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INTERPOLASI MENGEKALKAN KETAKNEGATIFAN 1C  DENGAN 

TRIANGULASI CLOUGH-TOCHER 

 
 
 

ABSTRAK 
 
 

Pada masa kini, visualisasi saintifik merupakan satu cabang penting dalam 

grafik komputer untuk menggambarkan data saintifik dari fenomena tiga dimensi 

secara grafik.  Pembinaan permukaan biasanya melibatkan penjanaan satu set 

tampalan permukaan yang lancar dihubungkan bersama dan permukaan harus 

mewarisi sifat bentuk data tertentu seperti ketaknegatifan. Pembinaan permukaan 

interpolasi 1C  yang mengekalkan ketaknegatifan kepada data berselerak 

dipertimbangkan. Data yang diberikan di triangulasi dengan menggunakan 

triangulasi Delaunay. Permukaan interpolasi kepada data berselerak dibentuk cebis 

demi cebis dengan tampalan segi tiga Bézier. Permukaan dihasilkan menggunakan 

kaedah pemisahan Clough-Tocher. Syarat cukup untuk ketaknegatifan pada ordinat 

Bézier diterbitkan bagi memastikan ketaknegatifan tampalan segi tiga Bézier kubik. 

Set batas bawah baru dicadangkan kepada ordinat Bézier. Nilai awal ordinat Bézier 

ditentukan oleh data yang diberikan dan kecerunan yang dianggarkan pada data. 

Ordinat Bézier akan diubah jika perlu dengan mengubah kecerunan pada data 

supaya ordinat Bézier memenuhi syarat ketaknegatifan. Skema pembinaan 

permukaan yang mengekalkan ketaknegatifan adalah setempat. Ia membina 

permukaan interpolasi 1C  untuk data berselerak tertakluk kepada satah kekangan. 

Beberapa contoh bergrafik dibentangkan. 
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1C  NON-NEGATIVITY PRESERVING INTERPOLATION USING  

CLOUGH-TOCHER TRIANGULATION 

 
 
 

ABSTRACT 
 
 

Nowadays, scientific visualization is an important branch in computer 

graphics to graphically visualize the scientific data from three dimensional 

phenomena. The construction of a surface usually involves generating a set of 

surface patches that smoothly connected together and the surface should inherit 

certain shape property of the data like non-negativity. The construction of non-

negativity preserving 1C  interpolation surface to scattered data is considered. The 

given data is triangulated using Delaunay triangulation. The interpolating surface 

to scattered data is piecewise with Bézier triangular patches. The surfaces are 

produced using the method of Clough-Tocher split. Sufficient non-negativity 

conditions on the Bézier ordinates are derived to ensure the non-negativity of a 

cubic Bézier triangular patch. New set of lower bounds is proposed to the Bézier 

ordinates. The initial values of the Bézier ordinates are determined by the given 

data and the estimated gradients at the data sites. The Bézier ordinates are adjusted 

if necessary by modifying the gradients at the data sites so that the Bézier ordinates 

fulfill the non-negativity conditions. The scheme for constructing the non-

negativity preserving surface is local. It constructs 1C  interpolating surface to 

scattered data subject to constraint plane. Some graphical examples are presented. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background Study 

Scientific visualization is an important branch in computer sciences. It 

plays an important role to graphically illustrate the data in Cartesian space such 

that enable users to analyze, understand and gather important information from the 

data. When the data are visualized there may be some inherent properties in the 

data which one wishes to preserve. Among the shape properties that commonly 

been preserved in the literature, non-negativity preservation is important. A patch 

defined in Cartesian space is said to be non-negative when the z -coordinate of 

every point on the patch is greater or equals to zero.  There are many phenomena 

and physical situations where negative values are not physically meaningful, such 

as rainfall data and concentration of a material.  

The problem of non-negativity preservation had been discussed by a 

number of authors via a variety of methods. In 1991, Goodman et al. discussed 

about the sufficient and necessary condition for the non-negativity preservation of 

univariate cases.  Rational cubic was used in their work.  

Chan and Ong (2001) extended the univariate case and derived a sufficient 

condition of non-negativity for the bivariate case. Sufficient non-negativity 

condition was expressed as lower bounds to the Bézier ordinates of cubic Bézier 
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triangular patch. The resulting surface is a convex combination of three cubic 

Bézier triangular patches. Non-negativity of the surface was preserved by 

adjusting the first order partial derivatives at the data sites. In Piah et al. (2005), a 

local 1C  range restricted scattered data interpolation scheme was presented. In 

that paper, more relaxed lower bound was derived to the Bézier ordinates.  

In 1996, Ong and Wong described a local 1C  scattered data interpolation 

scheme using the side vertex method for interpolation in triangles. Rational cubic 

was used along every line segment joining a vertex to the opposite edge of a 

triangle. The surface curve is subject to the non-negativity conditions given in 

Goodman et al. (1991). 

In 2004, Kong et al. discussed the problem of range restricted scattered 

data interpolation where each domain triangle was split into three mini triangles 

by using the Clough-Tocher splitting method. Lower bounds of non-negativity 

were derived to the Bézier ordinates. Similar approach can be found in Schumaker 

and Speleers (2010) but weaker set of sufficient conditions were introduced in 

order to preserve the non-negativity of the surface.  

Lai and Meile (2015) described a 1C smooth interpolation of non-negative 

data over scattered locations by using bivariate splines. Constrained minimal 

energy method is employed to produce the surface. Classic projected gradient 

algorithm is then used to find the minimizer subject to a simplified non-negative 

constraint.  

In 2018, Karim et al. discussed the positivity preserving interpolation to 

scattered data using cubic Bézier triangular patches. The piecewise triangular 

surface is constructed by blending method via convex combination of three local 
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cubic patches. The positivity of the surface was ensured by imposing positivity 

conditions onto the cubic Bézier ordinates. 

Zhu (2018) described a 2C  positivity preserving interpolation using 

rational splines with local control parameters. The surface is constructed by 

blending rational boundaries using Boolean sum of quintic interpolating operators. 

Sufficient data dependent conditions were also derived on the control parameters 

for generating positivity preserving interpolant to the 3D positive data arranged 

over a rectangular grid.  

Besides preserving the non-negativity property, the surface produced is 

required to be visually smooth. In order to have smooth surface, continuity 

problem is concerned. Parametric continuity 1C  is commonly considered as in the 

papers mentioned above. However Boschiroli et al. (2011) gave a comparative 

study on geometric continuous 𝐺𝐺1 interpolatory schemes.  

 

1.2 Motivation 

In Chan and Ong (2001) and Piah et al. (2005), the interpolating surfaces 

were constructed using blending method. Sufficient conditions for the non-

negativity prescribe lower bounds on the Bézier ordinates. These lower bounds are 

assigned to be negative or zero value. In the works of Kong et al. (2004) as well 

as Schumaker and Speleers (2010), similar lower bounds were imposed onto 

Bézier ordinates. Besides, there are many works in the literature imposed lower 

bound of zero value on the Bézier ordinates. This motivates us whether any other 

lower bound exists for the non-negativity preservation. This brings us to the 

following objectives. 
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1.3 Objective of Study 

In this thesis, we wish to achieve the following objectives: 

(a) to explore new lower bound of non-negativity for a Clough-Tocher 

triangular patch; 

(b) to determine sufficient conditions for adjoining Clough-Tocher 

triangular patches to be 1C  non-negative; 

(c) to build a scheme for generating a 1C  non-negative interpolating surface. 

The word “non-negative” in this thesis is referred to the resultant value is greater 

than or equal to zero. 

 

1.4 Methodology 

In this thesis, non-negativity preserving 1C  interpolation to scattered data 

is considered. Clough-Tocher split is used to construct the interpolating surface. 

The interpolating surface to scattered data is piecewise with cubic Bézier 

triangular patches. Sufficient non-negativity condition on the Bézier ordinate is 

concerned and parametric 1C  continuity is prescribed. The Bézier ordinates are 

determined such that the surface interpolates the given data and the first order 

partial derivatives estimated at the data sites. They may be modified in order to 

obtain a non-negative smooth interpolant. 
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1.5 Structure of Thesis 

This thesis consists of six chapters. Chapter 2 gives preliminary discussion 

on cubic Bézier triangular patch, parametric 1C  continuity for adjoining cubic 

Bézier patches and the construction of Clough-Tocher split. Chapter 3 describes 

the sufficient non-negativity conditions for a Clough-Tocher triangular patch to be 

non-negative. These sufficient conditions prescribe lower bounds to the Bézier 

ordinates. Comparison with the work of Schumaker and Speleers (2010) is also 

presented. Several examples are exhibited.  

In Chapter 4, 1C  non-negativity preserving for two adjacent Clough-

Tocher patches is considered. Additional non-negativity condition will be derived 

in conjunction with the 1C  continuity condition. Some examples are presented to 

support the argument.  

In Chapter 5, a local scheme for C1 non-negativity preserving interpolation 

to scattered data is presented. The domain of the surface is triangulated with 

vertices at the given data. Each triangle is then divided into three mini triangles 

which give three cubic Bézier patches. The Bézier ordinates are modified if 

necessary to obtain non-negative surface. Graphical examples are presented in 

Chapter 6 to illustrate the interpolation scheme. Conclusion is provided at the end 

of this chapter.   
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CHAPTER 2 

 CLOUGH-TOCHER SPLIT 

Bézier triangular patch is a mathematical model that widely used in 

Computer Aided Design due to its useful properties in shape design. In this chapter, 

cubic Bézier triangular patch will be discussed. Continuity between two adjoining 

Bézier patches will also be discussed. It followed by the Clough-Tocher split and 

its constructions.  

 

2.1 Cubic Bézier Triangular Patch 

Consider a triangle T with vertices ( ),i i iV x y= , for 1=i , 2, 3, and the 

barycentric coordinates ( ), ,u v w  such that any point ( ),V x y=  on T can be written 

as  

1 2 3= + +V uV vV wV  ,    

with 1+ + =u v w  and  u , v , 0≥w . A cubic Bézier triangular patch R  on T  is 

defined as (Farin, 1996) 

3
, , , ,

3
, , 0

( , , ) ( , , )
+ + =

≥

= ∑ i j k i j k
i j k
i j k

R u v w d B u v w   (2.1) 

where , ,i j kd  denote the Bézier ordinates of R  and ( )3
, , , ,i j kB u v w  are the Bernstein 

polynomials of degree 3 defined by 

3
, ,

3!( , , ) ! ! != i j k
i j kB u v w u v wi j k  
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with integers i , j , 0≥k  and 3+ + =i j k . The Bézier ordinates , ,i j kd  can be 

presented with the associated Bézier points in Cartesian space by  

1 2 3 1 2 3 , ,, ,3 3 3 3 3 3
 + + + + 
 i j k

j ji k i kx x x y y y d  . 

The distribution of the points is shown in Figure 2.1. A triangular control net is 

obtained when the Bézier points are joined orderly with linear segments, see Figure 

2.2. 

 

 

 

 

 

 

Figure 2.1 Bézier points of a cubic Bézier triangular patch.  

 We should note that the cubic Bézier triangular patch ( , , )R u v w  defined in 

(2.1) is a bivariate function with the coefficients , , ∈i j kd , 3+ + =i j k  and i , j , 

0≥k .  Hence the patch can also be indicated as ( , )R x y . The coefficients , ,i j kd  are 

used to control the shape of the patch. Some important properties of the cubic Bézier 

triangular patch will be described. They are listed as follows. 

 

 

  

    

  

  

        

3,0,0d   
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a) Endpoint interpolation 

The cubic Bézier triangular patch ( , , )R u v w  interpolates the Bézier 

ordinates at the three vertices of T, that is  

1 3,0,0( ) =R V d ,  

2 0,3,0( ) =R V d , 

3 0,0,3( ) =R V d .  (2.2) 

b) Cubic Bézier boundary curve 

The boundary curves of the patch R  are absolutely determined by the 

boundary Bézier ordinates , ,i j kd , where at least one of the i , j , or k  is zero. For 

instance, the boundary curve along the edge 2 3V V  (i.e. 0=u ) is  

3
, , , ,

3
, , 0

(0, , ) (0, , )
+ + =

≥

= ∑ i j k i j k
i j k
i j k

R v w d B v w   

3
3

0, ,3
0

3! (1 )!(3 )!
j j

j j
j

d v vj j
−

−
=

= −
−∑ ,  0 1≤ ≤v . 
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Figure 2.2 Cubic Bézier patch and its control net.  

 

c) Convex hull property 

The Bézier triangle lies completely within the convex hull of its Bézier net. 

This is because of (2.1) is a convex combination with respect to the Bézier points 

where the Bernstein functions have the properties 

3
, , ( , , ) 0≥i j kB u v w   and  3

, ,
3

, , 0

( , , ) 1
+ + =

≥

=∑ i j k
i j k
i j k

B u v w . 

Moreover, if all the Bézier ordinates are positive, then the Bézier patch R is positive.  

 

 

 

 

 

 

 



10 
 

2.2 1C  Continuity for Cubic Bézier Triangular Patches 

Consider two cubic Bézier triangular patches that defined on two adjacent 

domain triangles 1 2 3VV V  and 2 3 4V V V  respectively. Let , ,i j kd  and , ,
ˆ

i j kd  denote the 

corresponding Bézier ordinates as shown in the Figure 2.3. Suppose the cubic 

Bézier patches are defined as  

3
, , , ,

3
, , 0

( , , ) ( , , )
+ + =

≥

= ∑ i j k i j k
i j k
i j k

R u v w d B u v w   

and 

3
, , , ,

3
, , 0

ˆˆ ( , , ) ( , , )
+ + =

≥

= ∑ i j k i j k
i j k
i j k

R r s t d B r s t  

where ( , , )u v w  and ( , , )r s t  are the barycentric coordinates with respect to each 

triangle 1 2 3VV V  and 2 3 4V V V . Along the common edge 2 3V V , we have 0=u  and 

0=r . Assuming =v s  and =w t , 

 

 

 

 

 

 

Figure 2.3 A pair of cubic Bézier triangular patches. 
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The cubic Bézier patches R  and R̂  are joined with 0C  parametric 

continuity across the common edge 2 3V V  if and only if  

ˆ(0, , ) (0, , )=R v w R s t . 

To satisfy this condition, we required that all the Bézier ordinates along the common 

edge are set to be 

0, , 0, ,
ˆ

j k j kd d= ,  for j , 0≥k  and 3j k+ = .                 (2.3) 

Furthermore, to achieve 1C  tangential continuity along the common edge 2 3V V  

between the two patches, the partial derivatives along the edge 2 3V V  must be  

2 3 2 3
ˆ

( ) ( )∂ ∂=
∂ ∂
R RV V V Vx x ,  

2 3 2 3
ˆ

( ) ( )∂ ∂=
∂ ∂
R RV V V Vy y . 

The above necessary and sufficient conditions lead to (Farin,1996) 

1, , 1 1, , 2 0, 1, 3 0, , 1
ˆ β β β+ += + +j k j k j k j kd d d d ,    for j , 0≥k , 2+ =j k ,                 (2.4) 

where 1 2 3 1β β β+ + =  and 4 1 1 2 2 3 3β β β= + +V V V V .  

However, an ordinary cubic Bézier triangle may not be sufficient to handle 

1C  continuity across all three edges of its domain triangle due to the limited degree 

of freedoms. A method of surface construction is required such that the surface 

generated fulfills the 1C  smoothness conditions along all the three boundaries. The 

method named Clough-Tocher split interpolation (Clough & Tocher, 1965) is used 

to solve the smoothness problem along the patch boundaries. The detail of 

construction will be discussed in next section.  
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2.3 Clough-Tocher Split  

Consider a triangle T with vertices 1V , 2V  and 3V , which is called macro-

triangle. The macro-triangle T is split into 3 mini triangles which are referred to be 

micro-triangles. Let the splitting point be denoted by ( ),C C CV x y= . In this study 

the incenter is taken to be the splitting point for the macro-triangle T. The incenter 

of triangle T is determined by taking the intersection of the angle bisectors of three 

vertices of the triangle, see Figure 2.5. It is formulated by  

                                 1 2 3 1 2 3,C
ax bx cx ay by cyV

a b c a b c
+ + + + =  + + + + 

        (2.5) 

where a , b  and c  are the length of the edges 2 3V V , 3 1V V  and 1 2VV  respectively. 

 

 

 

 

 

 

 

Figure 2.4 Incenter of a triangle. 

Beside the incenter, a common choice named barycenter can also be used as 

alternate splitting point where it is defined as the point of intersection of the lines 

joining from each vertex to the median of the opposite edge. The splitting point as 

barycenter is defined by (Kong et al., 2004) 
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1 2 3 1 2 3,
3 3C

x x x y y yV + + + + =  
 

. 

With the splitting point CV , the macro-triangle T is subdivided into three 

micro-triangles 1 2CV VV , 2 3CV V V  and 3 1CV V V .  On each micro-triangle a triangular 

patch is generated such that the patch joins 1C  continuously to the other two 

triangular patches. Here, in order to produce 1C  smooth surface especially across 

the interior edges 1CV V , 2CV V , 3CV V , and the exterior edges 1 2VV , 2 3V V , 3 1V V , cubic 

Bézier triangle in (2.1) is used to fit each micro-triangle. The corresponding Bézier 

ordinates are shown in Figure 2.5.  

 

Figure 2.5 Bézier ordinates of Clough-Tocher macro-element. 

Let ( ),S x y  be the patch produced on the macro-triangle T . It consists of 

three cubic Bézier patches which satisfy the 1C  continuity conditions described in 

Section 2.2, that is the analogs of (2.3) and (2.4). Based on the endpoint property 
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(2.2) of Bézier patch the values of 1c , 2c , 3c  are the surface values S at the vertices 

of T, that is  

1 1( )c S V= ,  

2 2( )c S V= ,  

3 3( )c S V= .      (2.6)  

The values of the rest of Bézier ordinates 4c , 5c ,  , 12c  are obtained by 

using the partial derivatives defined on the three vertices. Suppose the partial 

derivatives at each vertex iV , 1i = , 2, 3,  are denoted as ( )x iS V  and ( )y iS V  along 

the x  and y  directions respectively. The related Bézier ordinates are calculated by  

2 1 1 2 1 1
4 1

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  ,   

1 1 1 1
5 1

( ) ( ) ( ) ( )
( )

3
C x C yx x S V y y S V

c S V
− + −

= +  ,  

3 1 1 3 1 1
6 1

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  ,  

3 1 2 3 1 2
7 2

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  ,  

2 2 2 2
8 2

( ) ( ) ( ) ( )
( )

3
C x C yx x S V y y S V

c S V
− + −

= +  ,  

1 2 2 1 2 2
9 2

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  ,  

1 3 3 1 3 3
10 3

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  ,  
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3 3 3 3
11 3

( ) ( ) ( ) ( )
( )

3
C x C yx x S V y y S V

c S V
− + −

= +  ,  

                        2 3 3 2 3 3
12 3

( ) ( ) ( ) ( )
( )

3
x yx x S V y y S V

c S V
− + −

= +  .      (2.7)  

The inner Bézier ordinates 13c , 14c , 15c  are determined in such a way that 

the surface S  is 1C  continuous along the exterior edges 1 2VV , 2 3V V , 3 1V V  of T . In 

this study, we estimate these ordinates using the method in Goodman and Said 

(1994), in which the normal derivative of the patch is required to vary linearly along 

the boundary. We denote by ,i je  the side vector from iV  to jV , in Cartesian system, 

refer to Figure 2.6. 

 

 

 

 

 

Figure 2.6 Notation of a macro-triangle. 

 

The inner ordinates are computed by (Goodman & Said, 1994) 

8 5 1 9 4 1 1 9 4 2
13

2 ( 3 3 )
2

c c c c c h c c c cc + − − + + + − −
= ,  

8 11 2 12 7 2 2 12 7 3
14

2 ( 3 3 )
2

c c c c c h c c c cc + − − + + + − −
= , 
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                        11 5 3 6 10 3 3 6 10 1
15

2 ( 3 3 )
2

c c c c c h c c c cc + − − + + + − −
= ,        

(2.8) 

 

where  

1,2 ,1
1

1,2 1,2

Ce e
h

e e
= −





 ,  2,3 ,2
2

2,3 2,3

Ce e
h

e e
= −





,  3,1 ,3
3

3,1 3,1

Ce e
h

e e
= −





,  

and “ ” denotes the dot product of two vectors.  

Lastly, the remaining Bézier ordinates are then determined using the 1C  

continuity condition analogous to (2.4) by the formulae 

16 1 5 2 13 3 15c c c cα α α= + + ,  

17 1 13 2 8 3 14c c c cα α α= + + ,  

18 1 15 2 14 3 11c c c cα α α= + + ,  

                                    19 1 16 2 17 3 18c c c cα α α= + + ,          

(2.9) 

where iα , 1i = , 2, 3, satisfy 1 1 2 2 3 3CV V V Vα α α= + +  and 1 2 3 1α α α+ + = . Note that 

the surface S  interpolates the Bézier ordinate 19c  at the splitting point CV , i.e. 

19( )CS V c= . In the next chapter, sufficient nonnegativity conditions will be imposed 

onto the Bézier ordinates ic , 1i = , 2, …, 19, such that the surface generated 

preserves the nonnegativity feature of the given data. 
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CHAPTER 3 

NON-NEGATIVITY CONDITION ON A CLOUGH-TOCHER 
TRIANGULAR PATCH 

 
 This chapter derives the condition for a Clough-Tocher triangular patch to 

be non-negative. A non-negative patch means any point on the patch is greater or 

equals to zero, that is the patch lies above xy-plane. A lower bound is used to 

restrict the Bézier ordinates such that the patch preserves non-negativity. This 

lower bound is obtained based on the initial work of Schumaker et al. (2010), in 

which is used as a guideline on deriving a more general and relaxed condition. 

Simple examples will be illustrated in the end of this chapter. 

 

3.1 Sufficient Nonnegativity Condition for a Clough-Tocher Triangular Patch 

In 2001, Chan and Ong derived sufficient conditions for a cubic Bézier 

triangular patch to be non-negative where a lower bound was imposed on the 

Bézier ordinates of the Bézier patch. We are interested to construct a lower bound 

for a Clough-Tocher macro-triangle defined in Section 2.3 to be non-negative. 

Firstly, we denote l−  as lower bound where 0l ≥ . Given that 1 2 3, , 0c c c ≥  where 

1 2 3, ,c c c  are associated to the vertices 1 2 3, ,V V V  respectively as a triangular patch 

to be constructed must be non-negative at the vertices of triangle T . Motivated by 

the work in Chan and Ong (2001), consider a cubic Bézier polynomial curve 

( ) ( ) ( ) ( )3 2 2 31 3 1 1 ,3P x A x B x x C x x Dx= − + − + − +   
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 where , , ,A B C D  indicate the Bézier ordinates, 0 1x≤ ≤  and , 0A D >   

Setting B C l= = −  

  

( ) ( ) ( )2 3 2 2 31 3 3 3 1 2 3 1A x x x l x x x l x x Dx= − + − − − + − − +    

( ) ( ) ( )3 23 3 .D A x A l x A l x A= − + + − + +   

The idea from Chan and Ong (2001), shows that the minimum of ( )P x  occurs  at 

the real roots of  ( ) ( ) ( )2 2 0D A x A l x A l− + + − + = where [0,1].x∈  

 If D A= , 

( ) ( ) ( )23 3 .P x A l x A l x A= + − + +  

The derivatives 

( ) ( ) ( )6 3 ,P x A l x A l′ = + − +   

( ) ( )'' 6 .P x A l= +   

then ( ) 0P x′ =  gives the extremum point as 1 .
2

x =  

Note that ( ) ( )
21 11

2
3 3

2 2
P A l A l A     = + − + +     
     

 

       ( )1 3
4

A l= −   

and  

( )'' 1 6 0.
2

P A l  = + > 
 

 

( ) ( ) ( ) ( )3 2 2 331 1 3 1P x A x x x l x x Dl x−= − − − − +
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since 0A >  and 0.l ≥    

From here, we conclude that the minimum of ( )P x   is ( )1 3
4

A l−  when D A= . 

That is, 1( ) ( 3 )
4

P x A l≥ −   for [0,1].x∀ ∈  Moreover, the minimum 1 0
2

P  
 


=


 if 

.
3
Al =  Obviously the curve ( ) 0P x ≥  if l  is chosen to be .

3
Al ≤  For the case 

,D A≠ we obtained the general result  

( ) { }( )1 min , 3 0
4

P x A D l≥ − ≥ , [ ]0,1x∀   where { }min ,
.

3
A D

l ≥   

Based on the above observation on cubic Bézier curve, we can apply this to the 

three sides of the triangle T , such that the corresponding boundary curves are 

non-negative,   

let { }1 2 3min , ,
.

3
c c c

l =                    (3.1) 

By setting the boundary ordinates in Figure (2.5) to be 4, 9 6 10 7 12, , , ,c c c c c c l≥ − , the 

three boundaries of the Clough-Tocher macro-triangle will be non-negative. 

Next, we wish to derive the lower bound for the rest of Bézier ordinates, 

starting with 5 8 11, ,c c c  as followed. Inspired from the method used in Schumaker 

et al. (2010), we require that 5 8 11, , 0c c c ≥ . From the 1C  continuity condition of a 

Clough-Tocher triangular patch, we have  

5 1 1 2 4 3 6 ,cc c cα α α= + +   

8 1 9 2 2 3 7 ,cc c cα α α= + +   
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11 1 10 2 12 3 3.c c c cα α α= + +   

where 1 2 30 , , 1< α α α <  and 1 2 3 1.α +α +α =   

We wish to derive a suitable lower bound l   such that 5 8 11, , 0c c c ≥ . 

Since 4 6,c c l≥ −  , 

5 1 1 2 4 3 6cc c cα α α= + +   

( )1 1 2 3c lα α α≥ − +   

( )1 1 11 .c lα α= − −         (3.2) 

In order to obtain non-negative 5c , let 

( )1 1 11 0c lα α− − ≥  

thus           1 1

1

.
1

cl α
α

≤
−

       

   

Similarly, by 7 9 10 12, , , ,c c c c l≥ − we obtain   

8 1 9 2 2 3 7cc c cα α α= + +  

( )2 2 1 3c lα α α≥ − +   

( )2 2 21 .c lα α= − −                  (3.3) 

and 

11 1 10 2 12 3 3c c c cα α α= + +  
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       ( )3 3 1 2c lα α α≥ − +   

       ( )3 3 31 .c lα α= − −       (3.4) 

These give 2 2

21
cl α
α

≤
−

and 3 3

31
cl α
α

≤
−

 that ensure 8 11, 0c c ≥  respectively.   

After having these three additional conditions on l  , the new bound for all 

boundary ordinates will be determined by 

{ }1 2 33 31 1 2 2

1 2 3

min , ,
min , , , .

1 1 1 3
c c ccc cl αα α

α α α
 

=  − − − 
    (3.5) 

It can be easily proven that this bound l  ensures 5 8,c c and 11c  are non-negative 

(see Appendix). 

Now, we are ready to determine the lower bound for 13 14,c c and 15.c    

Let  

13 1c a l≥ −          (3.6)

14 2c a l≥ −          (3.7) 

        15 3 .c a l≥ −          (3.8) 

where 1 2 3, , 0.a a a ≥  

To solve for 1 2 3, ,a a a , we can use the conditions 176 181 , , 0cc c ≥  that implemented 

in the work of Schumaker et al. (2010). 

From (2.9) and (3.6) - (3.8),  

16 1 5 2 13 3 15c c c cα α α= + +  



22 
 

1 5 2 1 3 3c a l a lα α α≥ − −   

( )1 5 2 1 3 3 ,c l a aα α α= − +      (3.9) 

17 1 13 2 8 3 14c c c cα α α= + +   

1 1 2 8 3 2a l c a lα α α≥ − + −   

( )2 8 1 1 3 2 ,c l a aα α α= − +      (3.10) 

18 1 15 2 14 3 11c c c cα α α= + +   

1 3 2 2 3 11a l a l cα α α≥ − − +   

( )3 11 1 3 2 2 .c l a aα α α= − +      (3.11) 

Since Inequalities (3.9) - (3.11) involves Bézier ordinates 5 8,c c  and 11c , we 

should consider their minimum values 5 0,c =  8 0c =  and 11 0c =   as shown below.   

Case 1 

Suppose 5 0c = , we have (3.9) as   

( )16 1 1 3 3c l a aα α≥ − +   

For 16 0c ≥ to be true, 0l =   or 1 1 3 3 0a aα α+ = . 

Let 0l >  and 1 3 0.a a= = For 17c  and 18c  to be non-negative too, we substitute 

condition of  1a  and 3a into (3.10) and (3.11), hence  

( )2 8 1 1 3 2 0c l a aα α α− + ≥   

( )2 8 3 2 0c l aα α− ≥   
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2 8
2

3

,ca
l

α
α

≤  

and  

( )3 11 1 3 2 2 0c l a aα α α− + ≥   

( )3 11 2 2 0c l aα α− ≥   

   3 11
2

2

.ca
l

α
α

≤   

We notice that 2a  must satisfy both inequalities above, therefore, 

2 8 3 11
2

3 2

min , .c ca
l l

 α α
≤  α α 

Thus when 5 0c =  , the Bézier ordinates 16 17 18, , 0c c c ≥  if 

either one below holds 

(i). 0l =   

(ii). 0,l >  1 0,a =  2 8 3 11
2

3 2

min ,c ca
l l

α α
α α

 
≤  

 
 , 3 0a = .   (3.12)  

 

Case 2 

Next, we let 8 0.c =  The Inequality (3.10) gives  

( )217 1 1 3 .c l a aα α≥ − +   

For 17 0c ≥ to be true, 0l =   or 1 1 3 2 0.a aα α+ =  

Consider 0l >   and 1 2 0.a a= =  In order to obtain 16c , 18 0c ≥ , Inequalities (3.9) 

and (3.11) lead to  
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( )1 5 2 1 3 3 0c l a aα α α− + ≥   

( )1 5 3 3 0c l aα α− ≥   

1 5
3

3

,ca
l

α
α

≤   

and  

( )3 11 1 3 2 2 0c l a aα α α− + ≥  

( )3 11 1 3 0c l aα α− ≥   

3 11
3

1

.ca
l

α
α

≤   

Therefore, when 8 0c =  to ensure 16 17 18, , 0c c c ≥ , either one must be true 

(i). 0l =   

(ii). 1 0,a =  2 0,a =  1 5 3 11
3

3 1

min ,c ca
l l

α α
α α

 
≤  

 
 where 0.l >    (3.13) 

Case 3 

Let 11 0.c =   

Substitute into (3.11), we have  

( )3 2 218 1 .c l a aα α≥ − +   

For 18 0c ≥ to be true, 0l =  or 1 3 2 2 0a aα α+ =  holds. 

Let 0l >  and 2 3 0.a a= =  Then for 16 17, 0,c c ≥   

(3.9) and (3.10) give 
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