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Both waveguides are in TM mode propagation.

146

Table 5.8 The tabulation of the gradient of logL2-errors versus
log ∆x. The L2-errors are evaluated using |Hz−H̄z| after
t = 0.1. Both waveguides are in TE mode propagation.

146

vii



LIST OF FIGURES

Page

Figure 1.1 The finite-difference time-domain (FDTD) method de-
veloped by Yee [100], also known as the Yee’s algorithm.

4

Figure 1.2 This preliminary finite-volume time-domain (FVTD)
scheme in CEM by Mohammadian and Shankar [62] fol-
lows the typical FV schemes in computational fluid dy-
namics (CFD).

4

Figure 1.3 The FVTD scheme developed by Hermeline [44, 45]. The
scheme can be interpreted as a space-centered scheme.

4

Figure 1.4 The NASA technical report prepared by Reddy et al. [75]
used the FEM to solve Helmholtz Maxwell’s equations.
The problems solved in their work cover mostly time-
independent cavity resonance.

5

Figure 1.5 The averaged flux finite-volume (FV) scheme for time-
dependent Maxwell’s equations imputed to Remaki [77]
and Piperno [71].

5

Figure 1.6 Rao in his book [74] has recounted again the available
weak Galerkin finite-element method (FEM) for time-
dependent second-order Maxwell’s equation, produced
mostly in the early 1990s.

5

Figure 1.7 Bidegaray and Ghidaglia [10] found the upwind correc-
tions congenial to the FV schemes.

5

Figure 1.8 Van and Wood [95] applied the weak Galerkin FEM to
solve for E from second-order Maxwell’s equations, and
their scheme is explicit in time-marching.

5

Figure 1.9 Chatterjee and Deore [33] proposed the Lax-Wendroff
temporal corrections to the FVTD on quadrilateral mesh.

6

Figure 1.10 The van Leer spatial interpolation and the Lax-Wendroff
temporal correction made the FV scheme devised by
Ismagilov [51] a highly proficient time-explicit scheme,
which resembles the Lax-Wendroff residual distribution
(RD-LW) scheme.

6

viii



Figure 2.1 The mesh topology for the FDTD scheme. Not all the
conserved variables are stored at the same point.

17

Figure 2.2 (a) The outward edge normal ej in two dimensions. (b)
The outward area vector aj in three dimensions.

20

Figure 2.3 (a) The cell denoted by i has three neighboring elements,
labeled as k. (b) The approximate values on the bisection
of edge shared by elements i and k is designated as UL

ik

from the side of element i. The approximate values at
the brink of element k is known as UR

ik.

20

Figure 2.4 (a) The displacements from the center of an element to
the brink of its edges are ∆Γik, whereas the displace-
ment vectors between the centroids of two elements are
(∆xik,∆yik). (b) The gradient computation of cell i re-
quires information from all its three neighboring elements
which share an edge with it.

23

Figure 2.5 Each Lagrange basis function function of ψTj (x, y) can be
represented by the trisection area of triangular element
T .

25

Figure 2.6 The linear Lagrange basis function fulfills the Kronecker
delta property, which equals to unity only when i = j
while zero on another two vertices.

25

Figure 2.7 (a) The linear interpolation of conserved variables Uh

using Lagrange basis function, ψTj (x, y). (b) The gradient
of the interpolation is constant within each element.

27

Figure 2.8 (a) The labeling of all the intersection points in the com-
putational domain known as the global nodes, i. (b) For
each element T , its vertices are labeled following one di-
rection only, usually in counter-clockwise. This is known
as the local labeling of vertices.

32

Figure 2.9 The residual or fluctuation is calculated locally within an
element T , keeping the RD scheme compact.

34

Figure 2.10 The total residual a cell T is split based on the definition
of distribution matrix.

34

Figure 2.11 The nodal update is the step where locally distributed
residuals communicate with the nodal value.

35

ix



Figure 2.12 (a) Outwardly scaled normals in FV methods, eTj . (b)
Inwardly scaled normals in RD schemes, nTj .

38

Figure 2.13 (a) The tangential component of opposite edge length in
FEM. (b) The inwardly scaled normal of opposite edge
in RD schemes.

39

Figure 2.14 The downstream target region for (a) RD schemes, and
(b) FV schemes.

40

Figure 2.15 The different downstream configurations for (a) single-
target distribution and (b) two-target distribution.

40

Figure 2.16 (a) The connection of total flux, ΦT and individual dis-
tribution matrices, BT

j of linear-preserving RD schemes.
(b) Distributed residual, ΦT

j for positive or monotone RD
schemes.

44

Figure 3.1 (a) The configuration A tetrahedron. (b) The configura-
tion B tetrahedron.

52

Figure 3.2 The inwardly scaled area vector sTj opposite to vertex j. 54

Figure 3.3 (a) Single-target upwind-LDA scheme. (b) Two-target
upwind-LDA scheme.

66

Figure 3.4 Vertices j = 1 and j = 2 are downstream nodes because
KT

1 = λ · nT1 /2 > 0, similar also for KT
2 = λ · nT2 /2 > 0.

66

Figure 3.5 (a) The classic definition of Petrov-Galerkin weight func-
tion (3.61). (b) The illustration of upwind LDA weight
function in equation (3.62).

69

Figure 3.6 (a) The curl of electric field flux for interior domain. (b)
The curl flux residual for element abutted on the PEC
boundary, say vertices j = 0 and j = 2 for this illustra-
tion.

75

Figure 4.1 The comparison of the numerical routes for first-order
Maxwell’s equations system and second-order scalar
Maxwell’s equation.

81

Figure 4.2 (a) The node i shared by some elements T ∈ ∪∆i. (b)
The locally compact Galerkin weight function of ψi(x, y).

83

x



Figure 4.3 (a) The interpolation of conserved variable Ez in weak
Galerkin FEM as described by equation (4.3). (b) The
equation (4.11) interpolates the gradient of the conserved
variable [∇Ez] rather than Ez.

86

Figure 4.4 (a) Being a compact scheme, the weak Galerkin FEM en-
tails only data values from immediate neighboring cells.
(b) The gradient computation of the gradient flux resid-
ual makes it no longer compact.

88

Figure 4.5 (a) The median dual cell, Si as defined in FV and RD
methods. (b) The median dual volume in three dimen-
sions, denoted here as Vi. This is just a partial view,
as it shows the median dual region contributed by few
elements only.

91

Figure 4.6 (a) En
z (xf − c∆t) is the exact value of wave location in

previous time step tn, denoted by “∗”. Ẽn
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i ∈ ∂Ω { set of nodes that fall on the outer boundary ∂Ω }

Th ∈ ∂Ω { set of elements abutted on the outer boundary ∂Ω }
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PENAMBAHBAIKAN KAEDAH PENGEDARAN SISA UNTUK

PERSAMAAN MAXWELL

ABSTRAK

Daya elektromagnet mempunyai pelbagai aplikasi, salah satu daripadanya ia-

lah pengesanan objek asing yang terbenam, sebagai contoh dalam tubuh badan

melalui pembiasan gelombang. Gelombang telekomunikasi memerlukan pancaran

elektromagnet, dan panduan gelombang optik yang membolehkan penghantaran

isyarat pada halaju cahaya. Tujuan penyelidikan ini ialah penggunaan teknik pe-

ngedaran sisa yang berasas pada bucu segi tiga, salah satu kaedah yang tak tersi-

rat dengan ketepatan orde kedua. Pengkomputeran elektromagnet tidak menetap

pada suatu topologi kerangka tertentu, dan ini akan melembapkan kemajuan da-

lam teknik pengkomputeran. Salah satu skema pengedaran sisa yang terkenal

dengan pemeliharaan ketepatan orde kedua ialah kaedah pengedaran sisa (RD)

Lax-Wendroff (LW). Selain itu, kaedah pengedaran sisa ini terunggul dengan ske-

ma berdasarkan hilir yang mampat, misalnya skema RD-LDA (resapan rendah

A), tetapi wujud sebagai kaedah tersirat bagi masalah bendalir yang bersandar

kepada waktu. Pembaharuan yang pertama dalam kerja ini ialah memperolehi

kaedah RD-LDA yang tak tersirat sementara memelihara ketepatan orde kedua.

Di samping itu, skema RD-Galerkin yang jarang ditemui akan dicadangkan da-

lam kerja ini. Sumbangan yang kedua dalam kerja ini menyetelkan kaedah unsur

terhingga (FEM) Galerkin untuk persamaan Maxwell orde kedua yang bersandar

kepada waktu, dan juga mereka skema pengedaran sisa yang setara bagi persa-

maan Maxwell orde kedua ini, iaitu atur cara kecerunan sisa. Kedua-dua kaedah

berangka yang lebih cekap ini memerlukan penurunan persamaan Maxwell dari-
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pada orde pertama kepada orde kedua. Kaedah unsur terhingga Galerkin adalah

kaedah berangka yang amat jitu, tetapi kurang berkesan dengan syarat sempad-

an berbanding dengan atur cara kecerunan sisa yang diperkenalkan dalam kerja

ini. Pembaharuan dalam kerja ini ialah perkenalan kaedah pengedaran sisa (RD)

untuk persamaan Maxwell orde pertama, dan mengarang kaedah tersebut untuk

persamaan Maxwell orde kedua. Pengujian atur cara dalam kerja ini merangku-

mi tiga fenomena electromagnetik, iaitu penyebaran dalam panduan gelombang,

pemancaran gelombang dan pembiasan gelombang. Masalah dalam tiga dimen-

si juga dikaji demi mengesahkan kesesuaian kaedah-kaedah ini dalam aplikasi

sebenar. Keputusan daripada kaedah berangka yang diubahsuai atau direka da-

lam kerja ini tidak menunjukkan isu kemantapan. Penggumpalan matriks bagi

skema RD-LDA tak tersirat menyusutkan tempoh pengkomputeran sebanyak 50

kali, walaupun jangka masa ini masih 4 hingga 6 kali lebih tiggi daripada kae-

dah RD-LW. Keseluruhannya, kaedah yang berpusat pada ruang seperti RD-LW,

RD-Galerkin, Galerkin lemah FEM dan atur cara kecerunan sisa menawarkan

ketepatan antara 1.4212 dengan 2.43871. Di sebaliknya, kaedah RD-LDA yang

berpandu kepada hilir hanya mencapai ketepatan antara 0.7825 dengan 0.9335.
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