Each elements of set S represents an array of m bit. The conversion of the words in set
S is done by applying » independent hash function 4, to 4, where A, :{0,1}* > [1,m] for 1< I <r. For
each element in S the array bits are hashed A,(s;), ...,4(s;). The location of each distinct bit of the
hashed value will set the bit address in the hash area to 1. Bit addresses with multiple set are not
changed and remain the value of 1.

To determine membership of a word s; in set S the hash value of the generated word A(s)),
...,h(s}) must all have the value of 1 in the hash area. Bloom filter sacrifices space and time for
allowable error [3]. These allowable errors are known as false positives. False positives are words s,
that are not a member of the set S but proven by bloom filter checks as member. This is due to the bits
set by a collection of other words in set S (Figure 19).

11

s oy

,._

e,

Y

sy

i o,

LS

s anmy
-

P—
.

o
¢

s
[

-

ity

Bloom Filter Population ! Membership Test
|
Ry S : $3
0 0 | 0
1 1 : | _—> 1 v
hi(s) hi(sy) | hi(s?)
1 1 I t v
hi(s)) hi(s5) | h'y(s3)
0 0 t 0
hi(s)) hi(sy) | R i(s3)
1 1 | 1Y
hds) hdss) | h4(s3)
0 1 | 1 |V
|
0 1 i 1
|
1 1 [1
|
S= {5552} ‘ ' s3¢ S

Figure 19: Goh Bloom Filter

2.3.4.1 Design of Goh Bloom Filter method

In this method, every document that Alice has will have a bloom filter that tracks the
keywords for that document.

= Preventing Statistical Analysis

The hash function to generate the keyword digest in SWP Encrypted Index leaks a lot of
information when an update is done. This applies to Goh Bloom Filter method in creating the distinct
bits in the hash area. To prevent this, Goh Bloom Filter changed the method in creating the keyword
digest. Goh noted that the statistical attack could be effective only if the keyword digest of the keyword
remains the same for all document. To prevent this, the keyword digest of the documents will be
different for each document on each update.

Here, Alice has a set of documents D = {d,, d>, ..., d,}, where each document has a set of
keywords x, x3, ... , x;. First, Alice needs to create a suitable Bloom filter with an array size of m bits
and r key for the hash function. The r keys are then chosen from the key space R uniformly at random.
Now the hash function will be F = k;(x), ...,h{x) where x is the keyword for a document.

The improvement here is that before the hashed value of x,, x», ... , x; is inserted into the
Bloom filter for a document d,, it is rehashed again with the document number. The new hash function
would be F = Hy(j) Hpp(j) where j is the document number acting as another ‘key’. This ensures
that the bit array m that is created for each document will be different although the keywords might be
the same (Figure 20).

W =d | —s] HuG) i

% '_’ hix)=d; |—» Ha () 0
hix)=d; [—» Hys(f) 1

hix)=d;, |~ Halj) 0

\ 1

Figure 20: Goh Bloom Filter with Document Number

To search, Alice derives the keyword digest for the keyword y by applying it to the function F
= h,(»), ..., h(y). The keyword digest is given to Bob where Bob will apply the document number 7
with the keyword digest to find the match for F = Hy;4y(3), ..., Hirg(d). This is done all the documents
until all the matches are found.

The searching for this method consists of generating the pseudorandom number from a
pseudorandom function, computing the modified keyword digest and checking r location for a bloom
filter match. Keywords can be combined in the search and only require one pass through the
document’s bloom filter, Keyword digest from F is relatively small therefore communication overhead
is low.

= Less Revealing Queries

After queries are performed, the server will know that keyword x is contained in the
documents that is returned. To make queries less revealing, Alice can try to make the queries a little
more specific as in checking for word x in document only. This can be done by giving the value of the
specific hashed word with the document number H,;5(3), ..., Hyp(i).

= Boolean Queries

Bloom filter can handle quires with Boolean command like “AND” and “OR” on multiple
queries. For “AND” command, both the bits digest are check one after another with the bloom filter.
This is the same with “OR” command. ‘

» Regular expression searches

Expression like “ab{a-z]” can be done where the query is expanded to form each keyword
from “aba” to “abz” with a single keyword query time. Expression like “ab*” is possible but might
result is an uncontrolled overgrown query size.

= Update — Adding/Deleting/Altering documents

Whenever Alice wishes to delete a document, she just tell Bob to delete both the document
with the bloom filter. This approach does not have any information leakage and affect other document
with bloom filter security. Adding a document is just creating a bloom filter, binding it to the document
and sending it to Bob. Deleting a document is a constant time where a command to delete is sent to
Bob. If any alteration needs to be done, a new document number is generated and a totally new bloom
filter is created. The cost for this is linear to the size of the document.

2.3.4.2 Goh Bloom Filter Method Properties

* Compressed and Encrypted Data

Bloom filter just acts as an index to the data and this allow the data to be altered after the
bloom filter is created. The documents can be compressed and encrypted by Alice before sending to
Bob. Compression results a less space cost while encryption allows the desired security for the
document.

= Variable length Keyword

By using the r key hash function to encrypt the message, it will take any length of message
and output it to a constant length based on the hash function F.

13

U

L

(v

= Key management

The keys required in this method are r keys, which is generated from a pseudorandom number
generator with a secret seed.

* Exact keyword location

This method does not allow Alice to know exact locations of keywords. This is not a
disadvantage as Alice can find the location after downloading the document. Another way is to divide
the document into chunks of data and use bloom filter for each chunk, the location is based on the
chunk size granularity however exact location is not known.

= QOccurrence

In order to find occurrence of a keyword, the bloom filter must be changed slightly where the

number of occurrence of the keyword is appended to the word before creating the keyword digest. The

disadvantage of doing this is that more unique keyword is created.

14

3 Methodology

Based on the search methods analyzed earlier, a hybrid method of all three methods will be
proposed.

The motivation behind the creation of this method is

1. Have a method that allows the owner of the data to find the required data from a remote and
untrusted storage

Supports any types of data

Allows Alice to choose just the required keywords describing the data

Preserve the keywords where the keywords can be retrieved if needed.

Time complexity of O(1) to search for a keyword

Easy integration with any existing indexing scheme

Good performance time in terms of encryption, decryption and search

N wN

With these objectives in mind, the new search method is described as below. It also maintains
the needed securities from the methods analyzed earlier.

3.1 Scheme 1

When it comes to having a fast and efficient search, methods like hash tables and trees are
deployed to reduce the time needed. The common architecture is that each of them has to build a kind
of index representing the data which can be accessed based on a certain function. This results in an
O(1) time complexity search time for the best case while the worst case will never be more than O(n)
time complexity. Scheme 1 will incorporate indexing.

3.1.1 Setup / Encryption Phase

In this method, the keywords W, W, ..., W, where ¢ is the number of keywords belonging to a
document D will be organized into a hash table known as HT. The keywords are allocated to different
location of the hash table with the use of a hash function H:{0,1}™ > {0,1}" where m represents
number of binary of the word to be hashed and » represent the number of binary digit for the allocated
cells in the hash table HT.

To ensure the safety of the keywords, it will be first encrypted using key &’ resulting the
encrypted word E ;-(W). This will be used to help in finding the location of the cipher text in the hash
table (Figure 21).

EW

l

Loc (W) = H(E, (W) + id)

Figure 21: Defining the location for the encrypted word

It would be tempting to just insert the encrypted word into the location defined by the hash
function and thus creating a complete encrypted index. However, this can be dangerous as the
encrypted word the single encrypted word is prone to analysis attack where the same encrypted word
will record the same value in different document within the hash table.

15

PONIR,
™

Due to this, it would be better to insert a different value in the hash table. However the value
should allow the keyword to still be searchable. This brings Scheme 1 to utilize the SWP idea that
generates a different value for each encrypted word. In SWP method, the random number generator
allows this attribute to work. Therefore the creation of the cipher text C; is done through the XOR
product of the encrypted word E ;- (W) with the random number block 7;. With Loc(W;) determining the
location in the hash table HT, the value C; can be stored (Figure 22).

At this point, the cipher text C; can also be a candidate for determining the location instead of
the encrypted word E , (W). The reason cipher text C; is not used is due to the search phase(Section
3.1.2) where it can skip the process of recreating cipher text C; just to find the location of the
encrypted word.

Additional feature of having search properties like exact location and proximity search can be
enabled with the help of encrypting the word location W;,. with the key dependent word £;. This will
allow the server to decrypt the location value for that particular searched word.

v
E (W) Loc (W) = H((E,(W) +id)
Etery i (Waepy) Egigny & (W righy)
G(seed
e Loc (W) 11 G| €1
 n-mbits R] A
1| S, =L F'S) = R, : »D
| * 7 bits > |
VU o
];i: FelEaepyi (Waep)))] Ee (¥)

Figure 22: Generating different cipher text for storing

However the usage of the hash table does not allow the arrangement of keywords to be in the
correct order. This poses a problem during the decryption phase (Section 3.1.3). The decryption phase
requires the pseudorandom number generator G to generate different random number S; for different
cipher text C; to be XOR, creating the encrypted word E ;. (W). This process needs the data to be in the
right order. In the hash table, the order of the cipher text is not recorded, thus disabling the decryption
phase.

It may be possible to encrypt a single word at a time, resetting the generator for every
encryption but this does no longer create random value resulting similar S; for every position i. Another
possible way is to attach a single number on the cipher text identifying its order at the expense of
increasing the size needed. This way would effect the searching and would not be a good way.

A better way is to have a generated number from a function that is based on the keyword
which will create uniqueness of each S; and the document number id creating uniqueness of S; among
documents. This results an additional function F’’,.. where S; = F’’y.{ E ;- (W), id). As this value is
needed in the generation of the S; it would be a ‘must’ requirement that this value is known. The
parameters for this function matches the values used to generate Loc (W,) = H{E ;»(W)) + id); allowing
the Loc value to be reused to generate S;.

The Loc value cannot be used raw for S as this allow the server to XOR a portion of cipher

text C; to generate the encrypted text left portion for every word in the hash table. The function F’’
will generate new values for different words with the key &’’’ ensuring it cannot be generated by Bob.

16

In this phase, three keys are needed to perform the setup for the keywords. Keeping three
different keys would be hard to be managed. Therefore a master key mk can be kept by Alice where a

pseudorandom number generator PRNG will be used to generate the three keys for Scheme 1 from the
master key.

This completes the setup / encryption phase for Scheme 1(Appendix C)

3.1.2 Search Phase

Although the setup phase and decryption phase consist of quite a number of steps, the search

phase is still quite simple. The server will just require either 3 or 4 value depending on the search
mode.

3.1.2.1 Single Document Searching Mode

For searching on a single document, the server would require the document number and
location of the cipher text in the hash table to perform a direct search of O(1) time complexity (Figure
23).

To check whether the word exists on the server, Bob will need to do an XOR operation of the
encrypted word and cipher text, generating the other half of §; with function F’ and key k. A

comparison of the generated portion and the existing portion will check if the encrypted word is the one
that is being searched

Ep(W)

Egen i (Waem) Egrieno v Loc (W)) = H{ (E.(W) + id)

v

ki = FedEepy o Waep))

(id|| Loc (W) || Ex (W) || ki) —*

Figure 23: Single Mode Search

3.1.2.2 Multiple Documents Search Mode

This search is performed when there is a need to find a certain word in multiple documents or
the document number is unknown. Without the document number, search can still be performed. This
is possible as the hash function just required the encrypted word value to enable the hash function H to
find Loc. This allows Bob to do the hash function H on behalf of Alice. The only information needed
by Bob would only be the encrypted word E - (W) and key k;. Bob would need to find the possible

location of the word by doing the hash function H on the given value E; (W) with the document id for
all hash tables (Figure 24).

17

[P

ey

s

| E.(W)

Egepy 1 (W iepy) Erigny ko AW trighy)

ki = FilEgepy - (Waepy))
‘ (Er-(M Il k) ’

Figure 24: Multi Mode Search

This completes the search phase for Scheme 1(Appendix D, E)

3.1.3 Decryption Phase

With two public values known for every cipher text C,, Alice would need to be able to decrypt
the whole keyword list. The location for each C; now plays an important part here as the value is used
to generate the S; for each C; to be XOR resulting E(W;). Without Loc, cipher text C; cannot be
decrypted. The decryption process is similar to SWP method where half of the encrypted word will be

derived from the C; allowing the other half to be derived next.

Both portion of the encrypted word would allow decrypting of the word possible (Figure 25).

If the word location W, is available it can be decrypted with the key dependent word ;

G
/ Cliepy
@ C(right)
< n - m bits >

—P(Loc (W) || Ci 1 Ci)

F* e (Loc (W)

Egery o (Waey)

_____________ its | _ T __i
/ k= FilEggy i W)
yd 4

. Eigny kAW righyy)

E i (”/ n()

Ep (W)

Figure 25: Decrypting the keywords
This completes the decryption phase for Scheme 1(Appendix F).

3.1.4 Hash Method

The hash method usage in Scheme 1 is important where it has a direct impact to the
performance in size growth, setup, search, decryption time complexity. This is because the value of C,

18

is required to be kept in the hash table to enable search and decryption of the keywords. The hash
method to be deployed here however differs from Goh’s Bloom Filter [11] where the hash function is a
cryptographic hash function {9]. The reason for this is that the keywords used in Goh Bloom Filter are
in plain text form and therefore requiring the hash function to also be cryptographically secure to
prevent data leakage. Without having to keep the hash value and reducing the value to a single bit,
Goh’s Bloom Filter Method requires the hash function to be generated more than once to ensure the
false positive value is within an acceptable range.

3.1.4.1 Hash Coding on Hash Table with Separate Chaining

An example of a common and easy hash method “hash table with separate chaining” will be
analyzed with Scheme 1. In this hash scheme, an initial size of array will be chosen with a fixed length
of m depending on the number of keywords and collision rate is to be constructed. For every keyword
inserted, a link list object for each position is allocated » bits in size where » is equal to the size of the
link list holding the cipher text. When a collision is detected in the hash table, the collided cipher text
will be linked to the last link list in that location. Based on this implementation, it can be seen that the
storage size grows in linear to the number of keyword therefore creating an O(n) growth.

When a search is performed on a hash table with separate chaining, it allows a constant time
complexity which is an O(1) to be achieved. The hash function which converts the key value to a
location value in the hash table allows a direct access. However the time complexity of O(1) represents
the best case time complexity as there can be few values in the same location due to collision. So the
worst case time complexity would be O(n) where all the keywords “accidentally” hashed into the same
location of the hash table. Although this is unlikely it must still be taken into consideration, therefore
creating an average time complexity of finding a keyword using this method as O(A) where A
represents the load factor of n/m (number of keywords per table size).

This gives a great amount of improvement over SWP methods. However the method that will
be used in Scheme 1 would be Pearson Perfect Hash Function (Section 3.1.4.2).

3.1.4.2 Pearson Perfect Hash

Currently there have been researches done on the area of perfect hashing. One of them is the
hashing method proposed by Pearson [10]. This method is known as Pearson’s Perfect Hash [9]. The
definition of a perfect hashing is defined as

“A hashing function is perfect, with respect to some list of words, if it maps the words in the
list onto distinct values, that is, with no collisions. A perfect hashing function is minimal if the integers

onto which that particular list of words is mapped form a contiguous set, that is, a set with no
holes. ”[10]

This will improve the search time by reducing the collision among keywords thus reducing
search time and saving space size.

However this hash function is reversible, therefore in Scheme 1, the keywords are encrypted
first together with the id to prevent data leakage. With the possibility to find the original value from the
final hash value, the value that can be derived from Scheme 1 would be the encrypted word plus id
which cannot be used XOR every value in the hash table.

In this hash function, a sequence of bytes is processed one byte per time using only a single
XOR function. However the end value is defined from a prepared table containing random bytes. The
hash function algorithm proposed by Pearson is as below

for 1 in 1..n loop
h{i] :- T[h(i-1] xor C[i]]:
end loop;
return hin];

19

Code 1: Pearson Hash Function [10]

Due to the processing of a single byte per time, a variable length word W can be supported by
this algorithm. A single word W may contains up to # characters that is represented as C,, C, ..., C, .
Each character equals a byte where a single character will be XOR with the hash value of the previous
same function iteration. If the character is the first one, it will be XOR with an empty value of 0. The
product of the XOR will act as the index value of table T containing the random bytes. The random

bytes in the range of 0-255 act as a one to one permutation of the index value which has the same range
0-255.

A sample table T showing all permutation of 0-255 (Table 1) and an example of perfect hash
(Table 2).

Table 1: T Table Permutation of Pearson Perfect Hash

39 159 180 252 71 6 13 164 232 35 226 155 98 120 154 69
157 24 137 29 147 78 121 85 112 8 248 130 55 117 190 160
176 131 228 64 211 106 38 27 140 30 88 210 227 104 84 77
75 107 169 138 195 184 70 90 61 166 7 244 165 108 219 51
9 139 209 40 31 202 58 179 116 33 207 146 76 60 242 124
254 197 80 167 153 145 129 233 132 48 246 86 156 177 36 187
45 1 9¢ 18 19 62 185 234 99 16 218 95 128 224 123 253
42 109 4 247 72 5 151 136 0 152 148 127 204 133 17 14
182 217 54 199 119 174 82 57 215 41 114 208 206 110 239 23
189 15 3 22 188 79 113 172 28 2 222 21 251 225 237 105
102 32 56 181 126 83 230 53 158 52 59 213 118 100 67 142
220 170 144 115 205 26 125 168 249 66 175 97 255 92 229 91
214 236 178 243 46 44 201 250 135 186 150 221 163 216 162 43
11 101 34 37 194 25 50 12 87 198 173 240 193 171 143 231
111 141 191 103 74 245 223 20 161 235 122 63 89 149 73 238
134 68 93 183 241 81 196 49 192 65 212 94 203 10 200 47

Table 2: Minimal Perfect Hash Result

1 a 9 for 17 in 25 the

2 and 10 from 18 is 26 this

3 are 11 had 19 it 27 to

4 as 12 have 20 not 28 was
5 at 13 he 21 of 29 which
6 be 14 her 22 on 30 with

7 but 15 his 23 or 31 you

8 by 16 i 24 that

’

As seen in Table 2, a set of 32 words using Pearson hash function have created a minimal
perfect hash where the words are hashed nicely leaving no empty cells in between.

However there might be a need for a larger indices size more than 256. This can be done by
adding 1 to the first character of the processed string H1. However, this might allow an overflow of the
range 0-255. To fix this, a (modulo 256) is applied bringing back the result within the correct range.
The hash function is reapplied to H1 resulting H2. Both H1 and H2 are concatenated then forming a
larger size which is 65535.

20

As for Scheme 1, the hash will be applied to the encrypted keyword where all the keywords
have a fixed length due to the output of the encryption algorithm. This would be where 1 byte can be
the input of Pearson hash function per iteration. Due to the fact Pearson Hash Function can take any
input length, it would not be a problem for taking an encrypted word. As for the hash table size, it can
be increased to 65535 in size which would be considered large where keyword list does not reach that
total amount.

Considering that all the keyword is hashed ‘perfectly’, the worst time complexity of a search
in the index will be the load factor which is n/m (number of keywords per table size). Therefore, if the
keywords are within the range of allocated space, it is definitely a time complexity of O(1). So using
this hash function will give an average O(\) time complexity where A represents the load factor of n/m
(number of keywords per table size). As and indexing scheme, the worst case would be O(n)

21

J— ,__.._,
- -

PrI—

=

[

4 Discussion

The discussion will revolve around the three main methods studies earlier, which are SWP
Linear Scan, SWP Encrypted Index and Goh Bloom Filter in comparison with the new proposed
method (Scheme 1). Aspects that will be discussed are search properties, data types supported, space
cost; time/work cost, key management, encryption methods, decryption and precision.

4.1 Search Properties

= Exact location

In SWP Linear Scan and SWP Encrypted Index, the exact location of the keyword in the
document can be found. This is due to the way of setup for SWP Linear Scan where, each word is
encrypted and send to Bob, C; = W; @ T, When Alice sends Bob the word W; and key %;, Bob will
check each cipher text by XOR operation with #;and finding a match of R; and Fi,(L;) of 7,. With a
counter for each checked word, Bob can tell the exact location of the word to Alice.

As for SWP Encrypted Index, this method is an extension of the SWP Linear Scan where
selected keyword is put into an index that contains a list of pointers to the document that has the
keyword. Due to this exact position of the word is unknown.

Goh Bloom Filter does not allow exact location of word information to be given to Alice. The
setup of this method, where all words are hashed into an array of distinct bit address inserted in the
bloom filter does not keep information of the location. Bob can only search for the word in an array of
m bits bloom filter only. An improvement here is that the document is divided into a few chunks where
each has its own bloom filter. This still does not allow an exact location but nearer location
information. However this increases the space cost, and more time/work to setup and search for a word.

This new method does not allow Alice to know the exact location of the word like SWP
Linear Scan. It is possible to enable this feature with the help of the word location encrypted with the
key dependent word resulting Ey,,(WL). The key should derive from the hash function with the left 7-m
bits of the encrypted word E(W). This is so that Bob is able to decrypt the word location when a search
is performed. Downside of this is that Bob knows the location of the word in the document. This
downside is clearly visible in SWP Linear Scan as the encrypted word are arranged in order

However if the document is not text based like movies or images, exact location would not
work but it will enable proximity search for keywords (Section 4.1 Search Properties - Boolean
Queries).

= Controlled search

Instead of asking Bob to search for every document for a certain keyword, Alice can control
the search to a specific document or area in the document.

For both SWP methods, the key can be generated in a way that more information like chapter
and document number is included where k; = ;- ({ D, C, W)) where D is the document, C is the
chapter and W is the word. This allows Alice to find a word in one of the document of Alice’s choosing
and within a chapter in that document.

Goh Bloom Filter method does allow a control of search on a certain document because the
generating of hash bit address for the bloom filter uses the document number as a parameter. As for
searches within a document, the document has to be divided into chunks. This leads to space cost
increments.

Due to the document number usage similar to Goh Bloom Filter method, the new method
allows a controlled search on a certain documents because Bob will be given the document number to
search on. With the usage of SWP Linear method, words can be defined to a certain part of the
document by changing the key generation algorithm

22

= Variable length keyword

The main disadvantage of SWP Linear Scan is the length of the keyword where every
keyword has to be a same length. For languages like English, it is almost impossible to have a
document with only same length words. With this shortcoming, SWP introduced padding of keyword
that has shorter length and splitting of keyword of longer length (Section 2.1.6). Another way is to use
variable length keyword and results cipher texts of different length. This makes the searching of a word
to be harder where search can only be performed on bits boundary instead of blocks due to changing
size of cipher text. Although space cost will decrease, the time/work needed to find a keyword increase
a lot.

SWP Encrypted Index does not suffer from this problem as the encrypted word is just inserted
into the index.

Goh Bloom filter does not have this problem because keywords are applied to a hash function
of r keys and results an array of distinct address bits for the bloom filter.

The new method does not allow variable length keyword blocks as the keyword are encrypted
first, This requires padding of the word either by Alice or by the encryption class using the padding like
PKCS7.

= Boolean queries

SWP Linear Scan, SWP Encrypted Index and Goh Bloom Filter allow Boolean queries to be
performed. For Boolean command like “AND”, different keywords can be sent to Bob where Bob will
find document that includes both the keywords and “OR” command where the document contains
either one of the keywords.

The only advantage of SWP Linear Scan to Goh Bloom Filter and SWP Encrypted Index is
‘proximity search’ where this method allows two words be search where one precedes another. This is
possible due to exact location capability.

Like the three methods, the new method also allows Boolean queries because it has the same
architecture as SWP Linear Scan.

The new method has the capability of finding proximity with the help of the additional
location word attached to the cipher text that enables the exact location property (Section 4.1 Search
Properties — Exact Location).
= Regular expression search

All methods allow regular expression searches like “ab[a — z]” but does not allow the use of
wildcard like “*” as the combination of keywords will be too much.
= Occurrences

Occurrence of word can be found by appending the occurrence number to the keyword.

For SWP methods, the word can be change to W = (0, test) and W; = (1, test) for the next
occurred word. The size of the word increases by a constant bit size for every keyword.

As for Goh Bloom Filter, the word is also appended W = (0, test). However instead of having
one keyword Goh Bloom Filter will create another unique keyword for every occurrence. The increase
of unique keyword will result in more false positives. To get the desired false positives rate, the array
size will need to be increased accordingly.

For the new method, due to the usage of keywords like Goh Bloom Filter, occurrences of a
word leads to more keywords where 3 occurred words will need 3 different keywords.

23

* Query isolation

SWP methods use a key based on the word for the generation of 7;. By doing this, SWP
prevents Bob to know about the other words in the document, thus the search for one word does not
leak information about other different words.

Goh Bloom Filter has this property as well because the value generated by the hash function is
different for each document.

Together with SWP methods that uses key based on the word for the generation of 7}, this
prevents Bob to know about the other words in the document, thus the search for one word does not
leak information about other different words.

4.2 Data Type

The data type that will be considered here refers to the document that Alice wish to keep at
Bob’s file server.

In SWP Linear Scan, the document used must be text based like English. Difficulty sets in
when the words are variable lengths, as SWP Linear Scan must be changed to either use padding
method or variable length setup method. Some text-based languages may pose a hard time, to identify
atomic word. When SWP Linear Scan is applied to different type of document like images and DNA
sequence, it would not work. The reason to this is the data type has no “atomic word” for SWP Linear
Scan to encrypt.

SWP Encrypted Index does not face this problem as the search is based on index table and not
the data leaving the data to be of any type.

Goh Bloom Filter has this flexible as well where the data type of the document can be
anything as the search is based on index of bloom filter document and not the document itself.

Keywords are chosen by Alice for both SWP Encrypted Index and Goh Bloom Filter thus

eliminating any physical link to the document. Unlike SWP Linear Scan the search words are taken
from the encrypted document only

By using the architecture of Goh Bloom filter, the data type of the new method can be

anything, as it is not affected by the keyword list. A link is done between each keyword list and
document.

43 Key Management
The number of keys for each method that is required for Alice

e SWP Linear Scan
1. Key for Encrypted Word E; (W;)
2. Key/seed for the pseudorandom number generator G to create S;
3. Key for generating k; for T;

e SWP Encrypted
1. Key for index keyword encryption E; (W)
2. Key for document pointer list E¢,(P), kp = Fio Ex-AW))

¢ Goh Bloom Filter
1. Key/seed for a pseudorandom number generator that generates r keys for the hash function A

¢ New method (1 key version)

1. Key for generating 3 pseudorandom key from a pseudorandom number generator
a. Key for encryption of the E, (W)

24

b. Key for creating the S; block
¢. Key for generating the other half of S; block

The keys required for Goh Bloom Filter is only one, followed by SWP Encrypted Index of
two and SWP Encrypted Index of three keys. SWP Linear can be reduced to two if the key £; for T; and
the encrypted document is the same.

However by using pseudorandom number generator, one master key will only be needed
where it will generate the three keys for this method. With one of the keys compromised, the attacker
will still not be able to deduce the other two keys due to the properties of the pseudorandom number
generator, The attacker would require all three keys in order to decrypt the encrypted word or just the
master key.

4.4 Time/Work Cost

To measure the time/work cost each process/step is assumed to be a unit time operation r.
With the » operations identified, the time complexity of the whole process is defined in the O notation.
Throughout the analysis, variable » defines the number of keywords for each document while variable
m defines the number of documents.

4.4.1 Setup
The setup cost required

®* SWP Linear Scan

Generating of S; from the pseudorandom number generator G
Encryption of E,-{W)

Generation of key k; = fi(Ey(W))

Generating the remaining 7; which is Fj(S;)

XOR operation to get C; = E,.(W) & T,.

R wh =

= SWP Encrypted Index
1. Encryption of document
2. Encryption of keyword Ey--{W)
3. Generation of key k, = Fp(E(W))
4. Encryption of document pointer Ey(P)

® Goh Bloom Filter
1. Encryption of document
2. Generating of r keys from the pseudorandom number generator G
3. Hashing of keyword F = h,(x), ...,h/x))
4. Hashing of hash word with document number. F = Hy;y(i), ..., Hup(d).

= New Method

Encryption of E, {W) - Encryption of E.(WL)

Hash function to get Loc(W)

Generating of S; from F*” with Loc(W) and k”’

Generation of key k; = Fi(Ep(W))

Generating the remaining 7; which is F’;(S;)

XOR operation to get C; = Ep(W) @ T; - Append E,{WL)

IS Sl e

The setup cost for SWP Linear Scan is S, SWP Encrypted Index 4r and Goh Bloom Filter 4r.
Goh Bloom Filter has the same setup cost of a single document compare to SWP Encrypted Index
method. The time for setup of all three method have a constant time giving O(1) time complexity for
each word. However work/time cost increases linear to the number words in the document giving an
O(n) time complexity.

25

[

The setup cost for the new method is 67, resulting much more steps that the other three
methods. The time for setup are still a constant time giving O(1) time complexity for each word and
O(n) time complexity for a keyword list. If the exact location is needed, it will require 8r.

4.4.2 Deletion
As for the deletion of document of each method

= SWP Linear Scan
1. Deleting the document

8 SWP Encrypted Index
1. Deleting the document
2. Recreation of the index with padding of false pointer

* Goh Bloom Filter
1. Deleting the document with bloom filter

= New Method
2. Deleting the document with bloom filter

The deletion cost for SWP Linear Scan and Goh Bloom Filter is 17, while SWP Encrypted
Index requires an additional for the recreation of index making it 2#. In this step, SWP Encrypted Index
has to recreate all the indexes for deleting a document giving it an O(n) time complexity on the
numbers of keywords. SWP Linear Scan and Goh Bloom Filter has a constant O(1) time complexity.
This increases linear to the number of documents giving it O(m) time complexity on multiple
documents for SWP Linear Scan and Goh Bloom filter. SWP Encrypted Index on the other hand has an
O(n) * O(m) = O(nm) time complexity making this method inappropriate for deletion or updating.

The deletion for the new method follows the same idea of Goh Bloom Filter giving only 1~
resulting O(1) time complexity for a document and increases linear to the number of document giving it
O(n) cost for multiple documents.

As for the updating of documents in each method, it requires the cost of deletion and re-setup.

4.4.3 Searching
As for the search of document of each method

* SWP Linear Scan requires

Alice Side
1. Encryption of E, (W)
2. Generation of key k; = fi-(Ex-A(W))

Bob Side (Padded Word/Variable Length)
1. Search every cipher text for a match of Ri= F(L;) per block/per bit

= SWP Index Scan requires

Alice Side
1. Encryption of keyword E;..{(W)
2. Generation of key k, = Fi(E(W))

Bob Side
1. Decryption of the encrypted pointer document list
2.

26

= Goh Bloom Filter

Alice Side
1. Generation of the » keys from the pseudorandom number generator G
2. Hashing of keyword F = A,(x), ...,h{x)
3. Hashing of hash words with document number F' = Hy;4)(), ..., Hpp(3). (with knowledge
of the document number)

Bob Side
1. Hashing of hash words with document number F = Hyyy(i), ..., Hur(i). (without
knowledge of the document number)
2. Check every bit address of the hash value for every Bloom filter (document)

= New Method

Alice Side
1. Encryption of E;-{W)
2. Hashing of E;-(W) to generate Loc(W)
3. Generation of key k; = fi (Ei(W))

Bob Side -
1. Search every cipher text for a match of Ri= F(L;) for HT{Loc]

The preparation for SWP methods are 2r work cost and the search on the server side cost 17
work. A 2r work cost for Goh Bloom Filter preparation is needed where the document number is not
known, allowing him to search in a multiple documents setting. This puts an additional r on the
searching side, where the server needs to calculate a new hash value based on the document number.
However, if Alice knows the document number, Alice would be able to search only that particular
document thus transferring the additional r to the client side.

The preparation for the method requires 37 work cost.

The preparation time complexity for all three method has a constant O(1) time complexity on
a single keyword and O(n) time complexity for n keywords and O(nm) time complexity for m
documents assuming each document have the same number of keywords.

As for the searching side, the time complexity differs.

SWP Linear Scan have an O(n) time complexity because the search is done to every
block/word in the document. As for multiple documents, it will need another O(m) search cost on the
number of documents in the server. This gives the method an O(nm) time complexity.

On the other hand, SWP Encrypted Index will have an O(1) time complexity whether on a
single or multiple document environment as a single index represents any number of documents

Goh Bloom Filter will have an O(1) time complexity for a search on a particular document
required if he knows the document number. As for multiple document or the document number is
unknown, this method has an O(m) time complexity.

New Method searching side has a constant O(1) time complexity if there is a perfect hashing.
However it will differ giving the worst time as O(n).

4.5 Space Cost

The space cost for SWP Linear Scan is linear to size of the document as every word is
encrypted thus having an O(n) growth. For variable length method, the space cost can be reduced. The
cost of time/work increases as more words are contained in the document, the growth in the space cost
then would be O(nm) for multiple documents.

27

PR

prommiasn mimmy

If the padded method is use; the space cost will be much larger than the variable length
method due to the fixed size of the encrypted word whether the word is a short one. The growth in
space cost is similar though.

SWP Encrypted Index requires fixed space size for the index. Even when keywords are
inserted, the size space will still be same, which is O(1). The way the document is kept is not
mentioned in the method, so it would be best to compress and encrypt it. As for multiple documents,
the index size space does not grow and remains the same. However additional document requires O(m)
growth in size space. Total space would be O(1) + O(m) resulting growth of O(1+m).

Goh Bloom Filter only requires an array of b bits with the document. The formula for
choosing a good bloom filter parameter is given as 7 = In2 x b/d and false positive as F = 4[2]. As
seen in this formula, the size of b bits increases linear with the number of document d for a fixed » key
hash function required for a good false positive rate. The false positive F in Goh Bloom Filter gives
some additional security measures. Increment of the false positive will lead to the increase of b bits of
the bloom filter. The document in this method can be encrypted with any method Alice wishes and be
compressed which gives an advantage of space saving of documents. Therefore the space is the
encrypted & compressed document with m bits (size of Bloom Filter). However, as more keyword is
inserted, the space does not increase, as all the words are hash coded into the b bit array bloom filter.
This gives a constant space cost of O(1) and O(m) growth for multiple document.

The space cost for the new method is constant in respect to the desired load factor collision

rate therefore give a constant O(1) on the space allocated. However it would grow linearly if as
collision happens O(n).

4.6 Encryption Methods

All methods allow Alice to choose an encryption method for the document or words.

4.7 Decryption

SWP methods and the new method preserve the word by encrypting it and storing it as a
searchable value. Goh Bloom Filter however does not as its main objective is to have small data storage
space and fast setup and search. This is done through hash functions and no storage space for the data.

¢ Rebuilding of Encrypted Search

The usage of SWP Linear Scan for the keyword index gives Alice the advantage of rebuilding
the keyword list without first remembering the keywords that were selected for the document. As more
and more documents are kept in Bob’s fileserver, Alice would not be able to remember all the keyword
for each document; therefore there must be a way for Alice to retrieve the keywords used before.

Using this method, Alice can download both the keyword index and the document and decrypt
the keyword list. With the list of plain text word, Alice can remove the unnecessary keywords and add
additional required one. After that, a new document number must be selected and the setup process is
performed again.

One of the benefits of decrypting the keyword is the use of document type like movies and
images. Let’s say when Alice leaves an organization; the data stays with the organization. A friend of
Alice takes over the data will require the rebuilding of the whole database with a new password
(keyword and seed). The decryption allows Alice’s friend to do it effortless by providing the new
passwords and not to find or rethink the keywords of each document again. For non-text based
document, Alice’s friend might not even have the slightest idea on what the data is about.

28

Another possible usage of decryption of keyword index is when an adversary has found the
password and it has to be re-encrypted. For prevention, the change of password can be scheduled
periodically as a maintenance plan.

This cannot be done on Goh Bloom Filter Method as it is only one way hash coding and due
to the merging of keywords, there is no way of separating them or knowing them.

4.8 Precision
All the methods has false positive due to the fact of having hash function reducing the data
size.

However as the new method also allows the decryption on the keyword, the owner has the
ability to do an extra check will allow only the correct document be downloaded thus enforcing
precision. This process of checking would be a disadvantage due to the requirement of an extra trip of
command to the server and decryption process at the owner’s side. On the other hand, this could also be
an advantage where the data to be retrieved is large in size, for example movies and audio files.
Downloading unwanted data would take up extra bandwidth, time and processing power to decrypting
it.

4.9 Summary of Properties

The below table shows a list of the properties for all four search method analyzed in this paper
(Table 3).

Table 3: Summary of Properties

SWP Goh Improved
Linear Scan Encrypted Bloom New Method
Index Filter
Exact Location v x x L
Controlled Search v v v v
Variable Keyword Length x/v v v x
Boolean Queries v v v v
Proximity Search v x x x/v
Regular Expression v v v v
Occurrences v v v v
Data Type Text Any Any Any
Key Management (no[subkeys]) | 3 2 1[4] 1[3]
Time/Work Cost (Setup) Sr ar 4r 6r/ 8r
(per word / per doc) O(n) / O(nm) O(n) / O(nm) O(n) / | O(n) / O(nm)
O(nm)
Time/Work Cost (Deletion) Ir 2r Ir Ir
(perword /perdoc) | ==--- /O(m) | -—-- /O(mm) | ----- /O(m) | ----—- / O(m)
Time/Work Cost (Search) 2r 2r 1-2r 1-2r
(per word / per doc) O(n) / O(nm) O(1)/0(1) O0(1)/O(m) | O(1): O(m)
O(n) / O(n) O(n) : O(nm)
Space Cost (per word / per doc) | O(n) / O(nm) O(1) / O(1+m) | O(1)/O(@m) | O(1) : O(m)
O(n) / O(nm)
Encryption Method Any Any Any Any
Decryption v v x v
Precision x x % x/v

29

5 Prototype and Results

The three methods SWP Linear Scan, SWP Encrypted Index and Goh Bloom Method will be
studied in detail. The details of the processes are converted into pseudo code in preparation to be coded
into a programming language as prototypes for testing and proof of concept of the methods researched.

5.1 SWP Linear Scan Prototype
5.1.1 Pseudo Coding

SWP Linear Scan consists of three usages which are encryption, search and decryption.

Due to the architecture of SWP Linear Scan, it can only support fixed text length words. In
order to support longer words, the words have to be pre processed first where it will be split into two
consecutive words. As for punctuations, it has to be separated and represented as a single encrypted
word to enable search be done on the word. Together with the punctuation will create different

encrypted text value thus preventing normal keyword searches. Paragraphs’ marker is included to
preserve the original formatting in the file.

The pseudo code for SWP Linear Scan can be found in Appendix H

52 SWP Encrypted Index Prototype
5.2.1 Pseudo Coding

SWP Encrypted Index Scan consists of three usages which are encryption, search and
decryption.

As this method uses SWP Linear Scan to create the index, it can only support fixed text length
words thus longer word need to be split into two consecutive words. As this is an index there will be no
need for punctuations or any formatting details to be recorded.

The document number is needed to identify the documents which consist of the encrypted
search keyword. To enable this, pairs of data will be kept in the hash table where the encrypted word
will act as the search index while the data contains all the associated document number.

The pseudo code for SWP Linear Scan can be found in Appendix I

5.3 Goh Bloom Filter Prototype
5.3.1 Pseudo Coding

Goh Bloom Filter method uses an array of Boolean to mark each hash value generated. Due to
the size of the hash value which is large, the hash area needs to be created using bucket method where
hash values are broken into ranges and kept in different smaller hash area.

There is no special decryption way as this method does not support decryption of bloom filter.

The decryption will be confined to just decrypting the encrypted file.
The pseudo code for Goh Bloom Method can be found in Appendix J

30

54 Scheme 1 Prototype

54.1

Pseudo Coding

Scheme 1 method uses SWP Linear Scan Method for encryption of the keywords. The
encrypted keywords are kept in an index similar to SWP Index Method with new enhancement on the
indexing scheme where the location is defined by Pearson Perfect Hash Function. By using keywords
for indexing, the actual data is separated from the search data like Goh Bloom Method

The pseudo code for Scheme 1 Method can be found in Appendix K

5.5 Results

The prototype for the three methods are coded and ran on the below computer specifications.

Processor

Memory

Operating System
Programming Language
Encryption Algorithm

Cryptographic Hash Algorithm

Intel(r) Pentium(r) 4 2.60GHz
496 DDR RAM
Windows Server 2003 Standard Edition

C# NET

AES 128 bit key, 128 bit block, 128 bit iv, CBC mode,
PKCS7 padding :

HMAC-SHA1

The tables below (Table 4, 5, 6, 7) show the result of executing all the four methods. A
detailed graph representing these values can be seen on Appendixes L, M, N and O.

Prep Time

Post Time
Processing Time
Average Time
(per word)

Prep Time

Post Time
Processing Time

Average Time
(per word)

Table 4: SWP Linear Scan

No of Words =980
Encryption(seconds)

0.207021562246983
0.00137466322242356
0311217135
0.000319525

No of Words =980
Decryption(seconds)
0.00071693719397000
4
0.00530519335312488
0.267862917
0.000275013

Table 5: SWP Encrypted Index

No of Words =375
Encryption(seconds)

0.00134303890195474
0.0146203045841848

0.07026838
0.000190429

No of Words =375
Decryption(seconds)

0.00293470331958206
0.00652851756178432

0.099963504
0.00027090380453868
10

31

No of Words =980
Search(seconds)

0.00043308478235725

0.11645776
0.00011956648866203
10

Search(seconds)
0.00061659559702355
7

0.00006335351042911
67

'l

Table 6: Goh Bloom Method

No of Words =375

Encryption(seconds) Decryption(seconds) Search(seconds)
Prep Time 0.00222837799282878 0.00120500443382041
Post Time 14.136435927054 0.00314664301962447
Processing Time 0.438177299 0.00223311
Average Time 0.001190699
(per word)
Table 7: Scheme 1 Method
No of Words =375 No of Words =375
Encryption(seconds) Decryption(seconds) Search(seconds)
Prep Time 0.00025845086170335
0.00325021243783013 0.0284156517716004 8
Post Time 0.0366460161159733 0.00567701893048541
Processing Time 0.183642046 0.1246849 0.017614753
Average Time 0.000494992 0.00033607789639980
(per word) 80

5.5.1 Number of Words

From the results, SWP Linear Scan will require more numbers of words compared to SWP
Encrypted Index, Goh Bloom Method and Scheme 1. This is due to the SWP Linear Scan Method
requiring long words to be split into two individual words. Punctuations will also count as a word as
well as formatting properties in the original file. SWP Encrypted Index, Goh Bloom Method and
Scheme 1 does not require as many word as it only takes unique words to be encrypted. Punctuations
and formatting properties can be totally ignored as the original file is encrypted separately.

5.5.2 Preparation Time
¢ Encryption

Due to the increase in numbers of words required, the preparation time for SWP Linear Scan
is the highest among the three methods

¢ Decryption

Only SWP Linear Scan methods need a real decryption preparation time to initialize the
encryption class as well as reading the encrypted words to be decrypted. SWP Encrypted Index and
Scheme 1 have the ability to decrypt the index if needed which is just reading the values in the index
for decryption. On the other hand Goh Bloom Method does not have the ability to do so.
e Search

Both SWP methods and Scheme 1 have short preparation time, where it would just require the
generation of encrypted word and a key to enable the search. Goh Bloom Method would require the

process of hashing the word with the document number a number of times based on the amount of
pseudorandom number keys. This requires a longer preparation time.

5.5.3 Post Processing Time

32

e Encryption

In SWP Linear Scan, it just requires outputting all processed cipher text into a single file. As
for SWP Encrypted Index and Scheme 1, it will require outputting the processed cipher text into a
single index file. Both SWP Encrypted Index and Scheme 1 will have longer time compare to SWP
Linear Scan due to the additional time required to encrypt the original file. SWP Linear Scan output
cipher text is the content of the encrypted file which does not require any additional encryption process.

Goh Bloom Method is require the longest time among all the methods due to the large hash
table value that needs to be kept into separate files based on the bucket size. The higher the bucket size,
the longer the time would be, while smaller bucket size will result in more files to be handled.

e Decryption

Only SWP Linear Scan has real post processing where it needs to write all the decrypted
cipher text into a file while reconstructing the long words, punctuations and formatting. SWP
Encrypted Index and Scheme 1 will just output the decrypted index with document number into a file.
SWP Encrypted Index, Goh Bloom Method and Scheme 1 will require an amount of time to decrypt
the original file that was encrypted for storage in the server.

e Search

None of the methods require post processing time except displaying the results

5.5.4 Processing Time
e Encryption

SWP Encrypted Index require the least time as it only needs to encrypt the word and the
document number. SWP Linear Scan has a longer time due to the extra generation of hash values, keys
and XOR operation. As Scheme 1 uses SWP Linear Scan together with Pearson Perfect Hashing
method, it will require a longer time. Goh Bloom Method has the longest time due to the requirement
to perform multiple cryptographic hashing in respect to the number of keys predefined. In addition to
that, it requires twice that for the document number hashing to be implemented.

e Decryption

SWP Linear Scan needs to go thru a process of decrypting every single cipher text in the
encrypted document. This would require the help of hash values generation, key generation and XOR
operation thus increasing the processing time. This also applies to Scheme 1; however with the lesser
number of keywords, it does not require as much time as SWP Linear Scan. SWP Encrypted Index has
a shorter time also due to the number of keywords and does not need to perform as many steps as SWP
Linear Scan. However SWP Encrypted Index does two decryption processes which is on the encrypted
word and encrypted document, increasing the time needed. Goh Bloom Method does not have the
ability for decryption

e Search

SWP Linear Scan would need to make a comparison on every cipher text to find the correct
match. This takes the longest time as compared to the other methods where indexing is used. SWP
Encrypted Index, Goh Bloom Method and Scheme 1 use indexing which is a constant time search
regardless of the number of words. Among the three methods that use indexing, Goh Bloom Method is
the fastest as it is just a bit comparison.

33

p—

5.5.5 Method Comparison Discussion
Below is the total processing time of each method where the preparation time, post processing

time and processing time is added up (Table 8). A comparison of time for all method can be seen from
Appendix P, Q,R, Sand T.

Table 8: Total Processing Time

Total Time Encryption(seconds) Decryption(seconds) Search(seconds)
SWP Linear Scan 0.51961 0.27389 0.11689

SwWpP Encrypted

Index 0.08623 0.10943 0.00068

Goh Bloom Filter 14.57684 0.00315 0.00344

Scheme 1 0.22354 0.15878 0.01787

e SWP Linear Scan

Has a long processing time where each word of the file is encrypted and preserved. The search
time increases as with the number of word making this method not suitable for files with many words

e SWP Encrypted Index

This method has the fastest processing time. However this method is not feasible where a
single master index manages all the documents. The reason for this is that any changes to the
documents in the file server whether adding, removing or editing a single document will affect the
whole index which promotes information leakage. This will also require a pool of keywords to be
maintained.

¢ Goh Bloom Filter

Goh Bloom Filter has very high security where the keywords are hashed and thus irretrievable
thru any means. With each document having a single bloom filter which acts as an index for searching,
this allows a fast search time without leaking much information. However bloom filter does not allow
preservation of keywords and may prove to be a problem if there is a need for keyword retrieval.

Usage of bloom filter has a disadvantage where it requires a large index size to ensure that the
false positive percentage is of acceptable level [2]. With the increase of index size, it requires a longer
processing time for creation of file buckets and management to hold the index information. This
disadvantage makes this method not suitable for active file server where changes to document occur
frequently.

e Scheme 1

Scheme 1 which is a hybrid of Goh Bloom Filter, SWP Encrypted Index and SWP Linear
Scan allow this method to inherit good properties/attributes from these methods which gives an average
processing time for setup, decryption and search.

In term of setup, it only keeps meaningful searchable keyword like Goh Bloom Filter and
SWP Encrypted Index which gives a much better performance time as well as support for different file
types. This method follows the same setup model as SWP Linear Scan during its encryption thus
preserving the keywords for retrieval if needed.

Using a single index to document model like Goh Bloom Filter allow changes to a document
does not affect the security of other files.

34

In term of searching, indexing allows a good search time however not as fast as Goh Bloom
Filter and SWP Encrypted Index. With an average time, this method is also suitable for active file
server where changes to document occur frequently.

35

[aitaaama
s -

6 Summary and Future Work

Three different encrypted search methods which are SWP Linear Scan, SWP Encrypted Index
and Goh Bloom Filter were analyzed in detail and evaluated on. From the studies we find that an
efficient search method on encrypted data has the following attributes. The list of attributes can be seen
in Table 7.

Table 7: List of Attributes of Efficient Search on Encrypted Data Method

Attributes Description

Controlled Search Able to control and focus the search to a particular portion of encrypted
data

Variable Keyword Length | Support different keywords length

Boolean Queries Combine searches using commands like AND, OR and NOT

Proximity Search Able to search on keyword phrases which is combination of single
keywords

Regular Expression Supports wildcards like ‘** and *?’ in queries

Data Type Able to support any kind of data type where the actual data is separated
from the search data

Key Management Does not require keeping multiple secret keys

Space Cost Linear to the number of document

Search Cost Constant O(1) time complexity regardless the number of words

Focus has been put into the new proposed method to incorporating the good attributes listed
above. With the specification of the new proposed method outlined, Table 8 shows the attributes that
are incorporated into the new method.

Table 8: List of Attributes in New Proposed Method

Attributes ‘ Description

Controlled search Able to search on a particular encrypted data based on given data ID

Boolean Queries Process multiple queries and results merge based on Boolean command

Variable Keyword Length ~ Partial support by splitting long words

Regular Expression Wildcards in queries are preprocessed as multiple queries

Data Type A separate search index created where searches are performed on the
index without any dependencies on the actual data

Key Management Utilization of pseudorandom number generator to create the required sub
keys from a single master key

Space Cost Each document has an index with a document

Search Cost Uses hash table for a constant O(1) time complexity access at best

However there are still many improvements and new functionality which was not able to be
designed into the new method.

Table 9 shows the improvements that can be done over the current proposed method by either
enhancement or a redesign of method framework.

36

Table 9: Current and Future Works

Current Work

1 Number of Users
Uses symmetric encryption method where a
secret key is used for encryption of data and
search index. In order for another person to
make a search on the encrypted data, the
person will require the identical key.

Does not have a central KDC for managing
key distribution to multiple users

2 Indexes — Search Time and Space Cost
Every encrypted document requires an index.
Increases search time and space cost linear to
the number of document.

3 Modification of search data
Cannot support editing, insertion and deletion
of keywords as this will leak information of
the encrypted word

4 Data Types Search

Searches be done on different encrypted data
types like pictures, sounds, movies with help
of keywords thus not confined to search using
words

5 Search data pattern leakage
Any search will allow server to know the

search data being search and the document
consisting this search data

Future Work

Uses asymmetric encryption method where
encrypted search can be perform by another
person and data be decrypted {13].

Single way of sending an encrypted message and
can only be search and decrypted by the receiver
(e.g. email system). Unsuitable for shared
fileserver environment where the person that
uploaded the encrypted data will still have the
ability of searching and decrypting of the
encrypted data.

Will require a new method or a central KDC

A single index for multiple documents. A constant
time complexity of O(1) and a fixed space cost.

Single index that supports editing, insertion and
deletion of keywords by accessing just a portion
of the index without comprising the security of
other document and keywords

Searches be done on different encrypted data
types like pictures, sounds, movies without help of
keywords and providing different data type

Absolute no search data pattern learned. Research
done on this attribute such as Private Information
Retrieval (PIR) [14] and Oblivious RAM [15].
However this would requires many servers to
mask the search pattern where a distributed search
is done instead [14] or hardware security
modification [15].

A better way of reorganizing the index as well as
the encrypted document

The current method serves as an improved efficient search method on encrypted data even
though this method has some functionality and improvements not incorporated as listed in Table 9.

However the studies done in this report gives an overview of existing methods proposed to
date and attributes contained in an efficient search method. This helps provides a guideline of good
attributes or methods to be used in creation of new efficient search method.

37

e

S

[———

PR
»

P—

.

pre—

References

(1]

(2]
Bl

(4]

[5]

(6}

(7]

(8]

[9]

[10]

[11]
(12]

(13}

(14]

[15]

Dawn Xiodong Song, David Wagner, Adrian Perrig. Practical Technique for Searches on
Encrypted Data. In proceedings of IEEE symposium on Security and Privacy, IEEE, 2000

Eu-Jin Goh. How to Search Efficiently on Encrypted Data. October 7, 2003

Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communication of the ACM, Vol 13 / Number 7 / pg 422-426, July 1970

Sarang Dharmapurikar. CSE 535: Lecture 5 — String Matching with Bloom Filters.
Washington University, Fall 2003

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press. October 1996 (Fifth Printing — August 2001)

William Stallings. Cryptography and Network Security: Principles and Practice (3"
Edition). Prentice Hall. August 27, 2002

Paul Garrett. Making, Breaking Codes: Introduction to Cryptology (1% Edition). Prentice
Hall. August 9, 2000

Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in
C#. http://www.brpreiss.com/ (E-book) 2001

Wikipedia Encyclopedia. http://en.wikipedia.org/wiki Wikimedia Foundation, Inc. Jan
2001

Peter K. Pearson. Fast Hashing of Variable-Length Text Strings. Communications of the
ACM, Vol 33 / Number 6. June 1990

Eu-Jin Goh. Secure Indexes. May 5, 2004

Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum. Data Structures Using C
and C++. Prentice Hall 1996 (Second Edition)

Dan Boneh, Rafial Ostrovsky, Giovanni Di Crescenzo, Giuseppe Persiano. Public Key
Encryption with Keyword Search. In proceedings of Eurocrypt 2004, LNCS 3027, pp.
506-522, 2004

Benny Chor, Oded Goldreich, Eyal Kushilevitz, Madhu Sudan. Private Information
Retrieval, April 21 1998

Oded Goldreich, Rafail Ostrovsky. Software Protection and Simulation on Oblivious
RAMs

38

Appendices

Appendix A Mathematic of XOR

The XOR function is as shown

I el =] K=

DD |D|D

—o|—=o
|

O]
&

Figure Al: XOR Function Characteristic

XOR function has a unique characteristic where if an XOR function is applied twice with any
binary number, the original number will be obtained; therefore the function is its reverse function as
well.

Example

Original Value 6 01 1.0 1 1 0

@ o1 1 1 0 0 1 1

Intermediate Result 01 0 0 0 1 0 1

@ o1 1 1 0 0 1 1 |

Original Value 00 1 1 0 1 1 O '
Figure A2: XOR Function Example

|
Due to this characteristic, it is widely used in cryptology to obtain the original message from a l

encrypt one.

39

o 4ot
.

[

)

e
-

[
-

.

P ———
| S,

[Y

Appendix B Mathematic of Pseudorandom Number Generator

A pseudorandom number generator is used to generate a sequence of random number. Usually
a seed (number) acts as an input to the generator to output a never-ending sequence of number.
However, it is important to note that the numbers generated by the generator is periodic. The periodic
cycle here may be very large but eventually the numbers will repeat itself. The seed is used to
determine at which point it will begin to generate the numbers (Figure A3).

Here, the pseudorandom number generator is used where the periodic is very large to ensure
that the number is harder to predict (next consecutive number).

Seed
7 2 s«
1 0
4 1
/ 8 3
Seed 9

Figure A3: Pseudorandom Number Generator

40

e e N —

RN

(

874
D07 PO 4 (30 4g) 1 G0 1 H_ y
(T) < ﬁ ﬂ
P A=09"d "T=1S !
| < » |
i ! Tip o snqui-u i !
\ 4 e e e e o ———_——_— e ——— -
i 10 1| Cy) 20T)
M) 207 e,
| tot
Y — (!
P+ (M3) H = (4) 201 () A) A g 7«
a (M)} _
A .
\&)
M _
(yu) DNYd

asoy g uondliouzg / dnag — | 2wayog D xipuaddy

[_._.— :._,,. s mein P e oy i ooy [, [, i s e o ey e s e ey [e ey
SR . o e 1l iy ﬂ R oy o8 - [P [) [- o e . a . - N - - B R < N - . . . Y

Appendix D Scheme 1 — Search Phase (Single Mode)

PRNG (mk)
| w
k)

y

Ex(W)

Eery v Witem) Efrighy i

K’ ——_l l Loc (W) =H{((Ex(W) +id
l k= FeAEqey .o (Waep)) l \

E v (W)

(id || Loc (W) || Ex» (W) || ki | nombits T, i
N\ I |
E L; R, :

< - |

: n bits :

L__T_—___—_—J

v v
Ful) =R 2(Y | %)

42

Appendix E Scheme 1 — Search Phase (Multi Mode)

Loc (W) =H{ (Ex(W) + id)

FiuL) =R 2 (Y] %)

PRNG (mk) 5
I W

:] a
EJOW) !

Eey 1 Efrighy & ;
o | |

l ki = FiAE ey i Wep)) EeM Ik

43

—_—— - [E——

f
i

3

s r““-'u

Appendix F

[i i (i - e
L “ N » “ 2

Scheme 1 — Decryption Phase

— (Loc (W) |1 Ci)

L vom L - peran iy s et oy fr crmnn ot ey ~ -
Bl 3 -9 - - L v - - (3 - L3 -
G
Clery

Ceright)

. 4
|
l / F,ki(Si) = R,-

1 / : =

if\k\ » (Loc :L n bits
| ki= FeEgem e Waem))

k} B

h 4 v I / > Egey v (Wepy)
D ki (W Loc) k, ’
| Egiohy v Wirighy) [
y k’
Word Loc : > Ep
ord Loc PRNG (mk) k (W)

44

Appendix G Sample Test File

Cryptography is, traditionally, the study of ways to convert information from its normal, comprehensible form into an
incomprehensible format, rendering it unreadable without secret knowledge the art of encryption. In the past, cryptography
helped ensure secrecy in important communications, such as those of spies, military leaders, and diplomats. In recent decades,
the field of cryptography has expanded its remit in two ways. Firstly, it provides mechanisms for more than just keeping
secrets: schemes like digital signatures and digital cash, for example. Secondly, cryptography has come to be in widespread use
by many civilians who do not have extraordinary needs for secrecy, although typically it is transparently built into the
infrastructure for computing and telecommunications, and users are not aware of it.

The study of how to circumvent the use of cryptography is called cryptanalysis, or codebreaking. Cryptography and
cryptanalysis are sometimes grouped together under the umbrella term cryptology, encompassing the entire subject. In
practice, cryptography is also often used to refer to the field as a whole; crypto is an informal abbreviation.

Cryptography is an interdisciplinary subject, drawing from several fields. Before the time of computers, it was closely related
to linguistics. Nowadays the emphasis has shifted, and cryptography makes extensive use of technical areas of mathematics,
notably number theory, information theory, computational complexity, statistics and finite mathematics. It is also a branch of
engineering, but an unusual one as it must deal with active, intelligent and malevolent opposition .

Associated fields are steganography the study of hiding the very existence of a message, and not necessarily the contents of the
message itself and traffic analysis, which is the analysis of patterns of communication in order to learn secret information.

The original information which is to be protected by cryptography is called the plaintext. Encryption is the process of
converting plaintext into an unreadable form, termed ciphertext, or, occasionally, a cryptogram. Decryption is the reverse
process, recovering the plaintext back from the ciphertext. Enciphering and deciphering are alternative terms. A cipher is an
algorithm for encryption and decryption. The exact operation of ciphers is normally controlled by a key — some secret piece
of information that customises how the ciphertext is produced. Protocols specify the details of how ciphers are to be used to
achieve specific tasks. A suite of protocols, ciphers, key management, user-prescribed actions implemented together as a
system constitute a cryptosystem,; this is what an end-user interacts with, like PGP or GPG.

In ordinary parlance, a "code" is often used synonymously with "cipher". In cryptography, however, the term has a specialised
technical meaning: codes are a method for classical cryptography, substituting larger units of text, typically words or phrases.
In contrast, classical ciphers usually substitute or rearrange individual letters. The secret information in a code is specified in a
codebook.

"Cipher" is alternatively spelt "cypher"; similarly "ciphertext" and "cyphertext", and so forth. Both spellings have long
histories in English, and there is occasional tension between their adherents.

A cryptanalyst might appear to be the natural adversary of a cryptographer, and to an extent this is true: one can view this
contest all through the history of cryptography. However, it is possible, in fact preferable, to interpret the two roles as
complementary: a thorough understanding of cryptanalysis is necessary to create secure cryptography.

There are a wide variety of cryptanalytic attacks, and it is convenient to classify them. One distinction concerns what an
attacker can know and do in order to learn secret information, example does the cryptanalyst have access only to the
ciphertext? Does he also know or can he guess some corresponding plaintexts? Or even: Can he choose arbitrary plaintexts to
be encrypted?. While these example scenarios all view the cipher as an abstract black box, other attacks are based on the
implementation of the cipher. If a cryptanalyst has access to, for example, timing or power consumption, he may be able to
break a cipher otherwise resistant to analysis.

If a cryptosystem uses a key or a password, it is at risk from an exhaustive search; this is very commonly the weakest point in
such systems. Linear and differential cryptanalysis are general methods for symmetric key cryptography. When cryptography
relies on hard mathematical problems, as is usually the case in asymmetric cryptography, algorithms for tasks such as factoring
become potential tools for cryptanalysis.

45

Mmﬁ
=

-

Appendix H SWP Linear Scan Pseudo code

Encryption

[Initialization]
1.1 Initialize Encryption Method
1 1.2 Initialize pseudorandom number generator with a seed

[[Pre Processing]
2.3 Open the file to be encrypted and read every word
2.4 For (every word in the file, format the word)
24.1 Split long words
2.4.2 Split punctuation as single word
243 Insert paragraph marker
2.5 Putall formatted word into an array for encryption

{ {Encryption}
3.1 For (every word in array)
3.1.1 Every word W is encrypted e(W) using selected encryption method
f 312 Split the encrypted word e(W) into two halves left encrypted word le(W) and right encrypted word »e(W)
L 3.13 Generate a key kw using a cryptographic hash function with the left encrypted word le(W)
3.1.4 Generate a block of bits S with pseudorandom number
[3.1.5 Generate another block of bits F},,(S) from cryptographic hash function with the key Aw
{ 3.1.6 Merge both blocks of bits to form another block of bits (T= (5, Fi.(S))
3.1.7 Apply operator xor to block of bits 7 and encrypted word e(W) to create cipher text C
3.2 Putall cipher text C into an array for output

t [Post Processing]
4.1 For (every word in array)

(. 411 Write into file
L
*
[i Search
{ L [Initializzgt.ior.l] '
L 1.1 Initialize Encryption Method

[Pre Processing]
g ' 2.1 If (keyword long)
i, 2.1.1 Split long keywords W
22 For(every keyword)
g - 221 Encrypt the word e(W)
222 Generate a key kw using a cryptographic hash function with the left encrypted word le(W)
L 2.3 Puteach pair, encrypted word e(W) and key kw into an array for searching

{ T [Search]

L . 3.1 Open encrypted file and read every cipher text C

3.2 For (every cipher text in the file)

321 Apply operator xor with encrypted word e(#) to generate block of bits 7

3.2.2 Split the block of bits 7T into two halves left block of bits IS and right block of bits »S

= 323 Using the key kw and block of bits IS on a cryptographic hash to generate another block of bits F,(S) 3.2.4
Compare both blocks of bit F,,(S) and »S

325 If (match)

L 3.2.5.1 Keep position number

33 Put all position number into an array as result

{Post Processing]
L 4.1 For (every position number in array)
4.1.1 Output to screen

L 46

Decryption

[Initialization]
1.1 Initialize Decryption Method
1.2 Initialize pseudorandom number generator with a seed

[Pre Processing]

2.1 Open the file to be decrypted and read cipher text
2.2 For (every cipher text in the file)

2.3 Putall formatted word into an array for encryption

[Decryption]

3.1 For (every cipher text in array)

3.1.1 Split the cipher text C into two halves left cipher text /C and right cipher text rC

3.12 Generate a block of bits .S with pseudorandom number

3.1.3 Apply operator xor on /C and S to generate left encrypted word le(W)

3.1.4 Generate the key kw using a cryptographic hash function with the left encrypted word le(W)
3.1.5 Generate another block of bits Fi,(S) from cryptographic hash function with the key kw
3.1.6 Apply operator xor on right cipher text rC with block of bits F,,(S) to generate re(W)
3.1.7 Merge both halves of encrypted Word to generate (e(W)= (e(W), re(W)))

3.1.8 Decrypt the encrypted word e(W) to get word W

3.2 Putall word W into an array for output

[Post Processing]

4.1 For (every word in array, format the word)
4.1.1 Join long words

4.1.2 Join punctuation as single word

4.1.3 Insert paragraph marker

42 Write into file

e may

47

e

ﬁ

.._“_,»...\

[N

R,
..

[u——.
[N

P———

e s

rrm——,

Appendix I SWP Encrypted Index Pseudo code

Encryption

[Initialization]
1.1 Initialize Encryption Method

[Pre Processing)

2.1 Open the file to be encrypted and read every word
2.2 For (every word in the file, format the word)

221 Split long words

222 Destroy punctuation

223 Ensure only unique words are recorded

2.3 Putall formatted word into an array for encryption

[Encryption]

3.1 For (every word in array)

3.1.1 Every word W is encrypted e(W) using selected encryption method

3.1.2 Generate a key kw using a cryptographic hash function with the encrypted word e(W)

3.1.3 Encrypt the document number using key kw creating encrypted document number e(docNo)
3.14 Insert both encrypted word e(W) and e(docNo) into a hash table

[Post Processing]
4.1 Encrypt the original file using selected encryption method
42 Serialize the hash table into an index file

Search

[Initialization]
1.1 Initialize Encryption Method

[Pre Processing]

2.1 If (keyword long)

2.1.1 Split long keywords W

2.2 For (every keyword)

2.2.1 Encrypt the word e(W)

222 Generate a key kw using a cryptographic hash function with the encrypted word e(W)
23 Put each pair, encrypted word e(W) and key kw into an array for searching

[Search]}

3.1 Open the index file and deserialize the hash table

3.2 Lookup in the hash table for the value of encrypted word e(W)

3.3 If (exist)

33.1 Decrypt the encrypted document number e(docNo) to get the document number docNo
3.4 Putall document number into an array as result

[Post Processing]

4.1 For (every document number in array)
411 Output to screen

48

Decryption

[Initialization]

1.1

Initialize Decryption Method

[Pre Processing}]

2.1 Open the index file and deserialize the hash table

[Decryption]

3.1 For (every pair, encrypted word and encrypted document number in array)

3.1.1 Decrypt the encrypted word e(W) using selected decryption method

3.1.2 Generate a key kw using a cryptographic hash function with the encrypted word (W)
3.1.3 Decrypt the encrypted document number e(docNo) using key kw

3.1.4 Write each pair, word W and document number docNo into an array

[Post Processing]

4.1
4.1.1
4.2

For (every pair, word and document number in array)
Output to screen
Decrypt the encrypted original file

49

s r

g

—

oo

Appendix J Goh Bloom Method Pseudo code

Encryption

[Initialization]
1.1 Initialize Hash Method
1.2 Initialize hash area as boolean array based on bucket size

" 1.3 Create r pseudorandom number keys

[Pre Processing]

2.1 Open the file to be encrypted and read every word
2.2 For (every word in the file, format the word)

221 Destroy punctuation

2.2.2 Ensure only unique words are recorded

2.3 Putall formatted word into an array for encryption

[Encryption]

31 For (every word in array)
3.1.1 For (every r keys)
3.1.1.1 Every word W is cryptographic hashed h(W) using selected hash method using key r

3.1.2 Output all intermediate hash value into an array

3.1.3 For (every intermediate hash value in array)

3.13.1 Hash the intermediate hash value with docNo to create A,w)(docNo)
3.14 Output all final hash value into an array

[Post Processing]

41 For (every final hash value in array)

4.1.1 Write/Update all boolean array position hash value into files based on bucket size
42 Encrypt the original file using selected encryption method

Search

[Initialization]

1.1 Initialize Hash Method

1.2 Initialize hash area as boolean array based on bucket size
1.3 Create r pseudorandom number keys

[Pre Processing]

2.1 For (every r keys)

2.1.1 Every word W is cryptographic hashed 2(W) using selected hash method using key r
2.2 Output all intermediate hash value into an array

23 For (every intermediate hash value in array)

2.3.1 Hash the intermediate hash value with docNo to create Ay (docNo)

24 Output all final hash value into an array

[Search]

3.1 For (every final hash value in array)

3.1.1 Open files based on bucket size

3.1.2 Retrieve boolean value from boolean array position hash value based on bucket size
3.2 If(all value true)

3.3 Put file number into an array as result

[Post Processing]
4.1 Output to screen

50

Decryption

[Initialization]
1.1 Initialize Decryption Method

[Pre Processing]

[Decryption]
3.1 Decrypt the File using selected decryption method

{Post Processing]

51

Appendix K Scheme 1 Method Pseudo code

Encryption

[Initialization}

1.1 Initialize Encryption Method

1.2 Initialize pseudorandom number generator with a seed
1.3 Generate the required sub keys

[Pre Processing]

2.3 Open the file to be encrypted and read every word
2.4 For (every word in the file, format the word)

24.1 Split long words

242 Destroy punctuation

2.5 Putall formatted word into an array for encryption

[Encryption}

3.1 For (every word in array)

3.11 Every word W is encrypted e(W) using selected encryption method

3.1.2 Split the encrypted word (W) into two halves left encrypted word le(W) and right encrypted word re(W)
3.1.3 Generate the Loc for the location of the index using the encrypted word (W) merged with id

3.14 Generate a block of bits S using a cryptographic hash function on the Loc value generated for indexing
3.13 Generate a key kw using a cryptographic hash function with the left encrypted word le(W)

3.1.5 Generate another block of bits F,,(S) from cryptographic hash function with the key &w

3.1.6 Merge both blocks of bits to form another block of bits (7= (S, Fi.(S))

3.1.7 Apply operator xor to block of bits T and encrypted word e(W) to create cipher text C

3.2 Putall cipher text C into the array based on Loc for output

[Post Processing]
4.1 Serialize the array into an index file
4.2 Encrypt the original file using selected encryption method

Search

[Initialization]
1.1 Initialize Encryption Method

[Pre Processing]

2.1 If (keyword long)

2.1.1 Split long keywords W

2.2 For(every keyword)

2.2.1 Encrypt the word e(W)

2.2.2 Generate a key kw using a cryptographic hash function with the left encrypted word le(W)
2.3 Generate Loc using the encrypted word e(W) merged with id

2.4 Puttogether, index location Loc, encrypted word e(W) and key kw into an array for searching

[Search]

3.1 Open the index file and deserialize the array index

3.2 Lookup in the index for the value of encrypted word e(W) using Loc

33 If (exist)

3.3.1 Apply operator xor with encrypted word e(W) to generate block of bits T

3.3.2 Split the block of bits T into two halves left block of bits /S and right block of bits ~S

333 Using the key kw and block of bits IS on a cryptographic hash to generate another block of bits Fy,(S) 3.3.4

Compare both blocks of bit F},,(S) and rS for a match
[Post Processing]

4.1 For (every document number in array)
4.1.1 Output to screen

52

Decryption

{Initialization]

1.1 Initialize Decryption Method

1.2 Initialize pseudorandom number generator with a seed
1.3 Generate the required sub keys

[Pre Processing}
2.1 Open the index file and deserialize the index array

[Decryption]

3.1 For (every encrypted word in array)

3.1.1 Split the cipher text C into two halves left cipher text /C and right cipher text #C

3.1.2 Generate a block of bits S using a cryptographic hash function with the Loc based on the index

3.1.3 Apply operator xor on /C and S to generate left encrypted word le(W)

3.1.4 Generate the key kw using a cryptographic hash function with the left encrypted word /e(W)
3.15 Generate another block of bits Fy,,(S) from cryptographic hash function with the key iw
3.1.6 Apply operator xor on right cipher text rC with block of bits Fy,,(S) to generate re(W)

3.1.7 Merge both halves of encrypted Word to generate (e(W)= (le(W), re(W)))
3.1.8 Decrypt the encrypted word e(W) to get word W
3.2 Putall word ¥ into an array for output

[Post Processing]

4.1 For (every word in array)
4.1.1 Join long words

42 Write into file

53

PSSR

LU

P,

Appendix L

SWP Linear Scan

SWP Linear Scan
0.35
0.3
0.25
@
u .
g 02 —— Encryption
2] .
@ —-=— Decryption
@ 0.15 Search
E
-
0.1
0.05
0
1 77 153 229 305 381 457 533 609 685 761 837 913
Words(per)
No of Words =980 No of Words =980 No of Words =980
Encryption(seconds) Decryption(seconds) Search(seconds)
Prep Time 0.00071693719397000
0.207021562246983 4 0.00043308478235725
Post Time 0.00137466322242356 0.00530519335312488
Processing Time 0.311217135 0.267862917 0.11645776
Average Time 0.000319525 0.000275013 0.00011956648866203
(per word) 10

54

Appendix M

SWP Encrypted Index

Time(seconds)

0.12

0.1

0.08

o
=)
>

R

0.02

SWP Encrypted Index

—e— Encryption
—a— Decryption

Search

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 368

Words(per)

Prep Time

Post Time
Processing Time

Average Time
(per word)

No of Words =375
Encryption(seconds)

0.00134303890195474
0.0146203045841848

0.07026838

0.000190429

No of Words =375
Decryption(seconds)

0.00293470331958206
0.00652851756178432

0.099963504

0.00027090380453868
10

55

Search(seconds)

0.00061659559702355

7

0.00006335351042911

67

¢
i
i

P

o

[

{
i
t

~

Appendix N Goh Bloom Method

Goh Bloom Method
05
045
04
0.35
'g 03
g ,
8 025 —— Encryption
2 Search
g
& 02
0.15
0.1
0.05
o)
1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369
Words{per)
No of Words =720
Encryption(seconds) Decryption(seconds) Search(seconds)
Prep Time 0.0006430007865151 0.00117076939685086
21
Post Time 31.1854238483722 0.107297944249528
Total Time 0.586498543 0.00014381
Avg Time(per 0.00081799
word)

56

Appendix O

Scheme 1 Method

Scheme 1
02
0.18
0.16
0.14
g 0.12 .
g —e— Encryption
§ 01 —s— Decryption
.,g Search
E 0.08
0.06
0.04
0.02
0 e e : :
1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369
Words(per)
No of Words =375 No of Words =375
Encryption(seconds) Decryption(seconds) Search(seconds)
Prep Time 0.00025845086170335
0.00325021243783013 0.0284156517716004 8
Post Time 0.0366460161159733 0.00567701893048541
Processing Time 0.183642046 0.1246849 0.017614753
Average Time 0.000494992 0.00033607789639980
(per word) 80

57

‘ Appendix P Comparison of Methods

05
. 045

04

f
|
:
L

0.35

Comparison of Methods

—— SWP Linear Scan Encryption
—=— SWP Linear Scan Decryption
SWP Linear Scan Search
—— Goh Bloom Filter Encryption
—— Goh Bloom Filter Decryption
-+— Goh Bloom Filter Search

—— SWP Index Encryption
—— SWHP Index Decryption

[02 — SWP Index Search
{ Scheme 1 Encryption
0.15 Scheme 1 Decryption

i Scheme 1 Search

{ 0.1

’ 0.05
: 0 -
1 80 159 238 317 396 475 554 633 712 791 870 949
Words(per)

Total Time Encryption(seconds) Decryption(seconds) Search(seconds)
* SWP Linear Scan 0.51961 0.27389 0.11689

) Swp Encrypted

: Index 0.08623 0.10943 0.00068

i Goh Bloom Filter 14.57684 0.00315 0.00344

Scheme 1 0.22354 0.15878 0.01787

o

.

£

L

e

L

L.

5
L

58
L

Appendix Q

Comparison of Methods (Encryption)

Time

0.5
0.45
04
0.35
0.3
0.25
0.2
0.15
041
0.08

140 =

W Preparation Time
W Processing Time
O Post Processing Time

SWF SWP Goh New
Linear Encrypted Bloom Method
Scan Index Filter

Method

59

JrSITR—

!
i
|

P

PR

(
b

.

Appendix R Comparison of Methods (Decryption)

Decryption

0.18
0.16
0.14
0.12

0.1

Time

0.08
0.06
0.04
0.02

SWP
Linear
Scan

SWP
Encrypted
Index

Method

Goh Bloom
Filter

MNew
Method

M Preparation Time
B Processing Time
O Post Processing Time

60

Appendix S

Comparison of Methods (Search)

Time

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

Search

M Preparation Time
H Processing Time

New

SWP SWP Goh Bloom
Linear Scan Encrypted Filter Method
index
Method

61

PR

P Appendix T Comparison of Methods (Total Time)

Total Time
140=

JE——

«..«,,m

{

@ Encryption
M Decryption
O Search

Time

—

P)
P

i ot
N

et

. SWP Linear SWP Goh Bloom New
Scan Encrypted Filter Method
Index

Method

T

i
| °

PUBLISHED PAPERS

63

oo saim

PUBLISHED PAPERS

63

pr—
%

s

e ot
18 “

Searchable Public Key Encryption

Lai Kien Mun and Azman Samsudin
Computer Science School, University Science Malaysia,
11800, Penang, Malaysia.

P:(+60)04 6533888 x3617, F:(+60)04 6573335

Email: azman@cs.usm.my

Abstract

Nowadays it is normal for users to store their
confidential information in data storage server such as
email and file servers. These data storage server must
be fully trusted for not revealing the content without
authorization. To ensure the integrity of the stored
data, the data is encrypted before placing it on data
storage server. With file encrypted on data storage
server, it is difficult for user to retrieve certain file
based on their content. Using the traditional methods,
searching on the encrypted files require decrypting
every files. Our proposed solution is to form a
mechanism which allows data storage server to search
Jor specific keyword in the encrypted data and return
only relevant information to the user, while ensuring
that data storage know nothing about the encrypted
content.

1. Introduction

Nowadays, email and file servers play major roles as
data storage servers for organizations and individuals.
To increase information integrity stored on the data
storage servers, the information stored is normally
encrypted. Therefore, only the authorized user can
recovered the encrypted information. However, this
makes it harder for the legitimate user to retrieve
certain information, especially if the information is
stored on a different server. Traditionally, searching for
a piece of information will require decrypting all
related files. For example, suppose Bob encrypts his
email to Alice using Alice’s public key and then send
the encrypted email to Alice. Assume Alice wants her
email gateway to route only those emails with the
keyword ‘urgent’ to her first for priority reading. Since
all the emails are encrypted, the email gateway is not
able to search for the keyword and therefore unable to
make the necessary routing decision. As a result, Alice

need to download all her emails to her local machine,
decrypt them, and then search for the specific keyword
herself.

This method is inefficient and inconvenient because
it requires decrypting all the emails, regardless of the
keyword Alice is looking for. Our ideal solution is to
construct a mechanism which allows the email gateway
or data storage searches for specific keyword in the
encrypted email or encrypted data and return only
relevant ones to the user, while ensures the server
learns nothing about the encrypted content.

In our approach we are focusing on email server
where Bob will encrypt his email using Alice’s public
key before sending the email to the email server. Bob
will first encrypts his email using a session key that is
randomly generated, Esessionke(M). The session key will
then be encrypted using Alice’s public key,
Egpus(sessionkey). Alice is the only person who is able
to decrypt the encrypted session key using her private
key during decryption later. Then, each keyword for
the subject of the email will be encrypted using our
searchable public key encryption (SPKE) approach.
The resulting cipher text will be appended to the
encrypted message M, E, ou.(M). For example, to
send a message M with keywords W, W, ..., Wn, Bob
sends

Ese:siankey(w | | EApub(seSSionkey) I |
SPKE(Ap, W) || ... || SPKE(A s W,)

Where 4,,,; is Alice’s public key. Let assume Alice
wishes to search for the keyword W, she send to the
email gateway a Trapdoor information, T.(W’, K,
where K; refer to temporary session key. Trapdoor
information enables the gateway to identify her
encrypted email through one of the keywords
associated with the message by checking if one of the
keywords is equal to the word W of Alice’s choice.
Given a searchable encryption Wsxpg = SPKE(Apus, W)

and T,, the gateway can test to identify whether W,
= Exs (W’). If Wsxpr # Exs (W), the gateway learns
nothing about W,,. This is a noninteractive searchable
public key encryption mechanism where no
communication between Alice and Bob is required for
the entire process. All that is needed is for Bob to
generate the searchable encryption for W, with the
given Alice’s public key.

2. Related Work

There are some research works that had been done
to solve the problem on searching encrypted data (or
emails) in an untrusted data storage servers [1,2,3]. The
details on some of the solutions are discussed in this
section.

2.1 Practical Techniques for Searches on
Encrypted Data (SSKE)

Song [2], studies the problem of searching data
which initially encrypted with a symmetric key setting.
He proposed an idea on how to support searching
functionality on encrypted data without losing data
confidentially by using, sequential scan on the entire
encrypted documents. A search for a specific keyword
W will return all the positions where /¥ occurred in the
plaintext, as well as possibly some other erroneous
positions [2]. His technique provides secrecy for
encryption and controlled searching where every
keyword searched by untrusted server needs to get
user’s authorization. Song’s technique used
pseudorandom function to generate a sequence of
pseudo random values S, ..., S,, using stream cipher.

There are four main operations in SSKE mechanism
as shown as below:

Key Generation: Pseudorandom function is used to
generate a sequence of pseudorandom values S, ..., S,
using some stream ciphers S,. Alice takes the
pseudorandom bits S, from the n-bits word, ¥, which
appear in position i. To encrypt the word W, Alice sets
T; := {S, Fi (S))} and the result is cipher text C; := W;
@ T:. Nobody can decrypt the cipher text except Alice
because she is the only person who is able to generate
the pseudorandom stream 77, ..., T¢.

Encryption: In Song’s technique, each document is
divided into ‘words’, which depends on the application
domain of interest. In this case, Song assumes that
these ‘words’ have the same length. This can be done
by either pad the shorter ‘words’ or split the longer
‘words’ to get a same equal length for each ‘words’.

Let assume Alice would like to search for a keyword
W but she is not willing to reveal W to the untrusted

server. So, she will encrypt a document which contains
the sequence of words W, ..., W;. Alice encrypts W;
using a deterministic encryption algorithm E with her
secret key (key a) to get a result, E,(W;). After the
encryption phase, Alice has a sequence of E-encryption
words, Eo(W)), ..., E«(W¢). E«(W) which then split into
two parts, E,(W) = {L,, R}, where L; denotes the first »-
m bits of Eo(W,). R; denotes the last m bits of E,(W,).

A standard Pseudo Random Function (PRF), F is
used to derive key K, with a key b and L,, PRF,,, (L)
= K Another pseudorandom bits S; is generated using
a standard Pseudo Random Generator (PRG) based on
the location of W, where S; is n — m bits long, same as
L. Use a PRF with key K, which generated from
PRFiey(L;) to pad with S; to produce stream cipher
SC,. Operate bitwise exclusive-or (XOR) between
E(W) and SC; to produce the cipher text of ;.

Generate Trapdoor: Consider Alice wishes to
search for a specific keyword KW, she sends to the
untrusted server a certain trapdoor information, Ty,
that enables the server to test whether each encrypted
documents contains the keyword KW without knowing
anything else. The trapdoor information of Song’s
technique is set as Thw = {E (KW), Kiu}.

Test: Alice send the K, and E (KW) to the
untrusted server. Server performs sequential scan on
the entire encrypted keywords of the documents, C; ...,
C;. If C;= E(KW), then V'’ = F, (S,). The server will
test if Fiww (S;) == V*, the output ‘yes’ if true and ‘no’
otherwise.

2.2. Secure Indexes for Efficient Searching on
Encrypted Compressed Data

Goh’s paper [3] focuses on building secret keyword
indexes using Bloom filters [4] and pseudorandom
function that allow efficient search on encrypted
compressed documents. Refer to Goh’s definition, a
bloom filters represents a set of S = {s;, ..., s5,} of
elements and is represented by an array of m bits. The
filter uses r independent hash function £, ..., f;, where f
:{0,1}* — [1,m] for 1 <i <r. For each element s € S,
the array bits at positions f;(s), ..., f(s)} are setto 1. A
location can be set to 1 multiple times, but only the first
is noted.

2.3. Searchable Public Key Encryption
(SPKE)

Boneh [1] have studied the problems of searching
on data that is encrypted using public key encryption
system. They had implemented a Searchable Public
Key Encryption mechanism based on the Identity-

Based Encryption scheme. Boneh’s scheme is used as
reference and foundation to devise our own Searchable
Public Key Encryption model.

Searchable Public Key Encryption [1] is defined as
searching for a specific keyword on encrypted data
using a public key system, but learns nothing about the
data and searching keyword. The public key refers to
the fact that most people encrypted their sensitive
documents using public key before sending it to
untrusted server. The motivation of Boneh’s idea was
to allow an email gateway to prioritize encrypted email
by certain keywords. Consider user Bob encrypted his
email before send to Alice with keywords W, ..., W,
and using Alice’s public key, Ay Assume sender
name and all words in email subject line will be used as
keywords. Bob sends the following message:

E o) || SPKE(ALu, W) | ... || SPKE(A, W)

Where M is the email body, and SPKE is an
algorithm. The SPKE values do not reveal the secrecy
of the encrypted message, but enable searching for
specific keywords [1].

Boneh and his team defined four polynomial time
randomized algorithm of a noninteractive public key
searchable encryption schemes. First, Alice generates
her public/private key pair (4,us, 4prv) by executing the
KeyGen algorithm using a security parameter, s. Many
people know her public key and at the same time she
has to keep her private key confidential. Each word W
in the email subject line that send to Alice will be
encrypted using Alice’s public key Ay to produce a
searchable encryption of W’ when running using SPKE
algorithm. The resulting #” then will be appended to
the entire email content which encrypted with standard
encryption algorithm in advance before sending to
email server. To search for any encrypted keyword W,
Alice uses Trapdoor algorithm to generate trapdoor 7.
The email server uses the resulting trapdoor as input to
the Test algorithm to locate all encrypted emails which
contains one of the keywords W specified by Alice.

We call this scheme as noninteractive public key
searchable encryption because there is no
communication or information exchange between the
sender and receiver during the email encryption
process and keyword searching process. Alice is able to
ask the untrusted server to locate all her encrypted
emails that sent by others, which contains specific
keywords by sending a short secret key T;,. The server
then sends the relevant emails to Alice, without
knowing the content of her email.

SPKE is consider secure where attacker is unable to
obtain any information about W or search for a

keyword W’ without going through trapdoor process.
Searchable Public Key Encryption is related to Identity
Based Encryption (IBE) [5]. Boneh and his team had
given three constructions for Searchable Public Key
Encryption (SPKE) based on recent Identity Based
Encryption (IBE). They are using different idea
(bilinear maps, Jacobi symbols and trapdoor
permutation) to construct each of their SPKE model.

3. Methodology
3.1. System Architecture

Our proposed scheme solves the problem of
searching on data (in our case, we refer to email) that is
encrypted using a public key encryption system.
Assume Bob wishes to send a sensitive email to Alice.
Using proposed scheme the searching for the keyword
only focus on each keyword for the subject of the
email. Bob will encrypt his email using a session key
which generated using AES key generator function.
Then, the session key is encrypted using standard
public key encryption with Alice’s public key, 4,. To
send a document M with subject keywords W,, W, ...,
W, the following structure is sent to the server.

EgessioneM) || Easfsessionkey) I
SPKE(A2,W,) || SPKEA2,W) | .. ||
SPKE(A2,, Wy,)

In our scheme, there are two pairs of public-private
keys involved. First pair of public-private key (41, ,
Al) is used to encrypt and decrypt email content, while
second pair of public-private key (42, , A2,) is used for
SPKE keywords in email subject field. Our proposed
scheme will use both declarative and procedural
programming. Declarative programming requires no
instruction and it consists only integer, facts, rules or
relationship where the need to consider when and how
the information (such as integers, facts, rules and
relationship) is being applied do not arise. Database is
an example of declarative programming. As for
procedural programming, instructions are used to
extract and use the data from the database. There are
four main algorithms in our SPKE scheme: Key
Generation, SPKE Encryption, Trapdoor Generation
and Test for Specific Keyword.

3.2. Key Generation

There are 2 pairs of public-private keys involved.
First pair of public-private key (41,, A1,) is used to
encrypt and decrypt email content, while the second

pair key (42,, A2) is used for SPKE keywords in email
subject field. First pair of public-private key can easily
be generated by using RSA algorithm. To generate the
second pair of public-private key, Alice selects a large
prime number p and an element g, which 2 <= g <= p—
2, that generates a cyclic or subgroup of large order.
These values are initially determined and known by
other users. Bob will encrypt sensitive document using
session key that randomly generated and then session
key is encrypted using Alice public key, 41,. Alice is
the only person who can decrypt the session key using
her private key, A1,. We use Diffie-Hellman algorithm
to generate Alice’s another public-private key pair
(42,, A2)) which both key are real number. Alice
chooses her private key 4/, at random from the set {1,

., p-2}. Alice’s public 42, is computed 42, = =
mod p. Private key A1, and A2, only known by Alice
and this key will be used during decryption.

3.3. SPKE Encryption

Suppose Bob wishes to send email which contain M
to Alice with the subject keywords W,, W,, .. W,. Our
SPKE encryption process goes through the following
procedures to produce a searchable encrypted
document;

1. First, a session key, key. .., is generated using

AES key generator function.

2. Email contents, M are encrypted using session
key, E keysession (w .

3. Encrypt session key, keygu.,» with Alice’s
public key, EAly (keysession)

4. Each subject keyword W,, W,, .. W, is hashed
using MD5 hash function. MD5 take an
arbitrarily sized block of data as input, W; (in
our case is word), and produce a 128-bit (16-
bytes) message digest. Each byte of the
resulting messages digest will XORed one
another to produce 8-bit output W’; Then, W,
w’,, .. W', will send to SPKE engine to produce
searchable cipher text, Cws, Cwz, .. Cwn Where
Cyi =(42))" mod p

5. The resulting output from procedure 1, 2 and 4
is padded. To send message with subject
keyword W,, W,, .. W,, Bob send

EAly (keysession) ” E keysession (w “ Cwi ||
Cr2 1l - |l Com

3.4. Trapdoor Generation
If Alice wishes to search for a specific keyword, N

from her encrypted message which store on server. To
enable server locates all related messages to her,

Trapdoor Generation is used to generate a trapdoor Ty
for keyword N. The detail of the process showed as
below.
1. Keyword N is hashed using MD5. An output
128-bit (16-bytes) message digest is produced.
Each byte of the resulting messages digest will
be XORed one another to produce 8-bit output
N
2. Compute for K = (g)¥ mod p (p and ¢ value is
used in Key Generation)
3. Select a session key, s
4. Encrypt output K with session key, E, [(K)!*
mod p]
5. Send E, [(K)'* mod p] and session key, s as the
trapdoor of keyword N to server. Ty = [E;
[(KY** mod p], s]

3.5. Test for Specific Keyword

After receiving trapdoor for keyword 7, = [E,
[(K)AZ" mod p], s], server will perform searching
process. Let Tyy= [4, B] where 4 = E, [(K)"* mod p], B
=s.

1. First, email agent on the server retrieved all

encrypted message, » which sent to Alice.

2. Ifresult is positive (n> 0), each cipher text Cw;
from the particular encrypted message is
selected and then encrypted with B (session key
s).

3. Test if Eg (Cwi) = A. If so, the output is ‘yes’
and relevant document will be downloaded to
Alice; else get the next cipher text Cy; +; and
encrypted with B (session key s). Test if Ej
Cpir)=4.

4. The process is repeated until all encrypted
message that sent to Alice had been scanned
through.

4. Result and Discussion

SPKE encryption time refer to the total time that we
used to encrypt email which contains x words in body
of the email and SPKE process for y keywords in email
subject field. Performance of SPKE encryption time
can be tested in two ways, first on how SPKE
encryption time changes reflect to the increasing of
total words in subject field and second how SPKE
encryption time changes reflect to the increasing of
total words in email contents. For first situation, we
design a test case where we send an email which
contains 100 words but with increasing total keywords
in subject field, from 10, 20, 30, until 80 words (see
Figure 1.).

e

ey

o

SPKE Encryption Time for Email contains 100 words
vs Total Words in Subject Field

4.5

>
IS

SP KE Encryption Time
(second)
s
w

42

10 20 30 40 50 60 70 80
Total words in Subject Field

Figure 1. SPKE Encryption Time for Email That
Contains 100 Words vs Total Words in
Subject Field

Figure 1 shows that for 10 words in Subject filed,
SPKE encryption time is about 4.33 seconds. From 10
words to 80 words in Subject field, only a small time
variance, less than 0.2 second was observed. The above
data proved that our implementation scheme performs
an efficient SPKE encryption, where it took less than 5
seconds for email contains 100 words and time is not
increasing drastically although total words in Subject
field have been increased.

For second situation, we design a test case where we
collect SPKE encryption time by increasing the total
words in email contents from 50 words to 600 words.
We run on 3 different sest of data with 50, 60 and 70
words in Subject field (see Figure 2).

SPKE Encryption Time for Email with 50, 60 and 70 words in
Subject Field vs Total words in Email Contents

—e— 50 words in Subject
—=—60 words in Subject
70 words in Subject

SPKE Enayption Time Eecand

5 100 150 200 250 400 600
Total Words in Email Content

Figure2. SPKE Encryption Time for Email with
50, 60 and 70 Words in Subject Field vs
Total Words in Email Contents

From the above results in graph, we found that our
proposed method which is SPKE Encryption has a
good performance in email encryption time (see Figure
1 and Figure 2) and encrypted keyword searching time
(see Figure 3 and 4). Refer to the results that we
obtained, total time to encrypt an email which contains

600 words with 70 words in Subject field took less than
5 seconds (see Figure 2.).

BEST CASE: SPKE Keyword Searching Time vs Total
Email in inbox

2.88
2.87
2.86 3
- 2.85
2.84
283

—a—SPKE
Searching
Time

second)

Keyword Searching Time

NN
@ ™ m
[sR=]

279
10 20 30 40 50 60 70 80 90 100
Total Emails in Inbox

Figure 3. Best Case: SPKE Keyword Searching
Time vs Total Email in Inbox

WORST CASE: SPKE Keyword Searching Time vs
Total Words in Subject Field for Inbox Contains 50

Emails
3.12
3.10
3.08
3.086 —s—SPKE
Searching
3.04 Time

3.02
3.00
2.98
2.96

Keyword Searching Time
(s econd)

10 20 30 40 50 60 70 80 90 100
Total Words in Subject

Figure 4. Worst Case: SPKE Keyword Searching

Time vs Total Words in Subject Field for
Inbox Contains 50 Emails

In term of keywords searching time, we design a
best case where keyword that we search appears at first
position in e-mail’s subject field by increasing total
emails in Inbox. This design will show the best
performance of searching time. To obtain the worst
searching time, we prepare 50 emails in inbox with the
search keyword appears at the last position in subject
field. Results show that searching time increase slowly
when total words increase in subject field. The result is
as shown on Figure 3 and Figure 4.

5. Conclusion

From the observation, we found that our SPKE
scheme has a good performance in encryption time,
keyword searching time and decryption time. In our
scheme, we used Diffie-Hellman as our foundation
primitive in trapdoor generation for particular

searching keyword. Our trapdoor generation involves
few basic mathematic calculations (power and
modulus) and a hash function which use to create
message digest. Simple mathematic calculation ensures
our SPKE scheme has a better performance time.
Although our scheme has a good performance time,
but Statistical Attack can still happen. If multiple
samples with same key can be collected by attacker, the
encrypted keyword can be analyzed after some
operations. However, Statistical Attack only able to
take out some information of encrypted keyword in e-
email’s subject field. The contents of email is still
secure because it was encrypted using AES encryption
standard. Receiver is the only person who can decrypt
the email contents by using her/his private key. We
conclude that our searchable public key encryption
provides an easy and powerful way for processing
encrypted email which useful in our daily life.

References

[1] Boneh D., Crescenzo, G. D. Ostrovsky, R., and
Persiano, G. (2003). Searchable Public Key

[2] Song D., Wagner D., and Perrig, A. (2000). Practical
Techniques for Searches on Encrypted Data, in Proc.
Of the 2000 IEEE Symposium on Security and Privacy.

[3] Goh, E. J. (2003). Secure Indexes for Efficient
Searching on Encrypted Compressed Data. Cryptology
ePrint Aechive, Report 2003/216.

[4] Bloom, B. (1970). Space/Time Trade-Offs in Hash
Coding With Allowable Errors. Communication of
ACM, 13(7),422-426.

[51 Shamir, A. Identity-based Cryptosystems and Signature
Schemes. CRYPTO 84.

[6] Boneh, D. and Franklin, M. (2003). Identity-based
Encryption from the Weil Pairing. SIAM J. of
Computing, Vol. 32, No. 3, pp. 586-615.

s
!r
in

!?

PN,

o
E)

e

L

Secure Hashing of the NEMO Mobile Router
Communications

Tat Kin Tan and Azman Samsudin
School of Computer Science, Universiti Sains Malaysia
Penang, Malaysia
{tatkin,azman} @cs.usm.my

Abstract—Mobile Router, being part of a network-in-motion
(NEMO), played an integral role in ensuring the continuous
connectivity of communications and services offered to the
entire mobility of the network. The Mobile Router, on top of
being a subset to most of the functionalities of the MIPv6
Mobile Host, offers extra NEMO specific protocols such as the
modification in Binding Updates, Binding Acknowledgement,
Home Agent Discovery Request and Reply messages. While it is
understood that the implementation of IPSec as a standard
security measurement may offer good protection on the
communication path of between Mobile Node and
Correspondent Node, such security dimension is insufficient to
protect the signaling in particularly between the Mobile
Router’s Home Agent Discovery Messages within NEMO
protocol.

Keywords—Hash Message Authentication Codes (HMAC),
Message Digest Algorithm S (MD5), Network Mobility
(NEMO), Secure Hash Algorithm (SHA1)

I. INTRODUCTION

IN the practice of Mobile IPv6 (MIPv6), the
communications between a Mobile Node (MN) and its
Correspondent Node (CN) often involved the participation
of Home Agent (HA) and Access Router (AR) [1].

The MN that is also termed as Mobile Host, will have 2 or
more addresses in particular when the mobility-play comes
into the picture. It is typical that the Mobile Host being
assigned a unique Home Address (HoA) and Care of
Address (CoA) that changes when the MN is roaming from
network to network. Per standard specification [1}{2] when
the MN roamed to a foreign network, the Binding Updates
(BU) plays a vital role in keeping the HA in sync of the
changes of CoA to a particular MN[1]. Figure 1 below
signifies a typical communication scenario between Mobile
Hosts.

When a Mobile Node (termed as MN in MIPv6, and as
Mobile Network Node - MNN in NEMO), leaves its home
link, it maintained communication sessions by firstly sending
BU back to its home link addressing to its Home Agent. This
is done for the fact that, once the MNN reached another
foreign network, the node is given a CoA by the foreign
network service. The node will have to inform HA that now
it has now been given a second address and that the BU
serves the purpose of binding these Home Address and Care
of Address together. The CN on the other hand, has no

This work was supported by Universiti Sains Malaysia.

transparency on the physical location of the MNN. The CN
will still address to MN’s primary address, ie: HoA. When
the packets destined to MNN’s HoA arrived to the home
link, the Home Agent will look at the binding cache list,
mapped that the HoA with newly bounded CoA, and routed
the packet now destined to CoA [1].

Home Link

CN MNN

Legend:
Signals between MR-HA

Communications between MNN-CN ~——=~~-===--

Fig. 1. Typical MR-HA and MNN-CN Interaction

Mobile Routers as an integral feature of NEMO, played
an important role in ensuring the mobility of the network as
these mobile hosts sit between the communication path of
MN and CN. Like in MIPv6 environment, a MR which is in
termed a mobile host, in order to enjoy the full freedom of
roaming, has its own unique HoA so that the Home Agent
will be able to participate the high mobility of the MR. This

1-4244-0000-7/05/$20.00 ©2005 1EEE. 341

also mean that the MR will have CoA being assigned when it
roamed into foreign links [2]. It is important to recognize
one of the main functionalities of MR is as a router that
allocates Care of Addresses to mobile nodes that intended to
attach into it.

In terms of the implementation of MR in NEMO
formation, certain protocol enhancements were announced
such as the changes to the Binding Updates and
Acknowledgement, the transformation of Prefix Table
configuration and the modification of Dynamic Home Agent
Discovery [2). It is required for instance, the introduction of
Mobile Router Flag, ie: the “R” bit into the communication
messages of MR for HA to easily distinguishable of whether
the particular message is from a MR or a MN [2], as both
entities is also a subset of Mobile Host.

While the current Basic NEMO specification {2]
indicating that the authentication between MR and HA must
adopt IPSec implementation [3), it is also highlighted that
the incorporation of IPSec for communications between MR
and HA is insufficient. This is particularly true due to the
fact that the IPSec as a security deployment 1) occurred in
transportation level of NEMO; and 2) the IPSec protection
offered in tunnel mode for NEMO specific traffics tunneling
between CN and MN. An interesting security threads
analysis has been done in [4).

1. PROBLEM STATEMENT

It is also outlined that the IPSec can protect the NEMO
signaling such as the Binding Updates and Binding
Ackowledgement via the use of Authentication Header (AH)
and Encapsulation Security Protocol (ESP). As outlined in
[4), these are done at transportation communications
between MR and HA. Here in this paper, we present a
problem in the scenarios of how malicious MR that sits
between communications can modify communication
messages with the loophole in IPSec and AH.

There are tremendous security concerns being highlighted
when IPSec is being deployed, and in particular when MR is
in search for Home Agent, that is the Dynamic Home Agent
Discovery process (1] (refer to Figure 2 for the protocol
layout). Note that Dynamic Home Agent Discovery process
proposed in MIPv6 proposed stacks has been modified in
NEMO specification to provide router mobility support. As
shown in Figure 2 below, the “R” bit has been proposed so
that the Dynamic Home Agent Discovery messages can be
recognized differently as to whether this message is for a
typical mobile node, or a mobile router.

Typically, in a perfectly possible real-life example, a MN,
or rather in this case a MR, that roamed to a foreign link and
is in search for Home Agent, will send out signals to search
for mobility support. In the NEMO environment, the MR
will engage in the Dynamic Home Agent Discovery
(DHAD) process that, the MR will send a DHAD-Request
by setting a Mobile Router Flag (“R” bit set to 1). This is to
indicate that the MR wanted to discover Home Agents that
support Mobile Routers [2}. This scenario is possible in
reboot or setup stage of a typical mobile host.

Dynamic Home Agent Discovery
Messages
] 1 2 3
©12348679901234567890123456769301
I Type | Code | Checksua t
[} Tdentifier [LY] Resarved 1
! B)
+ * . Reply
. Home Mgent Addresses .
‘ +
|]
° 1 2 2
0123485676901234567890123486789901
L Type [] Length (L1} lvuﬂ'l‘) Requed

1 Homs l;cnt Preference] Bome Agent Lifetims

Fig. 2. Dynamic Home Agent Discovery option defined in NEMO-MIPv6

If a Home Agent receives this DHAD-Request message
that is with the Mobile Router support flag (“R” bit) set to
enable (value = 1), the HA will have to reply by sending a
DHAD-Reply message [1]. Depending on environmental
setup in the Home Link, this DHAD-Reply message that is
sent by Home Agent could contain a list of Home Agent
Addresses that support Mobile Routers. If the Home Agent
does not support Mobile Router, the Mobile Router support
flag (the “R™ bit) will be set to 0. This message is then sent
back to the MR that is in quest of router mobility support.

Whereas, 'in NEMO Threats Analysis drafi (4], it is
believed that there are significant flaws in DHAD message
exchange between MR and HA. We see the issue as in a
bigger problem and can be applied to a more general
message exchange. In simple we think this is a more serious
threat that not only applicable in DHAD process but also
applicable to more message exchange processes in NEMO.
We will use DHAD as the example for demonstration.

A. Attack of the DHAD-Request path

As shown in Figure 3, if a malicious attacker is this
scenario assuming as a MR1, listened to the communications
between MR2 and HA (refer 1o Figure 1 as the possible
setup scenario) intercepted the DHAD-Request message sent
by a legitimate MR2, and modified the Mobile Router
support flag “R” bit from the original request of 1 to 0, the
malicious MR1 then forward the modified message to HA.
When the DHAD-Request message is being received by a
HA, the HA will look at the message, and see the “R” bit
value as disabled (value = 0) and not know that this message
is actually asked for a DHAD-Reply!

Since the HA does not see the R-bit flag being enabled,
the HA will not response to the request according to the
correct behavior. In this example, the HA will interpret that
the message is sent from a mobile host, probably a mobile
node and not from 2 mobile router. This is understood that it
is the MR whom will be setting the “R” bit. The HA will
respond to MR2 in a way that in HA’s reply, HA will not
enable the “R” bit to indicate the acknowledgement of
mobile router support.

342

PR

P—

P,

——— s e,

,_..,.«_
L

L

[?

Li

Li

L&

1} listen to the communications
2) modify “R” status flag to 0
3) sand o HA

Maliclous
MR1

1) Receive

0) CHADR(X=) NOKegr=1), 1) Generate QHADRey
2} React In normal 2) set “R” status flag to 1
mode. 3)sendto HA

HA MR2

Fig. 3. Attacks on DHAD Request

On the other hand, the legitimate MR2 that was requesting
the MR-supports, will be waiting for replies and when it sees
the DHAD reply message responded by HA did not have the
“R” bit enabled, will eventually conclude that there is no
Home Agent that provides Mobile Router supports.

B. Attack of the DHAD-Reply path

Yet another possible scenario of attack by malicious MR1
can be imagined from another way around. Imagine that
MR2 did not attack at the DHAD-Request path but strike at
the DHAD-Reply. The scenario can be demonsirated as in
Figure 4, that MR2 sent DHAD-Request message, and being
received by a Home Agent. The HA realized that the Mobile
Router support flag “R” bit is set in the message, and thus
replied back to MR2 with DHAD-Reply message that,
depend on situation, could contain a list of Home Agents
that support Mobile Routers. In this situation, let us
supposed that the HA maintained a list of Home Agents
Addresses that enabled Mobile Router support. The HA will
then reply a DHAD-Reply message and then enable the
Mobile Router support flag of “R” bit and set to value 1.

Now, imagine the malicious MR1 sits between the
communication path of the DHAD-Reply, the malicious
MR1 can attack by intercepting the DHAD-Reply message,
and set the Mobile Router support flag of “R” bit into 0, and
resent to the legitimate MR2 as shown in Figure 4.

Refer to Figure 1 that such setup is possible and is
practical because MR2 is actually a nested network within
MR1. The impact of doing so is obvious that, when MR2
received the DHAD-Reply message, the MR2 will decipher
in a way that, a DHAD-Reply by HA has indicated that the
“R” bit has been disabled (with value = 0) and translated as
though that there is no Home Agent that provide support to
Mobile Router!

1II. SOLUTION

To ensure the integrity of packet header (or even to a
greater extent, to assumed that the entire packet itself) is not
cormupted or being compromised in the middle of
communication in this NEMO DHAD scenario in particular,
we recommend the NEMO protocol may be revised.

The current NEMO specification has overly rely on IPSec
as the primary security standards and made assumption that
the usage of 1PSec with Authentication Header [1] would

provide authentication for the packets. However and despite
the strength of IPSec with AH, there are still security threats
as discussed in [4].

As such, to counter measure the problem outlined in the
attack of DHAD message as an example, we propose to
introduce to a2 new implementation of hashing algorithm,
targeting into hashing the DHAD protocol in NEMO
situation. It is also worth mention that, the idea of hashing
can be extended beyond the packet header, which is to hash
the entire packet. It is not limiting to the possibility of
applying the same hashing idea into other NEMO
communication area.

HA MR2

1) Generate o(x 0 1} Receive
2) st “R” status fiag to 1\PPALRPR=1, 225} VHNORAR=0)
3) depending on 2) React in normal
environment, add HA DHADReP(R=A, mode.
Addresses
4] send to MR

Mailclous MR1

1) listen to the communications

2) modify “R” status flag to 0

indicating no MR support. Or

modify to delete HA Addresses

3) send to MR

Fig. 4. Attacks on DHAD Reply

By establishing hashing mechanism, the entire
communicated message can be hashed to produce a digest.
The usage of this hashed digest is that, the digest will then
be appended into the DHAD protocol to provide new
dimension of authentication purposes. If the message has
been altered, or corrupted in between a communication, for
instance in DHAD example, the receiver will always be able
to determine that the communication has been compromised
via the re-calculation of hash algorithm. Note that the hash
calculation is different from what has been provided as
packet checksum in Figure 2.

A. Introducing Hashing Mechanisms

It will make no sense to have the data exchanged between
MR and HA ciphered because both parties needed to know
the source and destination address. Based on this
fundamental conception, we propose to use Hashing
Message Authenticate Codes (HMAC) [5] as the alleviation
to the problem as described above.

The motivation of voting for HMAC is simple. This is due
to the fact that HMAC is a simple hashing protocol that
takes any length of data, and a shared secret key that only
the parties-in-<communication know, calculate and capable of
producing a hash value, and at the same time the HMAC do
not encrypt the message.

The idea of including hash codes at the end of the
message as a method to authenticate the message integrity
require minimum changes on the current underlining NEMO
protocol. Our solution only required additional trailing bytes
to be added in the message and the size of extra bytes are
depending on the selection of hashing algorithm.

343

B. Hashing Implementation on MR

It is not unbearable to alter the existing NEMO basic
etiquette for our proposal. Based on the basic rules in
NEMO of engagement, when DHADs are in progress both
MR and HA have to set the “R” bit to 1, as the endorsement
of Mobile Router {2].

As shown in Figure 5, base on our propose circumstances,
when MR2 generated the DHAD Request, assuming the
implementation of HMAC hashing algorithm, the MR will
need to append a 16-byte hashed output into the packet. 16
bytes is needed because of MD5-HMAC. The hash output
can be calculated by taking the entire and original DHAD
Request, termed as DHADRegq for simplicity in our example,
apply HMAC hashing algorithm together with a Secret Key
— scK and the hash output, k7, can be constructed.

0%y
il‘#’(*m’/"—_N'“ﬂ‘m

HA MR2
1) [T 3] 1) Generate
2) Calculate and verify DR
value if = fi= x2 + 2) Calcylate value
TR £1= sk + ©O0NOR

Legend:

£1% HMAC Hash value for co{sosa generated from MR
i1= HMAC Hash value for eo(somg generated from HA
ax = Secret Key

@{¥0Ry - Dynamic Home Agent Discovery Request
©o(roRsp - Dynamic Home Agent Discovery Reply

Fig. 5. Proposed New Dynamic Home Agent Discovery Request

The MR2 will then send DHADReg(h1) message in clear
text format out for communications. We recommend the k7
10 be embedded as part of the DHADReq message. This can
easily be done by introducing an extra field, or to extend the
existing checksum field. HA will detect the DHAD signal as
though in normal communications as in Figure I, this
message will then be sent to its home link and recognized as
a DHAD Request.

HA on the other hand upon receiving the signal, must be
able to authenticate the integrity of the DHAD Request
message.

The process will be done by enhancing the current NEMO
protocol that, when HA detected the DHAD Request, HA
will extract out the DHADReq message, and then apply
HMAC hashing calculation together with the Secret Key,
scK that is only known between HA and MR2. The resulting
hash codes by HA, for clarity in this paper, will be named as
il. HA will then use this i7 1o compare and verify with the
hash code being attached with the DHAD Request message
which is Al. The resulting comparison must be that these 2
sets of hash codes are exactly equivalent.

In any case that these 2 sets of hash codes hl and i] are
dissimilar, the HA will know that the DHAD Request is
either corrupted or being compromised in the middle of the
transmission. Depending on implementation, user may

configure the HA to either alarm MR on the problem and
take necessary reaction, or decided to drop the request
silently.

C. Hashing Implementation on HA

As for the HA, when HA has validated, verified and is
convinced that the authenticity of the DHAD Request, per
the Basic NEMO specification, the HA realized that an “R”
bit was set and hence interpret that the request is asking for
Mobile Router supports. HA will need to react accordingly
by creating the DHAD Reply message [1,2]. Depending on
the situation and environmental setup, the DHAD Reply
message may or may not contain multiple Home Agent
Addresses. Nevertheless, the HA will enable the “R” status
flag within the reply message with the intention so that when
MR2 receives the reply, MR2 will be able to understand that
the reply is indeed indicating for Mobile Router support.

Using the HMAC hashing algorithm again, HA will
compute a hash output, in this case we named as i2, by
applying the Secret Key, scK, that is already shared and only
known amongst MR2 and HA, together with the DHAD
Reply message, DHADRep. HA will then send the
DHADRep(i2) message back to MR2 in clear text format as
can be seen in Figure 6. '

1) Generats i
DIIDRepi2)
OIORy
2) Calcuiats value 2 vomyz, c.k:‘:;: :znfﬂ-
= xX + AD%p «X + ONDep
HA MR

Boan DO v
DNDR(i2)

Legene:

£2% HMAC Hash vatus for 0o{t10nsy genatated from HA
2% HMAC Hash valus for OOMORy gensraied fom MR
X ® Secret

D308y - Dynamie Home Agent Discovery Request
A0ty - Dynemie Home Agert Discevery Reply

Fig. 6. Proposed New Dynamic Home Agent Discovery Reply

Upon receiving the reply, MR2 will extract the DHADRep
message, and compute another hash codes, we named as h2,
by applying HMAC hashing algorithm with the Secret Key,
scK and DHADRep message that it received from HA. MR
will then verify that the 2 sets of hash codes i2 and h2 are
similar and concluded the authenticity of DHADRep
message.

In any case that these 2 sets of hash codes are dissimilar,
the MR will then know that the DHAD Reply message has
either be modified or corrupted in between the transmission.
Depending on implementation, user may configure the MR
to alarm HA on the problem and necessary reaction can be
taken, or choose to drop the packet silently.

D. Hashing Implementation on HA

We proposed to choose MD5-HMAC as the hashing
algorithm to resolving the DHAD problem. We
recommended MD5-HMAC in the preference of the superior
and critical performance of MD5 [5], compared to other
algorithms that offered similar functionalities such as SHA1.

344

e

sy

[P

PRSI

Although SHA1-HMAC appears to be a stronger and more
robust algorithm in terms of cryptographic terminoclogy,
MD5-HMAC offers 16 bytes of hash output data as the
result of MDS-HMAC, while SHA1-HMAC uses 20 bytes of
space in the packet.

It is however, up to the implementer to decide which
deployment to be implemented with respect to performance
of MD5-HMAC versus the robustness of SHA1-HMAC.

E. Secret Key Exchange Method

It is assumed that both MR and HA had already obtained
a shared Secret Key prior to engaging to the DHAD process.
This can be done by enforcing the implementation of Diffie-
Hellman Key Exchange.

Basically in the IPv6 world, the IPv6 subnet prefix
allocation can be managed by ISP or particular organization
[8]. As such, it is not difficult for related enforcement party
to setup authentication server, key server or some kind of
public-key infrastructure. In this case, a Diffie-Hellman Key
Exchange algorithm can be supported between nodes and
organization’s key server. The technical implementation of
Diffie-Hellman Key Exchange can be obtained at [7].

The processes and detailed procedures of how MR and
HA built a shared Secret Key via Diffie-Hellman algorithm
is outside the scope of this paper.

IV. BENEFITS - CRYPTO PROCESSING

Many researchers have been looking for alternative
solutions to replace IPSec as the main security feature
implementations for MIPv6, or in this case, NEMO. In
NEMO Threats draft [4] it had clearly indicated that
although IPSec offer authentication and with Authentication
Header Mechanisms [6), it could not protect the attacks
between MR and HA and example given in DHAD process.
As such, the idea of providing Hashing Algorithm together
with Diffie-Heliman implementation can be extended to not
only the DHAD process but also addressable to all other
communication messages within NEMO.

The current drafts or proposals published especially in
NEMO; do not promote other security implementations
‘because it is already assumed that IPSec is good enough.
Hence, our proposal not only provides a different dimension
but also supply a substitution method for IPSec.

V. DIFFICULTIES - STANDARD WEAKNESSES

Common security threads that applicable in HMAC
hashing algorithm [5,6] as well as NEMO (or rather internet)
are applicable in this solutions. Imagine that, even with the
implementation of HMAC, a malicious MR can still
intercept the packets and attempt to modify or corrupt the
packet content. Such act will result the 2 hash codes being
dissimilar. Either MR or HA will conclude that the packet
has been corrupted or being attacked, resulting packet being
dropped. Such act can stll be considered as another form of
Denial of Service (DoS) attack because the mobile hosts
may no longer be able 10 communicate properly. This
problem however, is still widely regarded as the commeon

implementation problems for most message exchange
protocol in the internet world.

To counter measure the above mentioned difficulty such
as DoS attack especially causing packets to be dropped
silently, we propose a simple solution for ratification. This
can be done, in the event that either mobile host (HA or MR)
receive similar requests/replies over a repeatable number of
time scale, either mobile host will be able to conclude that
an attack has occurred and instead of droping the packet
silently, certain actions can be taken. For instance reactions

“can be taken by either informing enforcement parties such as

Internet Service Provider (ISP), or notify each other that an
attack indeed happened. Sessions can then be terminated or
MR can choose to leave the problematic domain/network.

Another potential difficulty for this proposal will be that it
involved the chances of rewriling of NEMO protocol as a
whole. Extra precautious must be taken since our proposed
solution may influence new ideas or developments on
NEMO in particular the Binding Updates authentications in
both NEMO and MIPv6 protocols.

VI. CONCLUSION

As a conclusion, the existing usage of IPSec together with
Authentication Header (AH) onto Network Mobility for
security measurement undoubtedly could establish extensive
security stronghold against various attacks.

However it has the weaknesses as well. The typical
example will be as highlighted in this paper, the loophole in
Dynamic Host Agent Discovery Messages between Mobile
Routers and Home Agents. This is particularly true when the
IPSec is not protecting on the transportation layer of such
protocol.

As such, in our solution we have proposed to use Hash
Message Authentication Codes as an authentication
protocol. In our example, we opted to use MD5-HMAC as
our solution.

The solution is considered simple to be implemented
because of only needed to enforce extra message which is
the hashed message, to be carried together with the Dynamic
Host Agent Discovery Messages.

REFERENCES

{1} D. Johnson, C. Perkins, J. Arkko, “Mobility Support in IPv6 , draft-
ietf-mobileip-ipv6-24, IETF, June 2003

[2] V. Devarapalli, R. Wakikawa, A. Petrescu. and P. Thubent, "Nemo
Basic Support Protocol” (work in progress). Internet Draft, JETE.
draft-jetf-nemo-basic-support-02.txt. December ’

[31 J. Arkko, V. Devarapalli and F. Dupont. “Using IPsec to Protect
Movbile IPv6 Signaling between Mobile Nodes and Home Agents”.
Internet Draft, IETF. draft-ietf-mobileip-mipv6-ha-ipsec-06.txt (work
in progress). June 2003

[4] A. Petrescu, A. Olivereau, C. Janneteau. and H. Y. Lach, "Threats for
Basic Network Mobility Support (NEMO threats)” Internet Draft,
IETF. Draft-petrescy-nemo-threats-01.txt. January 2004

15} H. Krawczyk, M. Bellare and R. Canetti, "HMAC: Keyed-Hashing
for Message Authentication”, RFC 2104, February 1997

{6] E. Rescorla, “A Survey of Authentication Mechanisms”. Internet
Draft, IETF. Draft-iab-auth-mech-03.txt. March 2004

[7) W. Diffie, M. Hellman “Multiuser Cryptography Techniques”. [EEE
Transactions on Information Theory November 1976

[8] R. Hinden, S. Deering, “IP Version 6 Addressing Architecture”.
RFC2373, July 1998

345

Ed

o s

T

PKI and Secret Key Cryptography Implementation for NEMO Security

Tat Kin Tan and Azman Samsudin
School of Computer Science, Universiti Sains Malaysia,
11800, Penang, Malaysia.

Email{tatkin, azman}@cs.usm.my

Abstract

Conventionally, the security design in MIPv6 and
NEMO had been relying on IPSec that offer
Authentication Header and Security Associations
profiling as the main design. The focuses were
particularly on how to fence off the unauthenticated or
malicious bindings of Binding Updates that open the
doors for various attacks. There also exist some
circulations of internet drafis and specifications in
today’s industry for PKI implementation within the
protocol of MIPv6 and NEMO, with or without the
existence of IPSec because there were humerous
security design inefficiencies been found to date. In our
paper, we will firstly analyst and concentrated on the
communications between Mobile Node, Home Agent
and Correspondent Node MN-HA-CN on the path of
Return Routability (RR) and Route Optimization (RO),
from both MIPv6 and NEMO point of view. We will
then provide our own solutions of implementing the
secure communication of PKI together with the
distribution of Secret Key methodology into the NEMO
environment.

1. Introduction

The Internet Protocol (IP) has evolved into the
recent IPv6, as well as the support of the Mobility of
IPv6 (MIPv6). The evolution of IP had enabled devices
to enjoy mobility without loosing communications.
Access Routers (AR) were needed to provide routing
capability for packets during IPv4 generation, As in the
MIPv6 protocols, the AR plays a part of the access
points for devices such as Mobile Network Node
(MNN), Home Agent (HA) and Correspondent Node
(CN). The AR routes packets between the MNN and
CN. The Home Agent (HA), support the MIPvé6
protocol as the agent that keep tracks on the where

about of the MNN when MNN is roaming out from its
home.

One key technology breakthrough is the
introduction of “Networks that mobile”, hence Network
Mobility (NEMO). The term Mobile Routers (MR),
had since been seen gaining more popularity amongst
its peer (the AR in MIPv6), as the MR supplements the
traditional bulky access point. At present, the MIPv6
supports protocol recommended the use of IPSec and
the associated Encapsulation Security Payload (ESP),
Security Associations (SA) and Authentication Header
(AH) as the anchor features that achieve reasonable
security design and fence off majority security threats
[1]. The NEMO protocol, being a derivative from
MIPv6 support, too, recommended and inherited the
similar security design of using IPSec [2]. Because of
the inheritance, common security design problems that
the IPSec is facing, would also be seen in NEMO. As
such, effective and efficient authentication methods in
NEMO and the protection of communications has
become one of the hot topics, and so as the motivation
of this paper.

To have used IPSec as the core security design into
both MIPv6 and NEMO, numerous questions had
surfaced by either having doubts on the efficiency of
implementing IPSec, or problems being exposed after
employing IPSec, as well as the ease of maintaining
and exchanging keys for cryptographic processing
[71(8].

We intended to provide some analysis on the cutrent
security implementation of MIPv6 and NEMO, and to
also provide alternative solutions to the problems by
introducing Public Key Infrastructure (PKI) together
with Secret Key encryption system. We will also look
into some existing works on conference papers that
provide some excellent design of making the Binding
Updates (BU) and Return Optimization (RO)
operations more robust against redirection aftacks
[11[71[8]. One may argue the introduction of trusted
server, also knows as Certificate Authority (CA), which

is a key component of the success of PKI could be
complicating to the existing protocols. However, we
think otherwise since the trusted servers that distribute
and manage Public Keys for a particular node can in
fact be the Internet Service Provider (ISP) itself.

2. Overview of MIPv6 and NEMO

For MIPv6: In MIPv6 specification [1], a method
knows as Return Routability (RR) is used in associate
with Binding Updates (BU). As illustrated in the
MIPv6 specification, the BUs carry important
information such as the Care of Address (CoA) given
to a MNN when the MNN is not at home, or to provide
prefix subnet delegation onto Mobile Routers of
NEMO. The MNN sent BU to HA to register the
current addressable CoA. HA will send Binding
Acknowledgement to MNN informing the status of the
binding. The RR on the other hand is a process used to
authorize, authenticate, exchange and establish
cryptographic token or keys being used between MNN
and CN [1].

Figure 1 depicts the topology of RR protocol. As
defined in MIPv6 specification [1] and narrated in
[71[8], when MNN roamed out of its own home
network, MNN will need to engage with RR process.
Home Test Init (HoTI) and CareOf Test Init (CoTI) are
the 2 messages being sent to HA and CN respectively
almost simultaneously. When HA receives the HoTI
message, it then routes the message to CN, whereas the
CoTI is sent to CN directly. Within the HoTI and
CoTI, both messages contain the MNN’s Home
Address (HoA), CareOf Address (CoA), Random
Number for HoTI (Rucr) and Random Number for
CoTI (Re,rp respectively and addressed to CN. Both
Ruorr and Reory are being returned by Home Test (HoT)
and CareOf Test (CoT) to assure that MNN gets back
the random values that it sent earlier on.

Upon receiving the HoTI request from MNN, the
CN will use the source address within the HoTI, which
is HoA, together with CN’s secret key and index of
nonce (Nonce,) to calculate a hash value Cy,p; and
Ccott (also termed as cookie) [1]. The key hash values
are calculated per specified in [10]. The index of
Nonce, , and ,, will be used to speed up index searching
at the later stage of the RR protocol. We can see from
the RR protocol, some kind of authentication methods
are introduced that, i.e.: random numbers generated by
MNN, are being passed via 2 different channels. These
random values are then later being authenticated of the
existing of the channels and the most importantly the
routes, by MNN receiving back the CN’s reponses.

MNN HA CN

®

HoTi = {HoA N,

@

< HOT E {CN, HOA, Ryyo7, Cory X

N, Ry
CoTl = {CoA, C, Reord

4) COTHCN, CoA, Royry Coom ¥}

BU= (cDA,G%N HoA, Seqh, T, x, y, MBU)

P BA = (CN, CoA, HoA, Seq#, T, MBAY®)

Legend: KeyHashik,m)
k. = shared secret key

Cyory = KeyHashik,, HoA|Nounce,)

Ceon = KeyHashk, CoAlNounce }

MBU = KeyHash(k,,,, CoA|CN|HoA| Seq#| Tixly,
MBA = KeyHash(k,,, CMCoA|HoA|Seq# T

Figure 1. The Return Routability Protocol.

Leading to the completion of the RR protocol, MNN
is now armed with the necessary information to
construct a Binding Update. This Binding Update will
serve to update CN on the new CoA that the MNN has
been assigned. The BU will also consist of a Sequence
number to protect from replay attacks, Time Stamp that
indicates the life span of the BU, index , and ,, and a
Message Authentication Code (MAC) that determined
to protect the session of the kzy of the BU. The kzy on
the other hand is the resulted production of a hashing
on Cyor1 and Ccorr. When CN received the BU, CN
will need to authenticate the BU by validating the data
such as « and y that informs CN which nonce value in
index to be used, within the BU message and
recomputed the Cuyori and Ccor. In return of the
acknowledging the positive result, CN will return a
Binding Acknowledgement (BA) to MNN. The CN
will form a binding cache of the new CoA to associate
with MNN, so that from this point onwards the MNN is
addressable at the new CoA.

For NEMO: The NEMO Basic Support Protocol
has identified numerous changes to support the
fundamental building blocks for network mobility.
Network Mobility (NEMO) by definition, is a segment
of network or subnet that has mobility and can move
the point of physical attachment, to also achieve
routing capability to the nodes that associate with the
movement. The motivation for NEMO is also to
provide continuous communications as well as session
connectivity for the mobile nodes that attached with the
Mobile Router (MR), even when the MR has changed
to its physical attachment point [2]. The MR is also
essentially a MNN that has routing capability between
its point of attachment, and to also provide subnet
prefixes for connectivity. Since the MR is also
essentially a mobile host with MIPv6 and routing

et o,

o o

4

e

capability, the MR in NEMO will implement Binding
Updates protocol with a bi-directional IP tunneling
between the MR and its HA. RR protocol is thus
applicable in NEMO protocol between MR-HA, when
the MR has changed its point of attachment and being
assigned a new CoA. This RR protocol served the
similar functionality as to update HA of the location of
the MR, and that HA will be able to route the packets
destines to prefix that belongs to MR accurately from
other nodes. The messages sent by MR will include a
“R” bit to flag to HA that the MR is functioning as a
Mobile Router [2].

For our discussions we will assume MR will
function as a router rather than Mobile Host. Nested
Mobility [12] and other NEMO home network models
[11] are not the scope of this paper. As shown in
Figure 2, within the BU sent by MR to HA to updates
the CoA newly acquired by MR, a flag indicated as “R”
will be set to inform HA that the MR would like to
perform as a router. Once BU is succeeded, the HA
will have the aggregation of network prefixes
advertised by MR.

When CN wants to communicate to a node in the
mobile network, the packets are routed to HA, of which
this HA will have the binding cache of the particular
MR prefix. When HA received packets that are
destined to a certain mobile prefix, the HA will know
which MR to forward to. HA will then encapsulate the
packets and tunnel to the MR which is addressable at
the updated CoA. MR on the other hand, will need to
de-capsulate the packet that it received from HA and
route the packet to the node in conventional routing
protocol. From the MNN’s perspective, as shown in
Figure 3, the tunnel in between MR-HA is transparent
to the MNN, which also means MNN’s MIPvé6
protocol has not been changing. The only changes is
the MR that will need to build up multiple IP
Encapsulation tunnelings (IP-to-IP encapsulation) for
multiple communication path [2][3].

3. Problem Statement

The solutions proposed in [7][8] such as the
Extended Certificate-Based Binding Update protocol
(ECBU) are focus on MIPv6 solutions, in suggesting a
Certificate-based BU implementations to cover the
communication paths between CN-MN, CN-HA and
HA-MN scenario. It also suggested some
authentication mechanisms with the likes of Key
Exchange methods within RR. The focus of these
papers are on exposing the security threads of MIPv6
between MN-CN and made assumption that HA/MR
are dumb and bulky device that sits in a server room

with good processing power. Without considering the
improved technology that made Network Mobility,
these assumptions needed to be enhanced and
redesigned of security system as a whole is imminent.

MR HA CN

HoTi= (HaA(,Dc N, R}

CoTi ={CoA, CN, R 7} N

) < D HoTk {CN, HoA, R,z Crory X

e

4) CoT H{CN, CoA, Reypy Coun ¥

BU = {CoA, CN| HoA, Seq#, T, x, y. MBU, R", Mode,

Prefix...} ® >

B BA = {CN, CoA, HoA, Seq#, T, MBA, Prefix ..}

N ®

Legend: KeyHash(k,m)

k= shared secret key

C,on = KeyHash(k,, HoA|Nounce,)

Coor = KeyHash(k,., CoAlNounce,)

MBU = KeyHash(k,, CoA|CNHoA|Seq#{ T|xly)
MBA = KeyHash(k,,, CMICoAHoA|Seq#T)

Figure 2. RR and Binding Updates of NEMO

Thisis a

transparent IP
tunnel,
LANAMN MR HA oN
HoTi= (HoA@c N, R . _
CoTi = {CoA, O, Re,r)
@ — ._ —_ @ HoTk {CN, HoA, Rgp Craomp ¥

GOT HON, CoA, Regry Coom

BU=(COA,@C)N HoA. Seq#, T, x. y. MBUY

BA={EN, CoA, HoA, Seqh, T, MBAY®)

Legend: ReyHashiicm)

k= shared secret key

Con= KeyHash(k,,. HoAlNounce,)

Coun = KeyHashik,, CoA|Nouncs,)

MBU = KeyHash{k,,, COAICN|HoA|Seq#{ Tixiy)
MBA = KeyHash(k,,, CMCoAlHoA|Seqh T)

Figure 3. IP Tunneling between MR-HA

On the other hand in NEMO Threats draft [4] it had
clearly indicating that although IPSec offer
authentication and with various Authentication Header
Mechanisms [6], it could not protect the attacks
between MR and HA. We would also like to point out
that, while protecting the data integrity can be done by
introducing hashing mechanism such as the method of
HMAC [5] introduced in MIPv6 [1], HMAC can only
protect the data from being modified but not offering
the sheltering to secrecy and sensitivity of the data.

The introduction of IPSec, which means the added
overheads of Security Association (SA) for IPSec

users, would consume processing resources on devices
such as PDA. We see the IPSec implementation [3]
would introduce processing overheads due to the
complicated protocol levels and especially when nested
networks in NEMO that would introduce multiple
levels of IP-in-IP encapsulation/de-capsulation that
could even stressing the performance.

We recognized that there is a danger that the BU
data is being compromised with the absent of clear
probably encryption standards being defined in [1][2].
When the BU is communicated in clear text and below
is one of the possible examples and the similar idea had
also been pointed out in [7]{8]. Assuming a situation of
NEMO that 2 MRs are in active communications with
the same CN as shown in Figure 4, an intruder (for
simplicity, here we termed as i-MR) i-MR can listen
and monitor the communications of MRs-CN as well as
the MRs-HAs-CN path. Since the RR and BU
messages can be sent in clear text format, i-MR can
easily extract the information embedded within RR and
BU. As such, the cookies, random numbers and index
are exposed.

When the i-MR obtained Cypy, the i-MR can initiate
a fake CoTI on behalf of MR1 to CN with source as
MR2’s CoA and the CN will reply with CoT message
consisting Ccori . The i-MR can then obtain the Ceort .«
The sessions key kg, computations that required both
Cuom and Cgyrp can be easily calculated. Once the
session key is exposed, the resulted hashing message of
MBU and MBA can easily be altered. i-MR can now
manipulate BU initiation on behalf of the MR1 and the
impact is catastrophic. Important data such as the
routing prefixes can be altered and resulting packets
being routed to wrong MR and impacting entire routing
network, or resetting or disabling the “R” bit flag and
thus denying mobile host to function as a mobile router
etc.

Another simple attack would be on the nonce index
message on RR test. Since the BUs would likely to be
in clear text, a malicious node can simply monitor and
modify some bits in the packet which stored the
information of nonce indexing, of all messages
exchanged. This attack is possible since the nonce
index is not part of the input parameter in hash value at
the very beginning. Refer to Figure 1, step 3 and 4
where the messages are sent in clear text and the values
x and y are not yet a part of the hash input. This attack
will be a form of Denial of Service (DoS) and will lead
to CN discarding the packet when the CN search its
own index database using wrong value and could not
produce a correct hash for verification. We must also
highlight that the RR is not protected. In MIPv6 it is
assumed that the channel between MNN and HA are

protected by IPSec. We will introduce a secret key
encryption which we believe provide better
performance. Based on the assumptions above, we
intended to provide a more practical way of
implementing PKI with the combination of Secret Key
Encryption.

BU1 = {CoA1, CN, HoA1, Seq, T, ,
¥, MBUT, ‘R, Mode, Prefix ..}

MRIMAT \\

CN

BU2={CoA2, CN, HoA2, Seq# T, x, ¥,
MBU2, *R’, Mode, Prefix ...}

FMNN-MR
{Attack)

Figure 4. Scenario Where Malicious MR Attack
4. Solution

We propose to implement Public Key Infrastructure
(PKI) into NEMO system supports. While one may
argue that the intensity of cryptographic public key
calculation may be deferring and dampen the
processing power and resource of the typical portable
devices such as PDA, we think otherwise. There
already exist in the marketplace some commercial
products processors (such as Intel IXP425) that can
offload cryptographic processing to other segment of
the co-processor to enhance system performance.

Our thoughts on PKI based on the fact that the ease
of implementation, and in considering of using the
Internet Service Provider (ISP) as the trusted
Certificate Authority (CA). No Mobile Host, be it
HA/MNN/MR/CN can exist without registered to ISP
for subscription of internet services; hence the problem
of getting a trustable CA can easily be ironed out. Our
recommendation of security design will consist of two
phases. The first phase will be the PKI keys exchange
to establish communications between MR and CN. The
second phase will be using a common secret key for
encryptions and decryptions.

We recommend that, when the Mobile Hosts (in this
case the MRs) boot up, the MHs should have
subscribed to its own ISP and when this action
happened, the ISP acts as CA, certifying and
established trust relationship. The CA will play a role

BA1={CN, CoAt, HoA1, Seq#t, T/
MBAT)

|
1
!
]
MR2HAZ / BA2=(CN, CoA2, HoA2, Seqit T,
MBAZ)

——

p———— p— p— gy peeiceaem e

as Public Key Authority (PKA) that stores, exchanges
and distributes Public-Private Keys of individual MH.
MR (as the Mobile Host in our example) will generate
a pairs of Public Key (Kpp) and Private Key (Kp,), and
update both keys to the CA. We also recommend a
timestamp of the entry being provided to ensure new
pairs of keys to be updated once the lifetime of existing
key pairs has expired. How to manage the keys
between the ISP-PKA-MH is out of the scope of this
paper.

As shown in Figure 5, supposed that the MR in the
active mode and already established the trust
relationship with its CA (ISP) and initiated Public-Key-
Request to CA to obtain CN’s public key. The request
contains the transactions of Request and Timel. This
request is sent in plain text and when the PKA
responded, the message returned by PKA to MR will
be encrypted by the PKA’s private key. The PKA will
insert CN’s public key, Kpcn, together with the
received Request and Timel messages, and encrypt this
return message with PKA’s private key, and send this
message to MR as shown in step 2. To decrypt the
message, the MR will need to apply with CA’s public
key, which already exists in the MR’s cache. MR can
now be sure that the message is originated from PKA
since only applying PKA’s public key can the message
be deciphered.

In Step 3 the MR will then send a message to CN
that contains the identification of MR and a random
number, RNI1, in the attempt to establish
communication. When CN receive the message sent by
MR, CN decrypt the message by applying its Private
Key, Kpwen. CN then checks its database and realized
that CN does not already have the public key of MR.
Similar to how MR obtains CN’s public key, as in step
4, CN initiates the process to obtain MR’s public key
by sending a Public-Key-Request message to PKA,
associated with a time stamp, Time2. The PKA will
reply to the request the same way it responded to MR’s
request, by forming a message that containing MR’s
public key, the Request and the Time2 and encrypts the
message with PKA’s private key, as depicts in step 5.
CN generates a Cookie, CK2, together with the RN1
random number received, and formulate in a message
to be replied to MR. This reply message will then be
encrypted with the newly obtained Public Key of MR,
Kpemr as shown in step 6.

When MR received the encrypted message from
CN, MR decodes the message by applying MR’s own
Private Key. MR will verify that the Random Number
RNI1 being sent earlier has indeed being returned. MR
will also acquire the Cookie CK2 being sent by CN and
store within MR’s cache. The first phase of PKI

exchange has now been completed and both MR and
CN have verified the existence of individual. As
depicted in Figure 5, the MR will formulate the second
phase of communication by preparing a message that
included with CK2 that the MR newly attained from
CN, and generate a Secret Key, Ks.. This Ks. will be
used for secret key encryption and decryption at later
stage. As in step 7, MR will encrypt this message with
its own Private Key on the message to ensure that this
message is indeed originated from MR and can be
verified by applying decryption key of MR’s public
key. MR then further encrypt this already encrypted
message with CN’s public key, to ensure that only CN
can read it when CN apply CN’s own private key for
decryption. The formula is adopted and modified from
[9} and as shown as below:

Expoicny (Expop{ CK2, Kso])

CA -PKA
1Y Request, TMET) E evn (Koo, 4) Request, Time2
Request, ll'lme1 5) EWPKA s
Request,)l'lm
DKPb(FKA) BCN, KPb(PKA) (KPb
<Request, Time1) Reque Tlmez

3) Eqpuon (MR, RNY) ———o

MR (MH/HA/CN/ -

| MN) Do (RN1.CK2)

Dievicny (MR, RN1) CN (MHIH)AIMRI

Epmr (RN, CKZ) /A

7 EKPb [CN)

EwpurfCR2 KD (DKPB(MR)[CN »Kso)

8) Eys, (Message1, Message,,
Message, ,, ..}

Figure 5. Keys exchange and communications
between MR-CA-CN

When CN received the message, CN first decrypts
the outer layer of the message with CN’s private key.
Only CN can decrypt this message successfully since
only CN owns the private key. CN then further
decrypts the inner layer of the message by using MR’s
public key to ensure that this inner layer is indeed
originated from MR. Both the authenticity (CN
verifying the CK2 that it sent earlier on) and data
integrity of message is then verified. Both MR and CN
have a shared secret key that only known by both of
them. The decryption formula is adopted and modified
from [9] and as shown as below:

Dxpvicny (Dxproaary [CK2, Kse)

Once both MR and CN agreed upon a shared secret
key, both will switch to adopt secret key
encryption/decryption methodology.

5. Advantage and Disadvantage

The proposed design provides an alternative
solution to the IPSec as the main security architectures
as suggested in [1] and [2] because our solution
eliminates the hassle of setting up and agreeing SA, AH
and ESP needed in IPSec [3]. Beside that, our solution
does not introduce IP header protocol overhead since
no IP-to-IP tunneling is required. The solution shows
cheaper in processing as compared to Secure RRH in
NEMO draft [13] because it uses a waterfall model of
encryptions when in nested mobility. Furthermore, it
should show significant benefits when implemented in
the nested mobile router scenarios simply because the
flexibility of secret key encryption is applicable at any
level of the communications of BU or even RR. Our
proposed solution even make the BUs as a cipher text
therefore, there is no way for the integrity of the
packets being compromised, unless the secret keys
already known. This is do-able since the encryptions
only happened on payload of the packets and much of
the packets header structure will remain unchanged.

However, the initial setup that involved PKI keys
exchange will need six processing steps and this could
potentially an issue when considering the mobility of
Mobile Host. Nevertheless, once MR and CN
authenticated each other, the six steps required by PKI
will not be needed, until either the next system reboot,
or the fresh communications of MR to new Mobile
Host, the PKI will not be needed again. Secret Key
encryption will take over as subsequent exchange of
communications. Also the implementations of PKI and
Secret Key mechanism may introduce some degree of
structural changes on the MIPv6 and NEMO and even
the possibility of rewriting the protocols.

6. Conclusion

Our proposed security designs making use of two
different encryption methodologies, namely the PKI
and Secret Key Encryption. When these two
methodologies are used together, the common security
threats will be reduced since the PKI methodology
provides solid authentications and as for Secret Key
Encryption will ensure faster and simpler processing
time and yet concretely protect data integrity.

7. References

[1] Johnson, D., Perkins, C., Arkko, J., “Mobility Support in
IPv6”, IETF RFC3775, June 2004

[2] Devarapalli, V., Wakikawa, R., Petrescu, A. and Thubert,
P., "Network Mobility (NEMO) Basic Support Protocol”.
IETF RFC3963. January 2005.

[3] J. Arkko, V. Devarapalli and F. Dupont. Using IPsec to
Protect Mobile IPv6 Signaling between Mobile Nodes
and Home Agents. Internet Draft, IETF. drafi-ietf-
mobileip-mipv6-ha-ipsec-06.txt (work in progress). June
2003.

[4] Petrescu, A., Olivereau, A., Janneteau, C. and Lach H.-Y .,
"Threats for Basic Network Mpbility Support (NEMO
threats)” Internet Drafi, IETF. Drafi-petrescu-
nemo=threats-01.txt. January 2004.

[5] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFC 2104,
February 1997.

[6] Rescorla, E., “A Survey of Authentication Mechanisms”.
Internet Draft, IETF. Draft-iab-auth-mech-03.txt. March
2004

[7]1 Deng, R. H, Zhou, J., Bao, F., “Defending Against
Redirection Attacks in Mobile [P” ACM CC @ ’02
November 2002 ’

[8] Qiu, Y, Zhou, J., Bao, F., “Protecting All Traffics
Channels in Mobile IPv6 Network” WCNC 2004 @ 02
November 2002

[9] Stallings, W., “Cryptography and Network Security”,
Third Edition, Prentice Hall

[10] H. Krawczyk, M. Bellare and R. Canetti, “HMAC:
Keyed-Hashing for Messaging Authentication™, IETF
RFC 2104, February 1997.

[11] P. Thubert,, R. Wakikawa., V. Devarapalli., “NEMO
Home Network Models”. Internet Draft, IETF. Draft-ietf-
nemo-home-networl-models-02.txt. February 2005.

[12] T. Emst, H-Y. Latch., “Network Mobility Support

Terminology”. Internet Draft, IETF. Draft-ietf-nemo-
terminology-02.txt. October 2004.

[13] Zhao, F., Wu, F.S., Jung, S. and Kim, H., “Secure
Reverse Routing Header Solution in NEMO”, Internet
Draft, IETF. Draft-zhao-nemo-rrh-security-00.txt, July
2004.

PR

[

A NEW PROPOSED PROTOCOL OF ROUTER’S CA CERTIFICATE

Wafaa A-H Al-Salihy and Azman Samsudin
School of Computer Science
University Sciences Malaysia
11800 Penang
Malaysia.
wafaa@nrg.cs.usm.my, azman(@cs.usm.my

Abstract- The CA certificate is the certificate that issued
by a Certificate Authority (CA) to an entity that is also
allowable to issue a sub-certificates to the end nodes. In
this paper we present a protocol of CA certificate that
issued to particular routers in the Internet, which in
turn, the router is allowable to issue sub-certificates to
the connected nodes. The format of the CA certificate
and the sub-certificate is extension toe what had
presented in user’s digital certificate. However the
protocol for issuing, renewing and revoking the router’s
CA certificate and the node’s sub-certificates is new and
first time presented in the literature. Analysis of the
security consideration of each part of this protocol is
also presented. By the introduction of this protocol we
are able to avoid the replay attack, man in the middle
attack and denial of service attack (flooding type). denial
of service attack (blocking type) is not considered as this
type of attack is not associated to particular protocol.

I. INTRODUCTION

One of the most interesting solutions in providing
repudiation and authentication for users is digital
certificates [1] and [2]. In the last years digital
certificates have become more and more popular for
securing Internet connection due to the simplicity in
providing authentication and also integrity of data.
For instance, we can find the use of digital certificates
in many applications such as emails [3], e-Commerce
and web browser [4] and [5]. However, in most cases
the digital certificates are issued only to users. With
the advance of the new technology that we are
experiencing today and the rapid development of
digital devices and digital homes, with IPv6 [6] and
Mobile IPv6 protocol [7] deployment, all the devices
are expected to be reached by their IP addresses. This
phenomenon in the future involves a new security
issues which make a new security protocols based on
the concept of certificates is a need.

Two major types of certificates exist: end-entity
certificates and CA4 certificates. End—entity certificates
are issued by a Certificate Authority to an entity that
does not in turn issue certificates to another entity.
While C4 certificates are issued by a Certification
Authority to an entity that is also a Certificate
Authority and so may issue end- entity certificates.
Certificates can be issued to users as well as routers
and nodes. The Certificate for users is described and
used in many ways. However, the certificates of
routers and nodes still remain as a new research field

This paper proposes a new protocol using CA
certificates concept to be designed for routers. This
protocol allows a router to obtain certificates from the
CA and generate an end entity certificate “sub-
certificate” to the nodes connected to the router. This
protocol is particularly adaptable in the context of the
IPv6 and Mobile IPv6 but can also be applied in other
cases such as authenticating and securing routing
protocols or any other protocols used in router layers.

II. ROUTER’S CERTIFICATE

In our proposal, we made few assumptions. First,
the Certificate Authority (CA) that issue certificates to
users should also issue certificate to routers, more
detail description about the creation of certificates and
the format are explained in the next sections. Second
assumption is the CA should integrate with the
Internet Service Provider (ISP). ISP usually assigns a
block of IP addresses to routers and it will be more
suitable if the certificates to routers can be issued
from the same source. Third assumption is the C4
should have world wide coverage and the fourth
assumption is routers are high end routers in term of
speed and memory.

A router certificate issued by a CA is required to be
installed on the particular router. A certificate
authenticated by a CA gives the ability to a router to
generate sub-certificates for authorized nodes. These
sub-certificates are then used when a node
communicate with its peers to proof that the node is a
trusted node.

A. Router Certificate Creation

The administrator of a router who wants to obtain a
certificate will request the certificate from a valid CA.
The CA must verify physically the information given
by the administrator to be sure that the router is not a
fake router. Following the verification, the CA4 will
issue a certificate for the router.

To use a certificate, first the administrator must
install the certificate on a particular router. Then
specifies which MAC addresses of nodes are allowed
to ask for a sub-certificate in an ingress list of the
router. This ingress list serves to restrain the number
of nodes able to obtain a sub-certificate. The MAC
address is used because of two reasons: first it is more
difficult to spoof a MAC address and second a MAC
address will not change in the case of the movement
of mobile node from a network to another. Figure 1
shows the router information at this stage. The

administrator also has to install pre-shared secret keys
SK on the router and on the nodes.

The MAC address and the pre-shared secret keys
are used to authenticate the request of sub-certificate
from a node to the router. This is explained later in
this paper in the sub-certificate generation section.

Router Certificate
Router Private Key

MAC address 1
MAC address n

Secret key 1
Secret key n

Figure 1: Router Information

As mentioned earlier, the information or the
attributes included in the certificate is an extension to
what had been proposed in the user digital certificate,
so instead of the field of User Id the certificate should
include the Router Id. It’s preferable to add another
attribute to show the task of the particular router, for
example in Mobile IPv6 the particular router can
work as a Home Agent. Other attributes like the issuer
of the certificate, the version, serial number and etc
will remain the same.

o Security Consideration of Router Certificate
Creation

There is no security problem during the certificate
generation because all the operations are manually
done. The only consideration is to be careful in
storing the pre-shared secret and the private key on
the router and on the node. Additional care need to be
considered to avoid an attacker having a physical
access to the storage area. This is also true for the
table containing the authorized MAC address on the
router. However, in general, access to routers should
be secured by extra encryption. However the
encryption is not part of the proposed protocol.

B. Router Certificate Renewing

The renewing of a router certificate is automatic. It
needs a few exchanges of messages between the CA
and the router as shown in Figure 2. The renewing has
to be done at least before the expiration of the router
certificate because after this date, the certificate is
considered invalid by the CA. This is done to avoid a
sub-certificate, to stay valid after the router’s CA
certificate has expired. A router verifies a certificate
expiry date by sending regular request to the CA.

Router k!

Figure 2: Router Certificate Renewing

Below are the detail descriptions of each message
found in Figure2:

[1] Rtr — CA: SIGNg, [new Rtr PK, new Rtr PK
Id, old Rtr PK Id, n1] + Rtr Cert

[2] CA — Rtr: SIGN¢, [new Rir Cert, nl]

[3] Rtr — CA: SIGNg, [nl]

[4] CA — Rtr: SIGN¢, [nl]

Message 1: The router sends a certificate renewing
request to the CA. This message includes the router
PK and the PK Id of the new certificate. The message
is signed with the old PV corresponding to the PK of
the old certificate of the router and contains the Id of
this PK. This message also contained a random value
nl to avoid replay attacks on the CA response.

Message 2: Firstly, the CA verifies if the previous
certificate of the router has not been revoked or if the
time-validity window has not been expired. Secondly,
the CA verifies the request message by using the PK
contains in the old certificate of its database,
identified by the Id sent. If the message is correct, the
CA generates a new certificate for the router with the
new PK and the new PK Id. The new certificate is
send to the router in the response with the random
value previously received, and the message is signed
by the CA.

Message 3: The router verifies the C4 signature of
the response message by using the CA’s PK. It also
tests if the random value sent and the random value
received is the same. If the response is correct, the
router saves its new certificate and sends an
acknowledgment containing the random value. This
message is signed with the PV corresponding to the
new certificate.

Message 4: The CA verifies the signature and the
random value, and activates the certificate when it
receives the acknowledgment from the router. The CA
sends a signed message to the router to confirm the
activation of the certificate. When the router receives
the message, the router can start using the new
certificate.

o Security Consideration of Router Certificate
Renewing

All the messages are signed and the data contained
in the messages are not confidential. Man in the
middle attack can’t be mounted on this section of the
protocol because if the attacker uses his own PV then
there will be a conflict with the key that is associated
with the router certificate in Message 1 shown in
Figure 2. Replay attacks are avoided by the random
value sent with the messages. The attacker cannot
possess the certificate because the certificate will
never be active as the attacker cannot sign Message 3.
With this we can conclude that this part of the
protocol is secure.

C. Router Certificate Revocation

If the router’s private key is corrupted, the network
administrator must notify this situation to the CA.
After the revocation, the router needs to obtain a new
certificate. If the router possesses another valid
certificate, it can send a certificate renewing request

v,

st ey

to the C4. Otherwise, the network administrator has
to communicate physically with the C4.

All the sub-certificates issued with a revoked PK
are considered invalid. All the nodes using such sub-
certificate are obliged to renew the sub-certificate
when they receive an invalid certificate error
message.

III. NODE’S SUB-CERTIFICATE

Node’s sub-certificate is the certificate that is
issued by a router to a node upon the node request and
authorization. As mentioned earlier the sub-certificate
is a certificate used by a node to authenticate itself to
other nodes in other networks. The attributes of the
certificate can be similar to the attributes of the
router’s CA certificate but the value of these attributes
will be different e.g. the Node Id, the issuer and the
time of validity. The Node Id must be unique for all
nodes which belong to the same router. This Id is
generated by the router.

The Router 1d and Node Id, coupled together will
uniquely identify a node. The period of validity and
the create time are set by the router and can be
verified only by the router so a router does not need to
be synchronized with other nodes.

A. Node Sub-Certificate Generation

A node which wants to obtain a sub-certificate must
follow the following protocol, as shown in Figure 3.
Before sending the first message, the node must
possess a private key and the corresponding public
key. The way to obtain these keys is not described in
this section. They could be generated offline or pre-
installed on the node. The first key is used to sign the
messages and the second key is used to verify the
signature.

Router

Figure 3: Node Sub-Certificate Generation

Below are the detail descriptions of the messages
showed in Figure 3

[1] Node— Rtr: HASHSK [PKNode + MACNode]
[2] Rtr— Node: Rtr Cert + Node Cert
{3] Node— CA: Ritr Cert +n2
[4] CA— Node: SIGN¢, [CA Id, Router
Prefix, Router PK Id, n2]

Message 1: The node requests the router to generate
a sub-certificate. The message carries the Public Key
(PKyos.) and the MAC address (MACy,q.) of the node.

These pieces of information are concatenated and
encrypted using the pre-shared key.

Message 2: On the router side, the router decrypts
the message using the pre-shared key and verify in its
ingress list if the MAC address of the node is allowed
to obtain a sub-certificate. If the verification is
positive, the router sends the response to the node
which is the router certificate (Rér Cerr) and the node
sub-certificate (Node Cerf), otherwise the router will
send an error message.

Message 3: The node required the CA to know the
validity of the router certificate. It sends the entire
router certificate (Rtr Cerf) to the CA and a random
value n2 to avoid replay attacks on the response of the
CA.

Message 4: On the CA side, the CA will check the
validity of the router certificate. The CA verifies with
its PK if the router certificate is issued by this
particular CA. Then the CA checks if the time-
validity window of the router certificate allows the
router to issue a sub-certificate for the nodes. This
implies that the period of validity of a sub-certificate
can’t exceed the time-validity window of the router
certificate. A router certificate is also not valid if it
has been revoked.

The CA replies with an error message if the
certificate is not valid. Otherwise the CA4 will
positively replies with a message that contain the
identification of the certificate, and the random value
n2 that was carried in the request of validity from the
node. The response is signed by the CA4 and send to
the node.

The node receives and verifies the CA4 response.
The node will verify if the identification of the
certificate and the random value n2 correspond to the
request of validity and if also correspond to the same
router certificate sent in Message 2. If the
verifications fail, the node sends an error message to
the router. Otherwise, the exchange is complete and
the node can begin to use its sub-certificate.

o Security Consideration of the Node Sub-
Certificate Generation

Message 1: The first message is encrypted to avoid
attacker from knowing the content of the message.
Moreover, an attacker is not able to send a request to
the router to obtain a certificate because of the ingress
list. An attacker who able to spoofs the MAC address
of an authorized node is not able to send a request
because the attacker does not posses the SK to encrypt
the message.

Message 2: A fake router can generate a message
using its PK as the PK4 but the response of the true
CA in Message 4 will not be readable and this will
cause the procedure to be aborted. A fake node who
wants to use the node certificate will also fail.

Message 3: In this case, an attacker can either
replaces the router certificate by another certificate or
changes the value of »2. The modified certificate

must be obligatorily emitted by the CA because
otherwise, the checking of the CA’s signature will fail
and the C4 will return an error message. If the
modified certificate is a certificate issued by the C4,
the identification received by the node will be
different from what had been send. The receiving
node will know that there is a problem with the
certificate. On the other hand if the attacker modifies
the random value »n2, the node will not accept the
response message that holds different n2.

Message 4: The message is protected by the
signature of the CA thus the message cannot be
generated by an attacker. It is not possible to replay
an old response of the C4 because the random value
contained in the reply must be the same with one in
the request.

It is possible for an attacker to block the process;
however this type of attack is also possible in all
communication protocols where the attacker is able to
block the transmission of messages. The most
important security measure which the proposed
protocol has is that an attacker can never obtain a
valid sub-certificate which can use for illegal
authentication.

B. Node Sub-Certificate Verification

After a node obtains a certificate, the node can use
the certificate to be authenticated by the
correspondent node as shown in Figure 4:

Router

Figure 4: Node Sub-Certificate Verification

Below are the detail descriptions of the messages
used in Figure 4

[1] Node— Cn: Node Cert
[2] Node— Rtr: HASHSK [initiate verification +n3
+t

[3] Rtr— Cn: SIGNRtr [t} +Rtr Cert + Node Cert +
HASHPKNode [n3]
[4] Cn— Node: Response of verification+
HASHPKNode [n3]

Message 1: The node sends a node sub-certificate
to its correspondent Cn when the node wants to
authenticate itself to that Cn. At the same time the
node sends Message 2 to initiate the router to sends
the information needed by Cn for the authentication

purpose.

Message 2: The node request the router to initiate
the verification process on Cn. The message has
random value »3 which has time-window of t. This
message is encrypted using the pre-shared key for
confidentiality.

Message 3: The router sends the node sub-
certificate with its router certificate, and the random
value #3. The message encrypted with the node’s PK.
This message has time-window of ¢ and is signed by
the router.

Message 4: On the Cn side, first, Cn verifies the
time-window if the time-window has expired or not,
and at the same time check if this router PK is the
same as the router certificate’s PK. If all the checks
are valid then the process will proceed else Cr will
send an error message to the node indicating the error.
Secondly, Cn verifies the router certificate by using
PKq,. If the certificate is valid, the router uses the
router’s PK to verify the node sub-certificate, and at
the same time compare the certificate with the
received certificate from the node. If the comparison
is successful then Cn will send Message 4 as positive
response with the encrypted »3, otherwise the Cn will
sends an error message to the node.

Error message can also be send if the validity
period of the node sub-certificate is not valid
anymore. Also an error message can be send if the
router’s PK cannot open the node sub-certificate or
the time-validity window of the message received has
been expired.

After this phase, the Cr obtains enough insurance
that the node is a trusted node. All messages send by
the node can be signed and authenticated by Cr.

o Security Consideration of the Node Sub-
Certificate Verification

Message 1: There is no potential attack on this
message. The node can send its certificate to any
other node. An attacker can change the certificate but
then the verification done by Cn will produce an error
message.

Message 2: This message is encrypted with the pre-
shared key. Because of the encryption an attacker
cannot decrypt the message or generate another
message. What an attacker can potentially do is
mounting a replay attack by replaying the message
before time ¢ expires. However the value of n3, in this
case, will be different from what the node should
receive in Message 4. Moreover the attacker is not
able to mount the denial of service attack (flooding)
by continue sending this message to the router
because the message will expire soon.

Message 3: In this case, there are two possibilities.
The attacker can either replaces one of the
information such as the router certificate or the node
sub-certificate or the encrypted n3 or replaces all the
information by replaying an old message from the
router. For the first possibility, the modified router
certificate must be obligatorily emitted by the C4
because otherwise, the checking of CA’s signature

sy

=

k.

)

will fail and the C4 will return an error message. If
the modified certificate is a certificate issued by the
CA, the Public Key of the router will not be able to
open the node sub-certificate, hence the verification
will fail. Similar for the node sub-certificate, either
the certificate is not similar to the one sent from the
node or the certificate can’t be verified with router
PK. For the encrypted »3, an attacker is not able to
generate the value. However an attacker can replay
old message but then the old message has a different
value of n3.

For the second possibility, the attacker can replay
the whole message but then the node sub-certificate is
not similar to the one received from the node in
Message 1. If an attacker manages to replay Message
1 and 3, still the attacker is not able to authenticate
itself to other nodes.

Message 4: There should be no potential attack on
this message because #3 should be similar to the one
sent before, otherwise an error will be detected.

C. Renewing and Revocation of Node Sub-
Certificate

A sub-certificate must be renewed if the period of
validity has expired. The renewing should be
activated by the router that issued the node sub-
certificate. The process of renewing a certificate is
exactly the same as the process of generating a new
certificate. The only difference is that Message 1 is
being added, which is sent by the router when the
renewing need to be activated. Figure 5 shows the
message activated by the router.

Router

Figure 5: Node Sub-certificate Renewing
The renewing process is as follows

[1] Rtr— Node: Initiate renew + HASHSK [n4 + t]

{2] Node— Rtr: HASHSK [new PKNode + old
PKNode + MACNode +n4]

[3] Rtr— Node: Rtr Cert + Node Cert

[4] Node— CA: Rtr Cert +n5

[5] CA— Node: SIGNCA [CA 1d, Router Prefix,
Router PK Id, n5]

Message 1: This message initiates the renewing
process of the node sub-certificate. The message
carries random value n4 initiated by a router and
encrypted with the pre-shared key SK.

Message 2: The node replies the router to generate
a sub-certificate. The message carries the new Public
Key (new PKy,), the old PK node, the MAC address
(MACyoqe) of the node and random value n4. This
information is concatenated and encrypted using the
pre-shared key.

Message 3: On the router side, the router decrypted
the message using the pre-shared key then verify in its
ingress list if the MAC address of the node is allowed
to obtain a sub-certificate and whether n4 is similar to
what has been received in Message 2. The router
sends a reply to the node with a message that contains
router certificate (Rtr Certf) and the node sub-
certificate (Node Cert); otherwise the router will send
an error message.

Message 4: The node requests the CA to check the
validity of the router certificate. The node sends the
entire router certificate (Rtr Cert) to the C4 and a
random value #3. The value of n5 is used to avoid
replay attack on the response of the CA.

Message 5: On the CA side, CA checks the validity
of the router certificate. The CA verifies with its PK if
the router certificate is issued by the CA4. Secondly, it
checks if the time-window of router certificate’s
validity allows issuing a sub-cert for nodes. The CA
considers the router is not allowed to issue a node
sub-certificate with a time-window of validity exceed
the time-window of validity of the router certificate
itself. A router certificate is also not valid if it has
been revoked.

CA replies with an error message if the router
certificate is not valid or the CA replies with a
message that contains the identification of the
certificate, which are CA4 Id, the Router Prefix, the
Router PK Id and the random value n5. The random
value n5 should be similar with the one sent in
Message 4. The message is signed by the CA.

The receiving node firstly verifies if the CA4 Id,
Router Prefix, the Router PK Id and the random value
n5 correspond to the request of validity. Secondly, the
node checks the signature of the router certificate
using PKc,4. If the verifications fail, the node sends an
error message to the router. Otherwise, the exchange
is complete and the node can begin to use its new sub-
certificate. If the router’s private key was corrupted,
the network administrator must acknowledge the
situation to the CA. After the revocation, the router
needs to obtain a new certificate.

e Security Consideration of Node Sub-
Certificate Renewing

Message 1: An attacker cannot generate this
message to the node. What the attacker can do is to
replay the message before time ¢ expires. But when
the router receives a reply from the node, the router
will ignore the message because the router does not
send any activation for renewing. The attacker is not
able to mount the denial of service attack (flooding)
by continue sending this message to the node because
the time-window of this message will expire soon.

Message 2: The message is encrypted to avoid an
attacker from knowing the content of the message.
Moreover, an attacker is not able to send a request to
the router to obtain a certificate because of the ingress
list and the value of n4. An attacker who spoofs the
MAC address of an authorized node is not able to send
a request because the attacker doesn’t have the pre-
shared key to encrypt the message.

Message 3: A fake router can generate the message
using its PK as the PK, but the response of the true
CA in Message 4 will not be readable and this will
cause the process to be aborted. A fake node who
wants to use the node certificate will also fail the
certificate verification process.

Message 4: On this message an attacker can either
replace the router certificate by another certificate or
change the value of #5. The modified certificate must
be obligatorily emitted by the CA because otherwise,
the checking of its signature will fail and the C4 will
return an error message. If the modified certificate is a
certificate issued by the CA, the identification
received by the node will be different from what was
sent and the node will detect an error. On the other
hand if the attacker modifies the random value »5, the
node will not accept the response message that holds
different value of n3.

Message 5: The message is protected by the
signature of the CA thus the message cannot be
generated by an attacker. It is not possible to replay
an old response of the CA because the random value
contained in the reply message must be the same with
one in the request message. Regarding the revocation,
the same process can be executed as found on the
router certificate revocation process.

IV. CONCLUSION

In this paper we designed a new protocol for
router’s CA certificate that can be issued by a known
CA which in turn the trusted router is allowed to issue
the node sub-certificate. Our new proposed protocol
requires a few messages and provides strong
authentication and security.

The protocol is securing against man-in-the-middle,
IP spoofing, replay attacks, and the denial of service
type of flooding attack. We do not discuss in this
protocol other attacks such as denial of service type of
blocking, because such attack not only specific to our
protocol. Moreover, our protocol does not transgress
the rule of layers violation because the protocol uses
only information from the network layer (/P layer)
which is the layer implementing by routers. The only
requirement of this protocol is more deployment of
existing CA to provide the required services by the
router’s certificate. CA is preferred to be deployed
and taken by ISP, which has all the information of the
routers in each area. This evolution seems to be
logical and the required services are completely
feasible.

REFERENCES
[1] R. Housley, W. Ford, W. Polk, and D. Solo,
Internet X.509 Public Key Infrastructure

Certificate and CRL Profile, RFC 3280, April
2002, http://www.ietf,org/rfc/rfc2459.txt

[2] A. Nash, W. Duane, C. Joseph, D. Brink, “PKI:
Implementing and Managing E-Security”
(California, U.S.A: McGraw-Hill, 2001).

[3] D. Atkins, W. Stallings, and P. Zimmermann, >
PGP Message Exchange Formats”, RFC 1991,
August 1996, http://www.ietf org/rfc/rfc1991.ixt.

[4] A. O. Freier, P. Karlton, and P. C. Kocher,” The
SSL. Protocol Version 3.0, drafi-freier-ssi-
version3-02.txt, November 1996.

[5]1 T. Dierks and C. Allen, “The TLS Protocol
Version 1.0”, RFC 2246, January 1999,
http://'www.ietf.org/rfc/rfc2246.txt

(6] S. Deering, and R. Hinden,” Internet Protocol,
Version 6 (IPv6) Specification”, RFC 2460,
December 1998,
http.//fwww.ietf.org/rfc/rfc2460 txt

[7] D. Johnson, C. Perkins,& J. Arkko, Mobility
Support in IPv6,IETF, RFC 3775, June 2004,

PR

s,
[

e caan,

it ¥

Efficient Search on Encrypted Data

Lee Thian Aun Joseph, Azman Samsudin, and Bahari Belaton
School of Computer Science, Universiti Sains Malaysia
Penang, Malaysia
{joseph,azman,bahari}@cs.usm.my

Abstract—Encrypted data are being kept in remote server for
purposes like backup and space savings. In order to retrieve
these encrypted data, efficient search methods were proposed
that enable the retrieval of the dataset without leaking too
much information thus ensuring better security and less
information leakage. An improved method is proposed in this
paper for an efficient search on encrypted data which
implements a keyword list in a hash table for each encrypted
document. The keyword is encrypted in such a way that by
providing the file server with required search information
known as “a capability for a certain keyword”, searches can be
performed without Jeaking any information.

Keywords—Search, Encrypted Data, Bloom Filter, Linear
Scan, Encrypted Index.

I. INTRODUCTION

S we advance into the digital age, more and more

information are stored in computers. These data are
becoming much increasingly important as it consists either
personal details, money account or technology researches.
To thwart people from reading the contents of the
information stored, encryption is introduced where the
owner have the ‘key’ that allows the accessing of the
information. These encrypted data is stored in a database for
safekeeping. In order to retrieve the information, the owner
will have to select the correct file and decrypt it. As the
amount of documents grow, it would not be feasible to
decrypt all documents to find the needed document.
Furthermore, if the encrypted data is kept in an untrusted
storage on a different location, it would be unwise to
decrypt the data. Therefore a search method is needed to
find the needed document without decrypting first to ensure
better security and less information leakage[1-6).

Due to this an efficient search method in getting the
correct encrypted document based on certain keyword by
the user is needed. This saves time involving in decrypting
the documents and does not leak any information on the
untrusted storage area.

II. LITERATURE SURVEY

Song, Wagner and Perrig (SWP) [1] presented two
methods of searching encrypted data, which are Linear Scan
and Encrypted Index method. The first method will be
known in this paper as SWP Linear Scan while the later as
SWP Encrypted Index. Other than SWP methods, Goh[2]
presented a method that uses Bloom Filter[3,4] to search on
encrypted data. This method will be known in this paper as
Goh Bloom Filter. '

This work was supported by Universiti Sains Malaysia.

A SWP Linear Scan

In the paper by SWP, four schemes were introduced as
proof of concept for SWP Linear Scan. The four schemes;
Basic Scheme, Controlled Searching, Hidden Searches,
Final Scheme will be visited in detail below.

In this scheme, we have Alice, owner of a set of
documents D represented as d;, ds,..., d, where t represents
the number of documents and Bob the owner of the file
server FS where the documents are to be kept. Before Alice
gives the document to Bob, the document is arranged in a
sequence of words W, W3, ..., W, where I is the number of
words in 2 document. Each of this word will be allocated a
fixed length of n bits. The encrypted document that is sent
to Bob is derived from an XOR function of each word W;
with another fixed length random bit array T; for every
position i in the document. The result of the XOR function
will be the cipher text C;= W;® T,

In order to generate the T; inputs for the XOR function, a
stream of pseudorandom bits S;, S, ..., S; where I is the
number of words in the document will be generated from a
pseudorandom number generator G; with a secret seed.
These pseudorandom bits are n-m bits long. The
pseudorandom bit S; will act as an input for a function F
with a key k; to generate the rest of the m bits. The key k
used here can be same or different for all i position. Both
the combined pseudorandom n-m bits S; and the generated m
bits Fi(S;) will serve as the input of the XOR function T; :=
(Si, Fu(S)) .

With the generated input 7; and word W, Alice can now
XOR every word in the document and sent the list of cipher
text C; to Bob for safekeeping. The same process is done to
every document in set D.

B. Basic Scheme Searching Technique

Now that the documents are with Bob, Alice would like
to find documents that contain a certain word W, that Alice
wants. Here, Alice will send the key k; with the word W,
where Bob can do an XOR function to get the value of T; =
W;® C;where T, :=(L;, R;)and L;= S;; R; = Fi(S). By
using the key k; with the function F, Bob will be able to
check whether Fi(S) equals to R, the m bits of the cipher
text block (Figure 1).

3
]
[]
Kby i
[

Fig. 1. Basic Scheme Searching Technique

1-4244-0000-7/05/$20.00 ©2005 IEEE. 352

C. Controlled Searching Scheme

SWP made improvement by introducing controlled
searching. Here, another function fis used to generate the
value of k. The word W, will be applied to the function
resulting a newly generated key k; = £ W;) (Figure 2). The
value of k’ is kept secret from Bob, and only the generated
value k; is given 1o Bob. By doing this, the value k; is
independent on the position of words and thus Alice does
not need to know the location of the word prior to the
search. The search is performed identical to the Basic
Scheme Searching Technique. The values of £{W) is
dependent on word W and this allow Bob to reveal all the
position i where Woccurs but not other position where W, #
W(Figure 3).

Fig. 2. Controlled Searching Scheme

Can Gty Can
\% \é \é C={cat, and, cat}
Tty =Reany Liewy Tooer ™= Roos Loy Ty = Reay Ly ,
- - = = =F, =
Pm"':«oﬂm)" Reecy = FronfLiwws) = % R«-nka-/ﬂ«n) Beb
W Klo=§(Wa) OpbertodRenmedto Alice 4 Alice

Fig. 3. Controlled Searching Scheme Example

D. Hidden Search Scheme

Both the Basic Scheme and Controlled Search Scheme
allows Bob to know what word Wthat Alice is searching.
To prevent this, hidden searches method is introduced
where the W is first encrypted using a deterministic
algorithm E;. The prerequisite in this method is that the
encryption method E is not allowed to use any randomness
and must rely on Wonly without the knowledge of position
i of the word. An implementation of this scheme is to use
Electronic Codebook mode (ECB) on the word W. For a
longer document, the Cipher Block Chaining Mode (CBC)
can be used where word W is encrypted using a constant
initialization vector (IV) but must be same for every
position.

Now Alice will take every word in the document W, W,
...s W; and encrypt it using the function E with a key k.
This will result in the cipher text X, X, ..., X; where X=
E;A{W). The input for the XOR operation, T; is generated
with a change where encrypted word X is used with
pseudorandom bits S;, resulting T; .= (S;, Fi(S)), k =
%),

E. Final Scheme

The Final Scheme presented by SWP allows the returned
cipher text of the document to be decrypted. The words
other than what Alice searched for cannot be decrypted

because Alice is unable to determine the value of k; = f£i{
E;-{(W)) to generate the R; m bits of T;. Alice will not know
the encrypted word E,{W) for every position i of the
document (Figure 4).

Cillaﬂl | Ci(n'ﬂh) |

Fig. 4. Final Scheme

F. SWP Encrypted Index

SWP proposed the use of an index to speed up the search
for document based on keywords. In this method each
keyword W, is attached to a list of document pointer P
where each pointer in the list p; points to a document d;, p;
- d;. The keywords and pointers form the rows of the index
i(Figure 5).

w; P, > d;
W, P, d;
W; Py d;
W, P, d

Fig. 5. SWP Encrypted Index

The keyword and the document pointers in each list in the
index are first encrypted. Alice will send the encrypted word
E(W;) and E(P;) to Bob for safe keeping. When Alice wants
to retrieve the documents, Alice will send the encrypted
word E(W) and get the returned encrypted list of pointers
E(P). With this, Alice can decrypt the encrypted list and
send another request for the documents. As noted, this
method will take two trips.

To save a trip, Alice can encrypt the list of document
pointer in the index Eg(P)) using key kp = F, (E(W)) related
to the encrypted word. Searching can be done when Alice
reveal { E(W), kp}. Bob will be able to decrypt the encrypted
pointer list Ei(P) and perform another search for the
document on behalf of Alice (Figure 6).

{E(P)|=2
EWwW) HPp) d;
BW) EPy) d;
BW;) BP;) d;
BW) BPy) d,

Fig. 6. SWP Encrypted Index with Encryption

Bob can be prevented from doing a statistical analysis on
the index if the list of pointers is kept in fixed size list where
infrequent keywords are padded up to fixed size with false

353

R,

,“.

e,
. 4

oo
. -

L,

W

documents (document that does not contain the keyword).
Common words are split into few where several search
queries have to be merged and done in parallel.

G. Goh Bloom Filter

Goh introduced the method that uses the bloom filter hash
coding by Bloom. In this method the document D are
represented with a set of words S= {5, 55, ..., 5,} where nis
the number of words chosen by Alice. Each elements of set
S represents an array of m bit. The conversion of the words
in set Sis done by applying r independent hash function h;
to h, where h; :{0,1}* 2> [I,m] for 1< i < r. For each
element in S the array bits are hashed h(s),h(s;). The
location of each distinct bit of the hashed value will set the
bit address in the hash area to 1. Bit addresses with multiple
set are not changed and remain the value of 1.

To determine membership of a word s; in set S the hash
value of the generated word h(s;), ...,h{s;) must all have the
value of 1 in the hash area. Bloom filter sacrifices space and
time for allowable error [3]. These allowable errors are
known as false positives. False positives are words s; that
are not a member of the set S but proven by bloom filter
checks as member. This is due to the bits set by a collection
of other words in set S (Figure 7).

Bloom Filter Population ; Membership Test

B o
1 1 1 v
Bos) . hdsy) _l— LI CD] v
bAs ° bos) 0— h'As) °
bdsi) 1 hdsy) ’l_ h'dsy) 1 v
hds)) ° hds) _l— hds) L v
0 1 1
—
] 1 :
§
5= {sn,s2} ! s5€ S

Fig. 7. Goh Bloom Filter

III. METHODOLOGY

Based on the search methods analyzed earlier, a hybrid
method of all three methods will be proposed. The
motivations behind the creation of this method are:

1) Have a method that allows the owner of the data to find
the required data from a remote and untrusted storage

2) Supports any types of data

3) Allows Alice to choose just the required keywords
describing the data

4) Preserve the keywords where the keywords can be
retrieved if needed

5) Time complexity of O(1) to search for a keyword

6) Easy integration with any existing indexing scheme

7) Good performance time in terms of encryption,
decryption and search

With these objectives in mind, the new search method is
described as below. It also maintains the needed securities
from the methods analyzed earlier.

A Scheme 1

When it comes to having a fast and efficient search,
methods like hash tables and trees are deployed to reduce
the time needed. The common architecture is that each of
them has to build a kind of index representing the data
which can be accessed based on a certain function [7]. This
results in an O(1) time complexity search time for the best
case while the worst case is O(n) time complexity. Scheme
1 will incorporate indexing.

1) Setup / Encryption Phase

In this method, the keywords Wj, W,,..., W; where tis the
number of keywords belonging to a document D will be
organized into a hash table known as HT. The keywords are
allocated to different location of the hash table with the use
of a hash function H:{0,1},, 2 {0,1}, where m represents
number of binary of the word to be hashed and n represent
the number of binary digit for the allocated cells in the hash
table HT.

It would be tempting to just insert the encrypted word
into the location defined by the hash function and thus
creating a complete encrypted index. However, this can be
dangerous as the single encrypted word is prone to analysis
attack where the same encrypted word will record the same
value in different document within the hash table.

Due to this, it would be better to insert a different value in
the hash table. However the value should allow the keyword
to still be searchable. This brings Scheme 1 to utilize the
SWP idea that generates a different value for each encrypted
word. In SWP method, the random number generator allows
this attribute to work. Therefore the creation of the cipher
text C; is done through the XOR product of the encrypted
word E(W) with the random number block T. With
Loc(W,) determining the location in the hash table HT, the
value C;can be stored (Figure 8).

—
Er(W) Loc (W)= H{ Be(W)+ id)
EanrWos) | Eriguor (W)

G(seed) G
:—‘--n—_—m-ﬁ;s --------------- b Loc (W) Gy i«)

l i s=L | F
T nﬁE
| - -

k= Fr(imr‘(wau
| F——

Fig. 8. Generating different cipher text for storing

At this point, the cipher text C; can also be a candidate for
determining the location instead of the encrypted word
Ei(W). The reason cipher text C; is not used is due to the
search phase where it can skip the process of recreating
cipher text C; just to find the location of the encrypted word.

2) Search Phase

Although the setup phase and decryption phase consist of
quite a number of steps, the search phase is still quite
simple. The server will just require either 3 or 4 value
depending on the search mode.

354

a) Single Document Searching Mode

For searching on a single document, the server would
require the document number and location of the cipher text
in the hash table to perform a direct search of O(1) time
complexity (Figure 9).

To check whether the word exists on the server, Bob will
need to do an XOR operation of the encrypted word and
cipher text, generating the other half of S; with function F’
and key k. A comparison of the generated portion and the
existing portion will check if the encrypted word is the one
that is being searched.

| Er(W —
[Esoron) | Bumor | LocW=H(EW+i0

k= Fy {Egetys(Wes))

(id [{ Loc (W) J| Ex(Wy || ki) =

Fig. 9. Single Mode Search

b) Multiple Documents Search Mode

This search is performed when there is a need to find a
certain word in multiple documents or the document number
is unknown. Without the document number, search can still
be performed. This is possible as the hash function just
required the encrypted word value to enable the hash
function H to find Loc. This allows Bob to do the hash
function H on behalf of Alice. The only information needed
by Bob would only be the encrypted word E ;- (W) and key
k.. Bob would need to find the possible location of the word
by doing the hash function H on the given value Ex{W) with
the document id for all hash tables (Figure 10).

t Ev(W

Egety i (Wien) Erighn e Wirigo)

k= Fi{ Egety ' (Wes))
I (ErWjk) —*

Fig. 10. Multi Mode Search

3) Decryption Phase

With two public values known for every cipher text C,
Alice would need to be able to decrypt the whole keyword
list. The location for each C; now plays an important part
here as the value is used to generate the S; for each C;to be
XOR resulting E(W)). Without Loc, cipher text C; cannot be
decrypted. The decryption process is similar to SWP method
where half of the encrypted word will be derived from the
C; allowing the other half to be derived next. Both portion
of the encrypted word would allow decrypting of the word
possible (Figure 11). If the word location W, is available it
can be decrypted with the key dependent word k;

> Loc (W) /1 G 7 7.

/ k =‘ fl;'(Eﬂen) '

Eﬂ’ﬁ) L

| Evin l'

[Evi |

Fig. 11. Decrypting the keywords

IV. DISCUSSION.

The discussion will revolve around the three main
methods studies earlier, which are SWP Linear Scan, SWP
Encrypted Index and Goh Bloom Filter in comparison with
the new proposed method (Scheme 1).

TABLE 1: SUMMARY OF PROPERTIES

SWP Goh Improved
Linear | Encrypted | Bloom New
Scan Index Filter Method
Exact Location 4 x x x/v
Controlled Search v v v v
Variable Keyword =/ v v x
Length
Boolean Queries v v v
Proximity Search v x x /v
Regular Expression 4 v 4 [4
Occurrences v v v v
Data Type Text Any Any
Key Management 3 2 1[4} 1{3]
(nofsubkeys])
Time/Work Cost (Setup) 5r 4r 4 6r/ 8r
(per word / per doc) O(n)/ On)/ O(n)/ O(n)/
O(nm) O(nm) O(nm) Ofnm)
Time/Work Cost 1r 2r Ir Ir
(Deletion) e/ —n f e/ e/
(per word / per doc) O(m) O(nim) O(m) O(m)
Time/Work Cost 2c pid 12r 1-2r
(Search) O(m)/ | o(H/o() | o)/ o)
(per word / per doc) O(nm) | O(n)/O(n) | Of(m) 0(")1)
O(n) :
O(nm)
Space Cost (per word / O(n)/ o)/ o1}/ o(l):
per doc) O(um) O(1+m) O(m) O(m)
O(n)/
O(om) |
Encryption Method Any Any Any Any
Decryption 4 v x v
Precision X x x x/v

Aspects that will be discussed are search properties, data
types supported, space cost; time/work cost, key
management, encryption methods, decryption and precision.
The below table shows-a list of the properties for all four
search method analyzed in this paper (Table 1).

V. PROTOTYPE AND RESULT

The four methods SWP Linear Scan, SWP Encrypted
Index, Goh Bloom Method and Scheme 1 will be studied in

355

i

(Y

. oL o o e o O TS

detail. The prototype for the three methods are coded and
ran on the below computer specifications.

Processor Intel(r) Pentium(r) 4 2.60GHz
Memory 496 DDR RAM
Operating System Windows Server 2003 Standard Edition
Programming C# NET
Language
Encryption Algorithm AES 128 bit key, 128 bit block, 128 bit
iv, CBC mode, PKCS7 padding
Cryptographic Hash HMAC-SHA1
|_Algorithm

The tables below (Table 2, 3, 4, 5) show the result of
executing all the four methods.

A Method Comparison Discussion

Below is the total processing time of each method where
the preparation time, post processing time and processing
time is added up (Table 6). A comparison of time for all
method can be seen from Appendix P, Q, R, S and T.

TABLE 2: SWP LINEAR SCAN

No of Words =980 No of Words =980 No of Words = 980
Eacrypt ds) | Decryps ds) | Searchiseconds)
m 0.207021 562246983 0.000716937193970004 | 0.60043308478235725
Pest Time | 0.00137466322242356 | 0.00530519335312488
Precessin
Time 0311217135 0.267862917 0.11645776
Average
Time
e 0.000319525 0.000275013 0.0001195664886620310
WCE!
TABLE 3: SWP ENCRYPTED INDEX
No of Words=375 No of Words = 375
Encryptisn(seconds) Decrypt N Search 2
Prep Time | 0.00134303890195474 | 0.00293470331958206 0.000616595597023557
Pest Time | 0.0146203045841848 0.00652851756178432
Processing | o oo00ca38 0.099963504 0.000063353510429116
Time 7
Average
Time 0.000190429 0.0002709038045386810
{(per werd)
TABLE 4: GOH BLOOM METHOD
No of Words =375
Enctryption(ds) Decrypti ds) Search(seconds)
Prep Time | 0.00222837799282878 0,00120500443382041
Pest Time 14.136435927054 0.00314664301962447
Processing [438177299 0.00223311
Time
Average
Time 0.001190699
(per word)
TABLE 5: SCHEME | METHOD
No of Words =375 No of Words =375
Encryption(seconds) Decryption{scconds) PR 3)
Prep Time | 0.00325021243783013 | 0.0284156517716004 ‘5"‘°°°2m’°“"°”
Post Time 0.0366460161159733 0.00567701893048541
Processing
o 0.183642046 0.1246849 0.017614753
Average
Time 0.000494992 0.0003360778963998080
{per word)

1) SWP Linear Scan
Has a long processing time where each word of the file is
encrypted and preserved. The search time increases as with
the number of word making this method not suitable for
files with many words

2) SWP Encrypted Index

This method has the fastest processing time. However this
method is not feasible where a single master index manages
all the documents. The reason for this is that any changes to
the documents in the file server whether adding, removing
or editing a single document will affect the whole index
which promotes information leakage. This will also require
a pool of keywords to be maintained.

3) Goh Bloom Filter

Goh Bloom Filter has very high security where the
keywords are hashed and thus irretrievable thru any means.
With each document having a single bloom filter which acts
as an index for searching, this allows a fast search time
without leaking much information. However bloom filter
does not allow preservation of keywords and may prove to
be a problem if there is a need for keyword retrieval.

Usage of bloom filter has a disadvantage where it
requires a large index size to ensure that the false positive
percentage is of acceptable level [2]. With the increase of
index size, it requires a longer processing time for creation
of file buckets and management to hold the index
information. This disadvantage makes this method not
suitable for active file server where changes to document
occur frequently.

TABLE 6: TOTAL PROCESSING TIME

. Encryption(| Decryption(s | Search(seco
Total Time seconds) econds) nds)
SWP Linear | 4 51961 0.27389 0.11689
Scan
SWP
Encrypted 0.08623 0.10943 0.00068
Index
Goh Bloom | 1, 57684 0.00315 0.00344
Filter
Scheme 1 0.22354 0.15878 0.01787
B. Scheme 1

Scheme 1 which is a hybrid of Goh Bloom Filter, SWP
Encrypted Index and SWP Linear Scan allow this method to
inherit good properties/attributes from these methods which
gives an average processing time for setup, decryption and
search.

In term of setup, it only keeps meaningful searchable
keyword like Goh Bloom Filter and SWP Encrypted Index
which gives a much better performance time as well as
support for different file types. This method follows the
same setup model as SWP Linear Scan during its encryption
thus preserving the keywords for retrieval if needed.

Using a single index to document model like Goh Bloom
Filter allows changes to a document does not affect the
security of other files.

356

In term of searching, indexing allows a good search time
however not as fast as Goh Bloom Filter and SWP
Encrypted Index. With an average time, this method is also
suitable for active file server where changes to document
occur frequently.

V1. SUMMARY

Three different encrypted search methods which are SWP
Linear Scan, SWP Encrypted Index and Goh Bloom Filter
were analyzed in detail and evaluated on. From the studies
we find that an efficient search method on encrypted data
has the following attributes: Controlled Search, Variable
Keyword Length, Boolean Queries, Proximity Search,
Regular Expression, Data Type, Key Management, Space
Cost, and Search Cost. Focus has been put into the new
proposed method to incorporating the good attributes listed
above. With the specification of the new proposed method
outlined, the attributes that are incorporated into the new
method are: Controlled search (Able to search on a
particular encrypted data based on given data ID), Boolean
Queries (Process multiple queries and results merge based
on Boolean command), Variable Keyword Length (Partial
support by splitting long words), Regular Expression
(Wildcards in queries are preprocessed as multiple queries),
Data Type (A separate search index created where searches
are performed on the index without any dependencies on the
actual data), Key Management (Utilization of
pseudorandom number generator to create the required sub
keys from a single master key), Space Cost (Each document
has an index with a document) and Search Cost (Uses hash
table for a constant O(1) time complexity access at best).

REFERENCES

[1] Dawn Xiodong Song, David Wagner, Adrian Pemig. Practical
Technique for Searches on Encrypted Data. In proceedings of IEEE
symposium on Security and Privacy, IEEE, 2000

{2] Eu-Jin Goh. How to Search Efficiently on Encrypted Data. October 7,
2003

[3] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communication of the ACM, Vol 13 / Number 7/
pg 422-426, July 1970

[4) Sarang Dharmapurikar. CSE 535: Lecture 5 — String Matching with
Bloom Filters. Washington University, Fall 2003

[5] Dan Boneh, Rafial Ostrovsky, Giovanni Di Crescenzo, Giuseppe
Persiano. Public Key Encryption with Keyword Search. In
proceedings of Eurocrypt 2004, LNCS 3027, pp. 506-522, 2004

{6] Benny Chor, Oded Goldreich, Eyal Kushilevitz, Madhu Sudan.
Private Information Retrieval, April 21 1998

[7] Peter K. Pearson. Fast Hashing of Variable-Length Text Strings.
Communications of the ACM, Vol 33 / Number 6. June 1990

357

st iy

L

R4

oy
[V

Li

W

L

Heuristic Cryptanalysis of Classical and Modermn
Ciphers

Heo Yean Li, Azman Samsudin, and Bahari Belaton
School of Computer Science, Universitj Sains Malaysia
Penang, Malaysia
{yeanli,azman,bahari} @cs.usm.my

Abstract—Block cipher algorithms are commonly used to
secure confidential information in everyday user applications
However, it is quite common for ignorant users to use familiar
dictionary words as their personal passwords. This research
will examine the effects of weakly chosen password-keys on the
secarity of block ciphers. A new hybrid optimization heuristic
cryptanalytic attack (Tabu Search and Genetic Algorithm) is
used to conduct an intelligent key-search attack on classical
ciphers and modern ciphers. The algorithm chosen to
represent modern block ciphers is the Advanced Encryption
Standard (AES) algorithm. AES is an algebraic product cipher
which combines clements of substitution and transposition.
Therefore, the primarily aims of this paper is to study the
effects of an optimization hewristic cryptanalytic attack on
block cipher.

Keywords—Cryptographic Ciphers, Cryptanalysis, and
Henristic Search.

I. INTRODUCTION

IN today’s K-Economy where knowledge means power,
cryptology is an integral part of the study of securing
information and preventing confidential data from falling
into the wrong hands. There are two main types of
cryptographic algorithms: symmetric-key and asymmetric
algorithms. Symmetric-key algorithms can be divided into
two categories: block ciphers and stream ciphers. Figure 1
illustrates the different classifications of Cryptographic
ciphers.

This study is aimed at examining the application of a
hybrid optimization heuristic cryptanalytic attack on weakly
chosen keys in block ciphers; namely classical ciphers and
modern ciphers. A block cipher is a symmetric-key
cryptographic cipher which uses the same key to encrypt as
well as decrypt fixed blocks of a secret message. There are
two categories of classical ciphers: substitution ciphers and
transposition ciphers. Most modern ciphers are product
ciphers, which are extensions of classical ciphers. A product
cipher is a block cipher which is an amalgam of components
made of substitution and transposition ciphers [1].

The Advanced Encryption Standard (AES) {3] is chosen
to represent the group of modern ciphers because it is a
relatively new product cipher. Among all the transposition
ciphers, the Columnar Transposition Cipher which is most
similar to the ShiftRows step of the AES algorithm will be

This work was supported by Universiti Sains Malaysia.

studied as well. Since most modern ciphers combine
polygraphic substitution ciphers with a transposition cipher,
the Hill Cipher is chosen to represent the substitution
ciphers in this study. Furthermore, the Hill Cipher is also
quite similar to the SubBytes step of the AES algorithm.

i

Fig 1. Schematic representation of cryptographic cipher classification
(adapted from {1, 2}).

II. RELATED WORK

A The Substitution Cipher (The Polygraphic Hill Cipher)

A substitution cipher maintains the original position of a
plaintext character in the ciphertext but substitutes the value
of a plaintext with another value [1]. A polygraphic Cipher
substitutes blocks of characters in groups; usually pairs of
characters known as bigrams. The Hill cipher is a
polygraphic substitution which combines and substitutes
groups of letters in a block matrix using linear algebra.
According to Stallings [4], the frequency distribution of
bigrams is more evenly spread in ciphers like the Hill
Cipher as compared to the frequency distribution of
individual letters in a monoalphabetic cipher. This makes
polygraphic more difficult to break the ciphertext. It is
difficult to break the Hill Cipher based on known-ciphertext
only. However the linearity of the Hill Cipher makes it
vulnerable to known-plaintext attacks. Hence, it is usually
combined with a permutation (transposition) component as
found in Modern Ciphers like Feistel Ciphers.

B. The Transposition Cipher (The Colummar

Transposition Cipher)

The transposition cipher rearranges the positions of the
plaintext characters in a different and complex order but
“leaves the value of a character or character string unaltered

1-4244-0000-7/05/$20.00 ©2005 IEEE. 710

when transforming plaintext into Ciphertext” [1]. The
Columnar Transposition Cipher arranges the plaintext in a
square matrix from left to right and from top to bottom. It
depends on the key to determine the number of columns for
the letters in the square. Each character in the key becomes
a column header followed by the plaintext message in
successive rows beneath those headers. Spaces are ignored
or replaced with a “null” value. Finally, the encrypted
message is written in groups according to columns.

The transposition cipher basically rearranges the content
according to a regular pattern. This could be made more
complex by additional shuffling the positions of the
characters.

C. The Modern Cipher (The AES Algorithm)

AES was designed to overcome the weaknesses and flaws
discovered in the design of the Data Encryption Standard
(DES). This improved algorithm was meant to be a
replacement for DES or triple DES. In addition, the
designers of AES claim that the common means of modern
cipher cryptanalytic attacks are ineffective against AES due
to its design structure. “However, compared to the analysis
of DES, the amount of time and the number of
cryptographers devoted to analyzing AES are quite
limited”[4].

Although AES is an algebraic algorithm with a simple
mathematical structure, it does not necessarily mean that it
would be easy to break. Up till now, there are only two main
directions explored in the cryptanalytic efforts on AES: the
algebraic attacks on the S-box and the “Square Attack” on
the key schedule. '

The main trend of cryptanalytic attacks on AES is based
on the Square Attack, which is considered the best known
approach to attacking AES so far. The Square Attack and its
subsequent variants (the Collision Attack, the Partial Sums
Attack and the Related-Key Attack) are unable to break a
full version of AES. The attacks only successful in reducing
the complexity for about 60 — 70% of the number of rounds
required for a complete AES algorithm [8). The designers of
AES have foreseen the possibility of an attack on a few
rounds of AES using the Square Attack and set a very high
minimum limit for the number of encryption rounds
required for each key Jength to safeguard the security of the
algorithm. The best results obtained so far are for 7 out of
10 rounds for 128-bit keys, 8 out of 12 rounds for 192-bit
keys and 9 out of 14 rounds for 256-bit keys [8). This
mysterious factor (which limits the number of rounds
applicable to the attacks — about 60-70%) is holding the
security of AES at the moment.

So far, all the cryptanalytic attacks surveyed are
impractical and insufficient to reduce the complexity of an
attack on a full version of AES. Most of the attacks focus on
the key or the key schedule (with the exception of the XL
and XSL attacks which- focus on the S-box). Although the
designers of AES have made sure that an exhaustive key
search on AES would be impractical, the results from the
variants of Square attacks show that the complexity is
significantly decreased (244 as compared to 272 for a 6-
round attack on all key lengths) if combined with an
intelligent key search attack.

D. Optimization Heuristic Attacks

Some intelligent cryptanalytic brute-force attacks have
been conducted on cipher keys using atificial intelligent
methods like simulated annealing, Genetic Algorithm and
Tabu Search [1, 11-16]. So far, these search algorithms have
only been attempted on classical ciphers like substitution
ciphers [1, 13, 15] and transposition ciphers [1, 16] as
separate entities. Nevertheless, there has yet to be an attempt
to apply these algorithms to a product cipher. A modemn
cipher is a product cipher which is a combination of both
the substitution and transposition cipher. Therefore, the
resuits would be different because of the combination of
dispersion and confusion factors involved. However, based
on the statistics observed [1, 11-16], there is a good chance
that there would be a general improvement in terms of
search complexity as compared to an exhaustive-key search
if these algorithms were applied as intelligent key-search.

According to [6], Genetic Algorithm and Tabu Search
out-performed simulated annealing with positive results.
The results presented in [16] also show that Genetic
Algorithm and Tabu Search perform better against
transposition ciphers (although the authors claim that
simulated annealing is more powerful). Hence, this
experiment will be conducted using a new optimization
heuristic approach. The Genetic Algorithm introduces
diversity into the solution pool whereas the Tabu Search
prevents the same solution from being re-evaluated too
soon.

Genetic Algorithms were first introduced by Holland {17]
to solve problems based on the evolutionary process of gene
reproduction. Figure 2 shows a general overview of the
algorithm which is adapted from its biological counterpart.
The Genetic Algorithm begins with a pool of pre-computed
solutions (gene pool). Two solutions (parent chromosomes)
with the best fitness are selected from the pool to go through
the reproduction process, where specific alleles in both
parents are swapped randomly to produce two new children
with a combination of genes from both parents. Each child
is then evaluated to determine its fitness value. The fittest
child is selected for the next phase known as mutation.
During the mutation phase, specific locations (loci) in the
chosen individual are replaced with randomly chosen valves
to produce an individual with a better fitness value. The new
individual is returned to the solution. pool and the cycle
repeats itself for the successive generations.

The Tabu Search [18] algorithm maintains several Tabu
Lists to represents taboo moves in short-term and long-term
memory. This algorithm is usually problem-specific. An
initial solution is generated and updated with a better
solution at each consecutive iteration. Long-term Tabu Lists
store frequency values while short-term Tabu Lists store
regency values. Aspiration criteria allow taboo moves to be
executed if the overall solution is an improvement.

The structure of an English language word consists of
unigrams, bigrams and trigrams. Studies have been done to
determine the probability of occurrence for characters in the
English language [19]. The study reveals the general order
of frequency for the occurrence of each character and
common bigrams and trigrams. These frequency statistics
can be used to determine the probability of occurrence for

711

oy
*

-

-

e —
-

L

each unigram, bigram and trigram in a potential password
key. Generally, vowels are the most frequently used
character in the English language. A heuristic function
could be created to piece together some of these elements to
form a word, which could ultimately be the correct
password used to form the possible key solution.

. Reproduction
Selection Parents / Crossover
Solution Children
Pool
vNew\ Mutated Mutation
Generation Child

Fig. 2. The Evolutionary Process.

III. PROPOSED DESIGN METHODOLOGY AND FRAMEWORK

A Overall Framework of the Proposed Solution

A known plaintext will be encrypted by the chosen cipher
using a randomly chosen key of reduced length. The
possible key-solution generated by the heuristic function
will be used to decrypt the known-ciphertext. The resulting
plaintext is compared to the original. The fitness value for
the solution is obtained by decrypting the known-ciphertext
and cajculating the percentage of character-location matches
in the original plaintext and the decrypted ciphertext. The
intelligent search for the correct key combination will
continue until a solution match has been found or the closest
match has been found within the constraints of the test
environment.

For uniformity, a general structure of the proposed
methodology was applied on the Hill Cipher, the Columnar
Transposition Cipher and the AES. Following sections
briefly illustrate a general outline of the proposed
methodology for the Tabu Search Algorithm and the
Genetic Algorithm. Each series of tests will consist of three
trial runs of the full test cycle (one full round) to obtain the
average search results of that particular test series.

In order to observe the unique properties and to allow
unbiased comparisons between the three different types of
cipher algorithms, a uniform structure and environment was
used to conduct the tests. The following criteria of the
cipher algorithms were adjusted to prepare a suitable
uniform environment for testing in the limited time frame
given:

1) A uniform intelligent known plaintext-known
ciphertext key-search attack using Tabu Search and
Genetic Algorithm was conducted on all three types of
cipher algorithms,

2) The continuous tests were conducted on Pentium IV
1.50 GHz Computer with 256MB RAM running on a
Linux C platform.

3) Only character-location matches will be considered.
Upper hex matches and lower hex matches will not be
considered for uniformity among cipher algorithms.

4) The plaintext message used for testing is limited to a
standard of 16 bytes (128 bit).

5) The encryption and decryption key will be limited to a
fixed maximum 8-byte English dictionary word.

6) The symmetric key will only contain English syllables
and common dictionary words.

7) Only ASCH characters will be considered. This will
reduce the complexity of the attack to a maximum of
56'® encryptions for an exhaustive key search. (This
would take a maximum of approximately 2.97 x 10®
years of brute-force attack provided 1 million
encryptions are done every microsecond).

8) The Tabu Search Algorithm will search randomly for
possible key solutions from a pool of known words in
the English language. The length of these keywords can
be from 1 character to a maximum of 8 characters.

9) For the Tabu Search test run, an assumption is made
that the plaintext message is encrypted with a
commonly known weak password included in the pool
of passwords.

10) For the purpose of comparison, the Tabu Search test
will be conducted on two separate pools on different
occastons. The first pool contains 2275 common
passwords (8 characters or less) in upper case, Jower
case and title case. The second pool contains 72,504
common dictionary words (8 characters or less) in
lower case. '

11) The Genetic Algorithm will be constrained to search
randomly for possible 8-character key solutions from a
pool of known syllables in the English language. This
pool consists of 27 unigrams, 30 bigrams and 12
trigrams,

12) For the purpose of comparison and uniformity with the
Tabu Search test, the Genetic Algorithm test will be
conducted on two separate pools on different occasions
even though the pool size has no bearing on the
ultimate results. The first pool contains 320 common
passwords (exactly 8 characters) in upper case, Jower
case and title case. The second pool contains 27,020
common dictionary words (exactly 8 characters) in
lower case.

B. Proposed Tabu Search Algorithm Framework

| Tabu Search Apderysbuty o

[‘hhn\.h&nﬂbl

' Maim Poolof ™\ ShorntTenm (Visked) Tabu Liss

E Cammon

' m” D-ef{:pdond
:' Repeat untithe | itk chosen hey
[o ot ¥

1]

»

Fig. 3. One Full Test Round of Tabu Search Algorithm

For the purpose of uniformity, consider the encryption
and decryption process as a black box. A description of a
series of test rounds is as follows (summarized by Figure 3):
1) Run steps 2-5 for the Hill Cipher, the Columnar

Transposition Cipher and the AES Cipher.

2) Initialize two Long-term memory Tabu Lists:
“Eliminated” and “Matches™. Initialize one short-term
memory Tabu List “Visited” of length n/2, where n =
number of solutions attempted from the solution space.

712

Randomly select an encryption key from the main
solution pool and encrypt the known plaintext message.

3) Randomly select a solution (keyword) from the main
solution pool and evaluate the fitness of the solution.
Calculate the fitness value for the solution by
decrypting the known-ciphertext and calculating the
percentage of character-location matches in the original
plaintext with the decrypted ciphertext. Store the fitness
value of the current solution. If the fitness value is zero,
store the solution in the “Eliminated” Long-term
memory Tabu List. If the fitness value is > 0, store the
matched character-location value in the “Matches” List
and store the solution in the “Visited” Short-term Tabu
List.

4) Repeat step 3 and compare the fitness value of the new
solution with the old solution. Repeat steps 3-4 until an
exact match has been found. Identify the total number
of decryptions required to decrypt the full message
correctly.

5) Repeat steps 2-4 twice to produce a test series of 3 test
rounds. Obtain the average number of search keys
required to decrypt the full message correctly.

C. Proposed Genetic Algorithm Framework

For the purpose of uniformity, consider the encryption
and decryption process as a black box. A description of a
series of test rounds is as follows (summarized by Figure 4):
1) Run steps 2-11 for the Hill Cipher, the Columnar
Transposition Cipher and the AES Cipher.

2) Randomly select an encryption key from the main
solution pool and encrypt the known plaintext message.

3) Create a new solution pool from the pool of common
syllables and calculate the fitness value for all the
solutions in the new solution pool by decrypting the
known-ciphertext with each solution key by calculating
the percentage of character-location matches in the
plaintext and the decrypted ciphertext.

Fig. 4. One Full Test Round of Genetic Algorithm

4) Choose two solutions with the best fitness value. Each
solution should minimally be able to recover at least
50% of the original plaintext message.

5) Randomly select a “crossover” point and swap the
contents between the two solution key arrays.

6) Evaluate the fitness for each new child (solution key)
by decrypting the known-ciphertext with each “child”
key and calculating the percentage of charactes-location
matches in the plaintext and the decrypted ciphertext.

7) Choose the “child” solution with the highest fitness
value.

8) Randomly select locations and mutate the selected
locations with arbitrarily chosen unigrams, bigrams and
trigrams from the pool of common syllables.

9) Evaluate the fitness of the solution. If the fitness value
is better than the current fitness value, update the
current fitness value and the best solution variables.

10) Repeat steps 8-9 until the fitness value is 100% or there
is no change in best fitness for a predetermined number
of iterations.

11) Repeat steps 2-10 twice to produce a test series of 3 test
rounds. Obtain the average number of search keys
required to decrypt the full message correctly.

V. IMPLEMENTATION AND RESULTS

A Implementation Problems

The total amount of time needed to get the results for
intelligent key-search attack depends on three major factors:
the probability of random selection, the weakness of the
keyword chosen and the strength of the cipher structure
against a heuristic attack. The Genetic Algorithm proved to
be most efficient on transposition cipher (the Columnar
Transposition Cipher). However, it was also observed that
the Genetic Algorithm produced weak results for the
substitution cipher (the Hill Cipher) and the modern cipher
(the AES product cipher).

After many trial runs, it was discovered that the
processing power of the test environment was insufficient to
completely recover the full plaintext message from these
two ciphers (the Hill Cipher and the AES product cipher).
Nevertheless, the attacks were successfully corducted on
the full-cycle versions of all the cipher algorithms to
produce measurable results.

B. General Findings: Results of Implementation of
Proposed Tabu Search Algorithm Framework

Figure 5 and Figure 6 summarize the results obtained
from 21 test runs (seven series) of the Tabu Search
algorithm on the three types of ciphers (AES, Hill and
Columnar Transposition). Result from Figure S was based
on a pool of 2,275 possible keywords and result for Figure 6
was based on a pool of 72,504 possible keywords. Figure 7
to Figure 9 shows the effectiveness of Tabu Search on the
ciphers based on the pool size comparison.

C. General Findings: Results of Implementation of
Proposed Genetic Algorithm Framework

For uniformity, the Genetic Algorithm is tested using an
encryption key from two pools. However, the pools of
encryption keys only contain keywords which are exacily 8
characters long. The sizes of the two pools are 320 keys and
27,020 keys respectively. Overall, the Genetic Algorithm
produced results from the Columnar Transposition Cipher
fast and efficiently. In fact, the performance against this
cipher was better than the Tabu Search. However, the
Genetic Algorithm generally did not perform well on the
other two ciphers, namely the Hill Cipher and AES. In most
of the cases, the Genetic Algorithm could not produce any
significant positive result from these two ciphers at all.
After one month of continuous test runs, it was discovered
that these two ciphers have a consistent pattern: One test run

713

i —

\ 4

LJ

L

cycle can last up till 8-12 hours before the computer fails
and crashes in the midst of building the initial solution pool.
Consequently, an important point to note is that when
attempts were made to use the Genetic Algorithm on the
Hill Cipher or the AES Cipher, the process almost never
goes beyond the first step of initializing the solution pool
and obtaining two parent key solutions with a minimum
fitness of 50% or more.

Figure 10 summarizes the average results of conducting
10 series of test runs (total of 30 test runs) of the Genetic
Algorithm on the Columnar Transposition Cipher.

Figure 11 illustrates a pattern, showing the relationship
between the total numbers of generations of key solutions
required to be tested before an optimal solution is found vs.
the initial pool size required to obtain two parents with a
minimum fitness of 50%.

PSeben1 B
PSeries IO Serens|
PSS

° 5000 10000 15000 20000 25000
Total Number of Keys Tested (key)
Fig. 5. Comparison of Effectiveness of Tabu Search on Cipher Algorithms:
15 rounds of Tabu Search (Tabulation Based on Total Search Keys
Required in Pool Size of 2,275 words)

—r -r —

0 wimozooooo:oooouaooooosoooooeooooonooooso;oooso;ooo
Total numbes of Keys Tested {key)
Fig. 6. Comparison of Effectivencss of Tabu Search on Cipher Algorithms:

21 Test Rounds of Tabu Search (Tabulation Based on Total Search Keys
Required in Pool Size of 72,504 words)

Search Keys Required (%)
Average Percentage of
9O%
0%
; —— Pook Size:
0% 2275 keywords
so% 18
%t e Poo} Size:
wxf 72504 keyworcs
0%
20%
10%
o%’

1 2 3 4 5 6 7
Test Saries (savies)

Fig. 7. Effectiveness of Tabu Search on Hill Cipher: A Comparison Based
on the Keyword Pool Size

Search Keys Required (%)
Average Percentage of

%)

Fig 8. Effectiveness of Tabu Search on Columnar Transposition Cipher: A
Comparison Based on the Keyword Pool Size

Search Keys Required (%)
Aversge Percentage of
80%
30%
% T
0%
keywords
50% 4 :
% g | —— Pool Size:
30% T2504
20% keywords
10%
% 3
1 2 3 4 [6 7
Test Serivs (sories)

Fig 9. Effectiveness of Tabu Search on AES Cipher : A Comparison
Based on the Keyword Pool Size

D. Discussion of Results

Proposed Tabu Search Algorithm Framework

A trend was observed from the results of this research
that regardless of the strength of the cipher algorithm, the
performance of the Tabu Search attack is generally
improved if the attacker uses a larger pool of known
potential weak password. However, contrary to the
characteristics of the two classical ciphers the security of the
AES cipher proved to be relatively stable and did not vary
too much with the change of Tabu Search keyword pool
size. Although there is a very slight improvement in the
performance of the Tabu Search attack on the AES Cipher
with the increase of the potential keyword solution pool
size, the changes are very minor and almost negligible.

Average No of Keys Tested
{xeys per round)

. 2B EEEE TS

1 Z 3 4 s 6 7 8 % W
TYesi Series {series per J test rounds)

Fig. 10. Effectiveness of Key Search Using Genetic Algorithm on
Columnar Transposition Cipher (10 series — 30 test rounds)

Produced in Required and Mutation
Generstions of Search Keys.
1000
900 § .
Koy taken
800 :;,"""'
700 § keywords
600
(Keys)
500 §
400 8 ® Keytohon
; from Bet of
300 § 21020
keyworde
200 §
100
[} 200 400 600 800 1000
Initkad Sohstion Pool Size {Keys)

714

Fig. 11. Genetic Algorithm on Columnar Transposition Cipher:
Relationship between the Total Generations of Solutions Required and the
Size of the Initial Solution Pool Generated

TABLE2
SUMMARIZED A VERAGE RESULTS FOR THE APPLICATION OF GENETIC
ALGORITHM ON THE AES CIPHER
Fitness Initial Generation | Estimated
(Pereentage | Pool Size | s (keys) Average Time
of Plaintext | (keys) Span to Obtain
Recovered) Best Parent
Solution
{Hours)
Best Case | 25.0% 18580088 | O 4.5
Average 12.5% 385592] 2.5

This is surprising considering the AES cipher is a product
cipher which should contain the properties of both the
substitution and the transposition ciphers. It appears as if the
product cipher has inherited more of the strengths of both
types of classical ciphers but very little of the weaknesses.
However, this proves that although the strength of the AES
product cipher is affected by the strength of the key to a
certain degree, the cipher’s security is relatively stable
because it does not fully depend on the security of the key
alone.

Proposed Genetic Algorithm Framework

Generally, the Genetic Algorithm attack proved to be
most efficient against the transposition cipher. The attack
succeeded in recovering the original plaintext message in
less than an hour for each trial run. Nonetheless, it was also
observed that the Genetic Algorithm attack produced weak
results for the substitution cipher (the Hill Cipher) and the
modern cipher (the AES product cipher).

This is due to the fact that the original plaintext message
may be recovered by using an alternative key with similar
properties as the original encryption key on the transposition
cipher, but never on the substitution cipher or on the product
cipher. This is because of the confusion property inherent in
both the substitution cipher and the product cipher.
Generally, the results suggest that a parallel implementation
of the Genetic Algorithm would produce befter results than
the serial implementation done here.

V. CONCLUSION

The results have shown that the transposition cipher
(Columnar Transposition Cipher) is most susceptible to the
Tabu Search and Genetic Algorithm attacks on weak
passwords. This is followed by the Polygraphic Substitution
Cipher (Hill Cipher), which is also vulnerable to the Tabu
Search afttack as well as the Genetic Algorithm attack, but at
a greater time cost (provided the encryption key is a weakly
chosen password). The product cipher (the AES cipher) is
the most secure among the three. Unlike the other two, the
product cipher is rather stable in terms of its vulnerability
towards the optimization heuristic attacks. Nevertheless, the
product cipher is still susceptible to weak password attacks
by the average hacker or script kiddie using a basic personal
computer system. This is especially obvious from the
average 52% - 53% key search efficiency using the Tabu
Search algorithm. In short, regardless of the strength and
security of a cryptographic cipher, all categories of cipher
algorithms are vulnerable to optimization hevristic attacks

by a basic personal computer if the encryption key is a
weakly chosen password.

REFERENCES

{11 Grandlingh, Werner R. and Van Vuuren, Jan H. Using genetic
Algorithms to Break a Simple Cryptographic Cipher.
http://wwrw.apprendre-en-ligne.net/bibliotheque/genetic.ps

[2] Schneier, Bruce. 1996. Applied Cryptography - Protocols,
Algorithms, and Source Code in C. Second Edition, Canada: John
Wiley & Sons.

[3] National Institute of Standards and Technology, U.S. department of
Commerce. November 26, 2001. Advanced Encryption. -

[41 Stallings, William. 2003. Cryptography and Network Security .
Principles and Practices. Third Edition. New Jersey: Prentice Hall.
Pp.29,37-40,653. :

[S} Standard(AES). FIPS PUB 197. bttp://csrc.nist.gov/publications

[6] Courtois, N.T. and Pierprzy, J. Dec 2002 Cryptanalysis of Block
Ciphers with Overdefined Systems of Equations. Asiacrypt 2002,

[71 Moh, T. September 18, 2002. On the Courtois-Pieprzk’s Attack on
Rijndael. hitp://www.usdsi.com/aes html

[8] Murphy, S. and Robshaw, M.3.B. 2002. Essential Algebraic Structure
within the AES. Crypto 2002.
hitp:/fwww.isg thul.ac.uk/~mrobshaw/rijndael/aes-crypto.pdf

[9) Ferguson, Niels; Kelsey, John; Lucks, Stefan; Schneier, Bruce; Stay,
Mike; Wagner, David and Whiting, Doug. 2000. Improved
Cryptapalysis of Rijndael. Springer-Verlag.
http://www.macfergus.com/pub/ icrijndael pdf

[10] Babbage, Steve. November 11, 2002. Rijndael and other block
ciphers. NESSIE Discussion Forum.
http://www.cosic.esat kuleuven ac.be/nessie/forum/read php?f=18&i=8
2&1-82

[11] Dlanielyan, Edgar. February 2001.AES: Advanced Encryption
Standard is Coming. ; Jogin:, the magazine of USENIX and SAGE
26(1): 62.

[12] Kolodziejezyk, Joanna. 1997. The Application of Genetic Algorithm
in Cryptanalysis of Knapsack Cipher. Proceeding of Eusopean School
on Genetic Algorithms. Eurogen *97.
hitp://ingenet.ulpge.es/functional/eurogenox/
curogen97/contributed/kolodziejczyk/htkolodziejczyk. htm

[13] Spillman, Richard. October 1993. Cryptanalysis of Knapsack Ciphers
using Genetic Algorithms. Cryptologia XVII (4). pp. 367-377.
http/iwww plu.edu/~janssema/ga_solve zip

[14] Clark, Andrew and Dawson, Ed. 1998. Optimisation Heuristics for
the Avtorated Cryptanalysis of Classical Ciphers. Journal of
Combinatorial Mathematics & Combinational Computing. Vol 28.
pp.63-86. hetp://sky fit qut.edu aw/clarka/papers/icmec1998 pdf

[15] Lebedko, O. and Topehy, A. 1998. On Efficiency of Cryptanalysis for
Knapsack Ciphers. Poster Preoceddings of ACDM’98 PEDC.

[16] Dimovski, A. and Gligoroski, D. October 2003. Attacks on the
Transposition Ciphers UsingOptimization Heuristics. Proceedings of
ICEST 2003.
http/fwwwv pmf.ukim. edu. mk/~danilo/ResearchPaper/Crypto/

Attack TranspositionlCEST2003.pdf

{17} Dimovski, A. and Gligoroski, D. March 2003, Attack On the
Polyalphabetic Substitution Cipher Using Genetic Algorithm.
Technical Report, Swiss-Macedonian scientific cooperation trought
SCOPES project.
http://www.pmf.ukim.edu.mk/~danilo/ResearchPapers/Crypto/
AttackPolyalphabeticSCOPES2003 .pdf

[18] Holland, J. 1975. Adaptation in Natural and Artificial Systems. Ann
Arbor, Michigan: University of Michigan Press.

{19] Glover, Fred, Taillard, Eric; and de Werra, Dominique. 1993. A user’s
guide to tabu search. Annals of Operations Rescarch, 41. pp. 3-28.

[20] Crypto’04. 2004. Most Common Letters, Digrams, and Trigrams in
the English Language.
http.//academic.regis.edw/jseil ue

715

PRS———

