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SIMULASI DINAMIK MOLEKUL UNTUK PROSES TERMA BAGI 

STRUKTUR NANO YANG TERPILIH 

 

 

ABSTRAK 

 

Premis utama dalam tesis ini adalah menggunakan kaedah dinamik molekul 

(MD) untuk menyimulasi dan mengukur tiga sistem nano yang berbeza, termasuklah 

(i) pertumbuhan grafen secara epitaksial pada permukaan 6H-SiC (0001) yang 

didorongkan oleh pemanasan simulasi, (ii) silicene yang tergantung bebas tertakluk 

kepada pemanasan yang ekstensif, dan (iii) kepingan ZnO berbentuk wurtzite yang 

tertakluk kepada pemanasan simulasi. Pertumbuhan grafen secara epitaksial pada 

permukaan (0001) daripada substrat 6H-SiC disimulasikan melalui kaedah dinamik 

molekul dengan meggunakan kod LAMMPS. Pembentukan grafen secara epitaksial 

di permukaan substrat disimulasikan melalui satu protocol yang direka khas untuk 

mencapai pembinaan semula permukaan. Dua keupayaan empirik, iaitu keupayaan 

Tersoff dan keupayaan TEA digunakan dalam simulasi MD supaya mekanisme 

pertumbuhan yang dipaparkan oleh mereka dapat diselidiki dan dibandingkan. 

Keputusan yang diperolehi daripada simulasi MD dalam tesis ini menunjukkan 

bahawa keupayaan TEA lebih tepat dalam menggambarkan proses pertumbuhan 

untuk membentukkan grafen, di mana keputusannya adalah lebih fizikal dan realistik 

secara umumnya. Dalam simulasi MD dengan menggunakan keupayaan TEA, grafen 

muncul secara tepat pada suhu pemanasan ~1200 K, setanding dengan yang 

diperhatikan dalam eksperimen yang dilaporkan di mana grafen ternukleat pada suhu 

pembentukan lubang 1298 K. Penilaian secara berangka ke atas panjang ikatan 

purata, tenaga ikatan serta fungsi korelasi pasangan dalam eksperimen MD 

membenarkan pengukuran dan kuantifikasi dilakukan ke atas grafen yang terbetuk. 
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Grafen yang berlapisan dua dan tiga boleh ditumbuh berdasarkan subtrat yang sama 

selepas lapisan grafen pertama dibentukkan. Teknik untuk menumbuh grafen 

berlapisan dua dan tiga di atas grafen lapisan tunggal yang sedia terbentuk 

menyerupai prosedur untuk menumbuh grafen lapisan pertama dengan sedikit 

pemubahsuian.  Selain daripada pertumbuhan grafen secara epitaksial, tesis ini juga 

melakukan simulasi MD untuk mengukur takat lebur silicene yang tergantung bebas 

dengan menggunakan keupayaan Stillinger-Weber (SW) yang dioptimumkan oleh 

Zhang et al.. Data ini dianalisis secara sistematik dengan mengunakan beberapa 

petunjuk yang berbeza secara kualitatif, termasuk fungsi lengkung kalori, fungsi 

taburan jejarian dan petunjuk berangka yang dikenali sebagai indeks kesamaan 

global. Keupayaan SW yang dioptimumkan menghasilkan takat lebur secara 

konsistennya pada 1500 K untuk simulasi silicene yang tergantung bebas serta tak-

terhingga. Sistem berskala nano yang ketiga yang disiasat dalam tesis ini melalui MD 

adalah kepingan ZnO yang tebal berbentuk wurtzite yang ditamatkan pada dua 

permukaan, iaitu ( 0001̅ ) (yang ditamatkan oleh oksigen) dan (0001) (yang 

ditamatkan oleh Zn). Eksperimen MD dilakukan untuk mengukur kesan pemanasan 

haba ke atas kepingan ZnO. Untuk tujuan ini, medan daya reaktif (ReaxFF) 

digunakan. Sebagai akibat pemanasan, untuk julat suhu ambang 700 K <  𝑇𝑡  ≤ 800 

K, permukaan oksigen mula memejalwap dari permukaan (0001̅), sementara tiada 

atom meninggalkan permukaan (0001). Nisbah oksigen yang meninggalkan 

permukaan meningkat dengan peningkatan suhu 𝑇  (untuk 𝑇 ≥  𝑇𝑡 ). Keamatan 

kependarkilauan relatif pada puncak sekunder dalam spektrum foto-kependarkilauan 

(PL), ditafsirkan sebagai ukuran jumlah kekosongan pada permukaan sampel, 

bersetuju dengan simulasi MD secara kualitaif. Simulasi MD juga mendedahkan 

pembentukan dimer oksigen di permukaan serta evolusi pengagihan caj separa 
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semasa proses pemanasan. Keputusan daripada simulasi MD berdasarkan ReaxFF 

adalah konsisten dengan pemerhatian eksperimen. 
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MOLECULAR DYNAMICS SIMULATION OF THERMAL PROCESSES 

FOR SELECTED NANO-STRUCTURES 

 

 

ABSTRACT 

 

The core premise of this thesis is the adoption of molecular dynamics (MD) in 

simulating and measuring three different nanoscale systems. namely (i) epitaxial 

graphene growth on 6H-SiC (0001) surface induced by simulated annealing, (ii) free-

standing silicene subjected to extensive thermal heating, and (iii) wurtzite ZnO slab 

which is subjected to simulated annealing. Epitaxial growth of graphene on the (0001) 

surface of 6H-SiC substrate is simulated via molecular dynamics using LAMMPS 

code. A specially designed protocol to reconstruct the surface via a simulated 

annealing procedure, is prescribed to simulate the epitaxial graphene formation on 

the substrate surface. Two empirical potentials, the Tersoff potential and the TEA 

potential are used in the MD simulations to investigate and compare the growth 

mechanisms resulted. Results obtained from MD simulated in this thesis show that 

TEA potential is more accurately in describing the growth process of graphene 

formation, in which the result is generally more physical and realistic. Graphene is 

shown in the MD simulation using TEA potential to be accurate at an annealing 

temperature of  𝑇 ≈ 1200 K, comparable to that observed in a reported experiment in 

which graphene nucleates at a pit-forming temperature of 1298 K. The numerical 

evaluation of the average bond-length, binding energy as well as pair correlation 

function in the MD experiments allows for the measurement and quantification of the 

graphene formed. Double and triple layer graphene can also be grown from the same 

substrate after the first layer of graphene is formed. The technique to grow double 

and triple layer graphene on top of the already-formed single layer graphene follows 
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a similar but slightly modified procedure used in growing the first layer graphene. In 

addition to epitaxial graphene growth, MD simulations are also performed in this 

thesis to measure the melting temperature of free-standing silicene by using 

optimized Stillinger-Weber (SW) potential by Zhang et al.. The data are 

systematically analysed using a few qualitatively different indicators, including 

caloric curve, radial distribution function and a numerical indicator known as global 

similarity index. The optimized SW potential consistently yields a melting 

temperature of 1500 K for the simulated free-standing, infinite silicene. The third 

nanoscale system investigated in this thesis via MD is a thick wurtzite ZnO slab 

terminated in two surfaces, namely, (0001̅) (which is oxygen terminated) and (0001) 

(which is Zn-terminated). The MD experiment is performed to measure the effect of 

thermal annealing on the ZnO slab. To this end, reactive force field (ReaxFF) is used. 

Is it observed that annealing results in the sublimation of surface oxygen atoms from 

the (0001̅) surface at a threshold temperature range of 700 K <  𝑇𝑡 ≤  800 K, while 

no atoms leave the (0001) surface. The ratio of oxygen leaving the surface increases 

with temperature 𝑇  (for 𝑇 ≥  𝑇𝑡 ). The relative luminescence intensity of the 

secondary peak in the photoluminescence (PL) spectra, interpreted as a measurement 

of amount of vacancies on the sample surfaces, qualitatively agrees with the 

threshold behaviour as found in the MD simulations. The formation of oxygen 

dimers on the surface and evolution of partial charge distribution during the 

annealing process has also been depicted in the MD simulations. The MD 

simulations have also revealed the formation of oxygen dimers on the surface and 

evolution of partial charge distribution during the annealing process. The results 

from the MD simulations based on the ReaxFF are consistent with experimental 

observations. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation of Study 

The discovery of graphene has opened a doorway to endless possibility in 

material science that no one can imagine. It sparks a field of debate and controversial 

(especially germanene and stanene which is still hypothetical [1] among material 

scientists. The experimental discovery of graphene in particular, and other 2D 

nanomaterials in general, have since driven researchers to intensify research effort to 

investigate their respective properties which has proven tremendous applications 

such as a substitution to our current conventional devices. Since the discovery of the 

graphene in 2010, it has revolutionized the field of material science. Many 

researchers around the world have since delved into the field of low dimensional 

structure in the hope to utilize graphene for wide range of application especially in 

nanoelectronics and N/MEMS. But now, they even look for the alternative for 

graphene (i.e. silicene, germanene, stanene and heterostructure of 2D materials) [1] 

to further improve the performance of various devices.  

One of the interests in studying low dimensional nanostructures is their 

enhanced properties due to scaling effect as compared to their respective bulk 

properties. By understanding the properties of the nanostructures (i.e. 

thermodynamical properties, electronic properties, optical properties etc.) equips us 

with the necessary knowledge to turn them into applications. For example, a 

nanostructure with high thermal and electrical conductivity is suitable for fabrication 

of computer nanochip which is small, high in operating efficiency, saving electricity 

and generating less heat. In order to turn nanomaterials into real applications, it is 
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necessary to understand the technique to produce high quality nanostructures with 

minimum defect. Growing a large surface area of 2D nanostructures with minimum 

defect is a desirable achievement among material scientists working in the field.  

However, experimental investigation on materials at nanoscale requires high 

precision technologies and can often be difficult to carry out in practice. Detailed 

dynamics occurring at atomistic level in these nanomaterials demands expensive and 

ultraprecision technique if it is to be revealed experimentally. However, there are 

alternative approaches to physically measuring these nanosystems for atomistic 

information, e.g., computational approach, of which molecular dynamics (MD) is an 

excellent representative. Nanomaterials, which are made up of atoms and molecules 

that interact among themselves via potential fields (a. k. a force fields) at classical 

level, can be simulated by building atomistic models that mimic their realistic 

behavior. Time evolution of the dynamical details in the simulated systems can be 

followed atom-by-atom. In this way, many physical properties, such as 

thermodynamical and mechanical properties, can be derived from ensembles of 

atoms mimicking these nanomaterials by applying classical physics and standard 

statistical mechanics techniques on the molecular dynamics data. Despite not able to 

capture physical properties of nanomaterials that are driven by quantum mechanical 

effect (generally known as the electronic structures), molecular dynamics is still a 

powerful, convenient and relatively cheap way to simulate nanomaterials at atomistic 

scale. The study of this thesis resolves around the theme of simulating thermal 

properties of low dimensional nanostructures of three distinct systems via molecular 

dynamics simulation. 
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1.2 Problem Statements 

To reveal the temperature-driven dynamics of the atoms making up materials at 

nanoscale via experimentation techniques requires expensive and ultra-precision 

equipment. It is not possible to do so in local settings due to many pragmatic 

constraints. As an alternative approach to gain physical insight into three distinctive 

nanosystems considered in this thesis, the detailed dynamics of thermally-induced 

effects at atomistic level are computationally ‘measured’ through MD instead. The 

following problems are the core concerns to be addressed in this thesis: 

1. What is the dynamical mechanism that drives the formation of graphene 

islands on the (0001) surface of a 6H-SiC substrate? 

2. When heated up from room temperature, at what temperature graphene 

begins to form on the (0001) surface of a 6H-SiC substrate? 

3. How to use MD to simulate the epitaxial growth of multilayered graphene on 

the (0001) surface of a 6H-SiC substrate? 

4. When heated up from room temperature, at what temperature a free-standing 

graphene begins melt? 

5. What happens to the surface atoms of a nano size ZnO slab upon heating 

beyond 1000 K?  

6. When heated up from room temperature, will oxygen be released from the 

surfaces of a ZnO slab of nano size? If they do, willl they be released in the 

form of monoatom or molecular? At which temperature oxygen begins to 

sublimate? 
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1.3 Objectives 

The aim of the research presented is to perform MD simulation on epitaxial 

growth of graphene on 6H-SiC (0001) substrate [2]. A prediction regarding the 

temperature of the formation of graphene on 6H-SiC (0001) substrate is being made. 

The quality (numbers of hexagonal rings formed) of graphene is determined. The aim 

of this project is to come up with an effective strategy and method such as binding 

energy, average bond length and pair correlation function to qualitatively and 

quantitatively to determine the formation of graphene. The objective is to come up 

with the optimal condition of annealing of high quality graphene. 

Next, the melting point of silicene is determined through MD simulations. MD 

simulations is used to quantify the melting points of graphene through some physical 

quantities such as caloric curve, pair correlation function and global similarity index. 

A novel indicator known as global similarity index was used to predict the melting 

point of the silicene and compare it with the existing conventional methods. 

Finally, the surfaces of oxygen-terminated and zinc-terminated ZnO slab is 

characterized using MD simulations via annealing. The results thus obtained are 

compared with those experimental results obtained in Sharom et al. [3]. experiment 

(which will be detailed in Chapter 3 and Chapter 4). The vacancies formed at the 

surfaces of annealed ZnO slab is evaluated for various temperatures and charges 

distribution is quantified. 

All the simulations above will be compared with the existing experimental results 

and to predict the thermal behavior of the above selected nanostructures, the 

reliability of MD simulations is then determined. 
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1.4 Overview of the thesis 

 An introduction to the research presented in the theses, motivations, problem 

statements and objectives ware provided in Chapter 1 of the thesis. Chapter 2 is 

generally a literature review and background theory of some selected nanostructures 

such as carbon nanostructures (graphene especially will be made as the priority 

subject), history of the epitaxial growth of graphene, silicene and some background 

of zinc oxide. Chapter 3 will focus on methodology such as the implementation of 

empirical potential, construction of the nanostructures and simulation details. 

Chapter 4 presents the findings and results of the MD simulations on all three nano 

systems, namely, 6H-SiC (0001), free-standing silicene and ZnO nano slab. Chapter 

5 will be the conclusion of this thesis.  
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CHAPTER 2: BACKGROUND THEORY 

2.1 Carbon Nanostructures 

 Carbon nanostructures comprising fullerene (0-D), carbon nanotubes (1-D), 

graphene (2-D) and graphite (3-D) are all but derived from carbon and has a 

characteristic dimension of a few or tens of nanometer in size. Most of these carbon 

nanostructures are sp2-hybridized. The bond length between carbon chains is 

approximately 1.42 Å. Carbon nanostructures as shown in Fig. 2.1 have attracted 

researchers around the world due to their superior and unique proprieties as 

compared to their bulk materials, especially in optical, semiconducting and 

mechanical properties [4]. However, these nanostructures are rarely produced as 

free-standing entities but are often grown on a substrate by using a suitable catalyst. 

The first graphene sheet was synthesized through “scotch tape cleaving” method of 

on three-dimensional graphite. The synthesis is halted when it reaches a single layer 

of carbon atoms [5].  
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Figure 2.1: Types of carbon nanotubes and its chirality. 

 

 

Figure 2.2: Low-dimensional carbon allotropes: (a) fullerene (0-D), (b) carbon 

nanotube (1-D) and (c) graphene (2-D). 

 

 

 

 



  8 

 

 To fully understand the nature of graphene, the attention is first turn to carbon 

nanotubes. If one cuts along the wall parallel to the axis running through the cylinder, 

and roll out, a two-dimensional graphene is formed. Fig. 2.1 shows carbon nanotubes 

with three different chirality, namely armchair, zig-zag and chiral. The chirality of 

the nanotubes hinges on the orientation of the tube and the rolling angle. The tube 

chirality of chiral vector defines the characteristics of a carbon nanotube. The chiral 

vector, 𝑪, 𝒂1 and 𝒂2 are as shown in Fig. 2.3. Mathematically, these three parameters 

can be written as the combination of lattice basis vector, 

𝑪 = 𝑛𝒂1 + 𝑚𝒂2 (2.1) 

The integers (𝑛, 𝑚) denote the number of steps along the zig-zag carbon bonds of the 

hexagonal lattice while 𝒂1  and 𝒂2  are the unit vectors. Zig-zag and armchair 

configurations of carbon nanotubes can only be observed under limited 

circumstances when the chiral angle, 𝜃 , is at 0° and 30° respectively due to the 

geometry of the carbon bonds around the circumference of the nanotube. 
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Figure 2.3: The nanotubes and its chiral angle. 

 

The length of chiral vector is defined as the circumference of the carbon 

nanotube. The diameter, 𝑑, of the nanotube is thus  

𝑑 =
𝑐

𝜋
 

 

                                  = 𝑎√𝑛2 + 𝑚𝑛 + 𝑚2 (2.2) 

Lattice constant 𝑎 of 2.49 Angstrom of the carbon honeycomb is also the 

lattice parameter for carbon nanotube.  
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Figure 2.4: Single wall nanotube (left) and multiwall nanotube (right). 

 

                     

Figure 2.5: A graphite structure. 
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The carbon nanostructures are generally greyish-black in color, opaque and 

have a lustrous black sheen. Both metal and non-metal properties can be observed in 

the carbon nanostructures. It is hard but brittle. It has excellent thermal and electrical 

conductivity and is chemically inert. The stacking of graphene sheets will form 

graphite as shown in Fig. 2.5. The interlayer spacing between the carbon layers is 

3.35 Å. A three-million-layer graphene will form bulk graphite with an aggregate 

layer thickness of 1 mm [6]. 

 

2.2 Epitaxial growth of graphene 

The discovery of graphene has revolutionized our fundamental understanding 

of material science. This unique two-dimensional nanostructure   comprising pure 

monolayer carbon atoms formed sp, sp2 and sp3 hybridization, allowing more stable 

formation as compare to other carbon allotrope. Notable electronic properties are 

high electrical conductivity (typically~2 mΩ−1 ) [7] or high carrier mobility [8] 

(typically ~(2 − 5) × 103cm2V−1 ) (value as high as 5 × 103cm2V−1  has been 

reported also [9]) and superior thermal conductivity ( ~ 3 − 5 × 103 Wm−1K−1) [10]. 

Single-layer graphene also presents unusual mechanical properties such as high-in-

plane stiffness (single-layer graphene with an effective thickness ~ 6Å) and 

extremely hard [11], i.e. intrinsic strength around 130 Gpa or Young’s modulus value 

around 1 Tpa).    

A number of studies have been conducted for pre-graphene formation on the 

SiC surface by using scanning tunneling and atomic force microscopy, providing 

detailed view on the surface reconstruction of SiC surface [12]. Experimentally, 

several methods reported producing high quality graphene layers.  One popular 
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method is the epitaxial graphene technique, where 4H- or 6H-SiC surfaces are heated 

up to high temperature. Epitaxial growth refers to the deposition of a crystalline 

overlayer on a crystalline substrate. This strategy involves graphitization of SiC 

whereby Si sublimation occurred during high temperature annealing in vacuum. To 

gain insight into the growth of epitaxial graphene, Hannon and Tromp [13] studied 

the formation of graphene using the low-energy electron microscopy. It is worth 

noting that Hannon and Tromp observed the formation of smooth steps and the step 

height was measured through atomic-force microscopy under prolonged high 

temperature annealing at 1298 K in vacuum. It is believed that this terracing feature 

would give rise to pit formation which hinders the formation of flat graphene layers 

at temperature T < 1300 K. In a separate study, Borysiuk et al. [14] independently 

observed similar carpet-like corrugation panorama using transmission electron 

microscopy. Recent works of Tang et al. [15], Lampin et al. [16], Jakse et al. [17] 

using computer simulation have also provided important insights on the formation of 

epitaxial graphene.  

The occurrence of epitaxial graphene is not only limited to SiC substrate but 

is also extended to various transition elements.  Li et al. successfully grew large area 

of graphene on Cu (1 1 1) surface [18] and Sutter et al. surprisingly fabricated a large 

graphene domain with uniform thickness across Ru metal surface [19].  Computer 

simulation has also been conducted by Enstone et al. by using Monte Carlo model on 

graphene/Cu (1 1 1) [20]. To differentiate graphene from the substrate, it is to be 

noted that the graphene that grew epitaxially has the advantage of having higher 

electronic carrier mobility relative to the SiC substrate. It is, however, important to 

note also that removal of graphene from its respective metal substrate might damage 

the graphene layer. 
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2.3 Silicene 

Silicene, a two-dimensional nanosheet made up of silicon atoms arranged in 

the form of honey comb lattice, has been predicted theoretically by Takeda and 

Shiraishi [21] in year 1994. Subsequent DFT calculations by Guzman-Verri and 

Voon [22] revived the interest on silicene by showing that silicene was indeed 

energetically stable, and of feasible possibility to being experimentally produced. 

Silicene, unlike graphene which prefers sp2 hybridization, is not flat. Rather, due to 

the preference of sp3 hybridization, the silicene sheet has a buckled configuration, 

where the out-of-plane buckle parameter is predicted to be 0.44 Å according to DFT 

calculations. Having a close resemblance to graphene, silicene offers many 

possibilities as a functional material of advanced applications, such as photovoltaic, 

optoelectronic devices [23], thin-film solar cell absorbers beyond bulk Si [24] and 

hydrogen storage [25]. One advantage of silicene over other 2D materials is that it is, 

in principle, easier to get integrated into nano devices which are mainly silicon-based. 

Silicene is a rather new form of 2D material and was synthesized on 

supported substrates in a series of discovery since 2007 [26].   Following the 

successful synthesis of silicene on supported substrate, many theoretical studies and 

simulations on the structural, mechanical, electronic and thermal properties of 

silicene on supported substrate have been published [27].  The structural properties 

of a free-standing silicene sheet, as was originally investigated by Jose et al. [25], 

however, being modified when grown on a substrate. Thus, the silicene 

experimentally synthesized so far is not free-standing but sitting on a substrate. One 

has yet to see any report of experimentally synthesized free-standing silicene. Having 



 14 

 

said that, investigation of free-standing silicene serves the purpose of understanding 

the pristine system in the absence of interactions with surfaces. The understanding on 

the basic properties of silicene without the interference from substrate shall provide 

useful insight for higher level manipulation of silicene. One of the envision is the 

‘van der Waals' heterostructures envisaged by Geim [27], which it deals with 

heterostructures and devices made by stacking different 2D crystals on top of each 

other. Strong covalent bonds provide in-plane stability of 2D crystals, whereas 

relatively weak, van der Waals-like forces are sufficient to keep the stack together. 

 

Figure 2.6: (a) The structure of a free-standing silicene, (b) the bond length and bond 

angle of silicene and (c) the buckling parameter of a silicene. 

In this thesis, there are very limited work on the melting behavior and thermal 

stability of free-standing silicene is reported in the literature. Bocchetti et al. 

simulated the melting behavior of free-standing silicene via Monte Carlo method 

with original and modified version of Tersoff potential parameter set (known as 

ARK) for silicon atom [28]. According to Bocchetti et al., original Tersoff 

parameters for silicon atom results in a melting of the free-standing silicene at 3600 

K, meanwhile the melting temperature obtained using ARK parameter set is only ~ 
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1750 K. Berdiyorov et al. simulated the influence of defect on the thermal stability of 

free-standing silicene via MD using Reactive force-field (ReaxFF) [29], where it is 

found that pristine silicene is stable up to 1500 K. As a general observation, melting 

properties and thermal stability of free-standing silicene obtained in MD simulations 

varies from cases to cases depending on the details of the simulation procedure. 

Furthermore, the simulation results are strongly force-field dependent. Apart from 

simulating thermal stability, MD simulation has also been applied to investigate or 

predict thermal conductivity of free-standing silicene. A wide range of potentials is 

employed in these simulations, and the potentials are of semi-empirical type. For 

example, Zhang et al. developed a set of Stillinger-Weber potential parameters 

specifically for a single-layer Si sheet to simulate the thermal conductivity [30]. Most 

researchers would often use Tersoff potential with original parameter sets though. 

 

2.4 Zinc Oxide 

 Zinc oxide (ZnO) has been extensively studied, both theoretically and 

experimentally, due to its many promising applications in piezoelectric devices, 

transistors, photodiodes, photocatalysis and antibacterial function [31-33]. The 

physical properties of ZnO, especially its surface properties, can be experimentally 

modified at the atomic level to engineer the material for desired functionality. Since 

ZnO contacts with its external environment through its surfaces, knowing how the 

surface properties respond to external perturbation (e.g. thermal treatment) would 

provide valuable information on how to manipulate ZnO for application purposes in 

future. And one of the simplest way researchers known is to heat ZnO to high 
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temperature (below its melting point). Heating ZnO can be easily carried out in 

practice, and many works had been reported along this line [34-36]. 

 ZnO crystals are dominated by four surfaces with low Miller indices: the non-

polar (1 0 1̅ 0) and (1 1 2̅ 0) surfaces and the polar surfaces which are the zinc-

terminated surface (0 0 0 1) and the oxygen terminated surface (0 0 0 1̅). Surface 

energy of polar surfaces in an ionic model diverges with sample size due to the 

generation of macroscopic electrostatic field across the crystal [37]. This kind of 

behavior was well investigated by Tasker [38]. Accordingly, wurzite ZnO is also 

labeled as Tusker-type surfaces, and these surfaces are formed by alternating layers 

of oppositely charged ions. 

 It is interesting to investigate what will happen to the atomic configuration of 

the surface when a ZnO slab with finite thickness is heated without melting. 

Sublimation of atoms from the polar surfaces due to temperature effect will be 

studied using molecular dynamics (MD) simulation, where the trajectories of all 

atoms at a given temperature 𝑇 are followed quantitatively. As will be reported in 

Chapter 4 when the result of the MD simulation of ZnO is represented, in which the 

reactive force field (ReaxFF) for ZnO is used, sublimation of O atoms from ZnO 

polar surface is observed. ReaxFF for ZnO allows bond formation and charge 

transfer among the selected atoms. When sublimation of atoms occurs, point 

vacancies are created on the surface. Quantitative information of the amount and type 

of atoms sublimated, as well as point vacancies created on the surface at different 

annealing temperatures can thus be obtained. 

 Experimentally, if a ZnO wurtzite surface is heated to an elevated 

temperature and investigate the resultant surface using photoluminescence (PL) 
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measurement, the spectrum should reflect the amount of point vacancies created. It is 

expected that an increase of annealing temperature will create more point vacancies. 

In this thesis, predictions from MD simulation are compared with PL data. 

2.5 Molecular Dynamics Simulation 

 Molecular dynamics (MD) simulation is used to solve equation of motion of 

particles in different phases [39]. It could reliably predict the physical properties of 

material even in non-ground state. Particles interact with each other at finite 

temperature for an extended period in a MD simulation. The atoms or molecules 

evolve in the system made possible by the interactive forces or so-called empirical 

inter-atomic potential. The forces that govern the motion of atom are in accordance 

with Newton’s Second law.  Using equation of motions of all particles in the system, 

the evolution of the system is solved as, 

𝑑𝑟𝑖

𝑑𝑡
= 𝑣𝑖 

(2.3) 

𝑑

𝑑𝑡
(𝑚𝑖𝑣𝑖) = 𝐹𝑖 = −∇𝑖𝑉 = −∇𝑖[Σ𝑗V2 (r𝑖 , r𝑗) + Σ𝑗,𝑘V3(r𝑖 , r𝑗 , r𝑘) + ⋯ ] 

(2.4) 

 

where 𝑖  denotes the particle in the system, 𝑉  is the interactive potential between 

particles, r𝑖 is the position of the particles while 𝑣𝑖  refers to the velocity of the 

system.  

 The initial conditions to commence an MD simulation include positional 

coordinates, initial random seed of the velocity and appropriate empirical potential 

(which will be elaborated in detail in Chapter 3) so as to derive the forces between 

particles. Regardless of the merits of the other algorithms in the simulation code 

(integrators, pressure and thermostat etc.), whether or not the simulation produces 
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realistic results depends ultimately on the empirical potential. Empirical potentials 

are also the computationally most intensive parts of a molecular dynamics simulation 

code, consuming up to 95% of the total simulation time. The simulated particles are 

placed in the simulation box with a defined boundary condition. There are two types 

of boundary condition: periodic boundary condition and fixed boundary condition. 

Periodic boundary condition eliminates the edge effect on the simulation box. 

Periodic boundary condition artificially creates the simulation box with infinite 

volume appropriate for simulating bulk or periodic crystal. This is achieved by 

replicating the simulation box in such a way that the particles within the simulation 

box would interact with their neighboring particles. As for fixed boundary condition, 

the simulation box is enclosed by “wall” or “edge” with a defined volume. The 

particles would be reflected to the simulation box when the interacting particles 

reach the boundary of the simulation box. This fixed boundary is suitable for the 

simulation of finite size particles such as clusters, surfaces and nanoparticles. 

 It is essential that thermalization process is performed onto the system to 

enable the system to achieve thermal equilibrium and minimum energy. 

Microcanonical ensemble (NVT) with Nose-Hoover [40] thermostat is best used to 

equilibrate a system to its local minima. The molarity, volume and temperature of the 

system are conserved. The ensemble performs time integration on Nose-Hoover style 

non-Hamiltonian equations of motion to generate positions and velocities. When 

used correctly, the time-averaged temperature of the particles will match the target 

values specified [41]. Sometimes, canonical ensemble (NVE) is also used, during 

which the system molarity, volume and energy are conserved. Thus, the equilibrating 

of the system can also be ascertained using NVE. The summary of concept of 

periodic boundary condition is shown in Figure 2.7.   
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Figure 2.7: Periodic boundary condition of molecular dynamics. Each particle not 

only interacts with every other particle in the system but also with all other particles 

in the copies of the system.  

 In practice, MD simulation is performed by using existing computational 

packages. There exist many full-fledged, multi-functional software packages 

implementing MD. The code Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) [42] is among the best known. It will be used exclusively in 

this thesis for simulating the thermal behavior of the three chosen nanosystems. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Epitaxial Growth of Graphene 

3.1.1 Empirical Potential 

 Simulation of epitaxial graphene growth involve Si and C atoms. In the 

context of MD simulation, the so-called force field, which refers to the interaction 

among these atoms has to be determined. The force field used in a MD simulation 

plays a vital role as the correctness of the simulated results is directly determined by 

it. For the case of carbon and silicon atoms, due to their wide applications in current 

materials science and semiconducting technology, many high-quality force fields 

have been historically developed. Considered as the most widely used in MD 

simulation of materials science involving carbon and silicon atoms is the prototype 

force field by Tersoff [43] and its more refined form, or the so-called TEA potential 

(Tersoff-Erhart-Albe) [44]. Both are empirical force fields developed based on 

experimental input and rigorous physical consideration. These two force fields will 

be used in simulating the epitaxial growth of graphene on the SiC substrate.  

 Tersoff or TEA force field has the following general expression,  

𝐸 = ∑ 𝐸𝑖 =
1

2
∑ 𝑉(𝑟𝑖𝑗)

𝑗≠𝑖𝑖

 
(3.1) 

where 𝐸𝑖 denotes the total energy for an atom at site 𝑖. The location of the site is 

denoted 𝑟𝑖 . The potential energy, 𝑉(𝑟𝑖𝑗), arising from the interaction between an 

atom at site 𝑟𝑖 and another at site 𝑟𝑗, where both are separated by a distance 𝑟𝑖𝑗, is 

assumed to take the following form in the original Tersoff paper,   

𝑉(𝑟𝑖𝑗) = 𝑓𝑐(𝑟𝑖𝑗)[𝑎𝑖𝑗𝑉R(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)] (3.2) 
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in which 𝑓𝑐 is a cutoff function varying continuously from 1 to 0 around the position 

(𝑆𝑖𝑗 + 𝑅𝑖𝑗)/2, where they are defined as per 𝑆𝑖𝑗 = (𝑆𝑖𝑆𝑗)1/2 and 𝑅𝑖𝑗 = (𝑅𝑖𝑅𝑗)1/2. 𝑆𝑖𝑗 

and 𝑅𝑖𝑗  respectively define the cutoff distance around (𝑆𝑖𝑗 − 𝑅𝑖𝑗)/2  for atoms 

located at the first-neighbor shell. Based on the ideas suggested in Tersoff’s original 

papers [49, 50], the function 𝑓𝑐 is chosen to take the form 

𝑓𝑐(𝑟𝑖𝑗) = {

1,
1

2
+

0,

1

2
cos[𝜋( 𝑟𝑖𝑗 − 𝑅𝑖𝑗)/(𝑆𝑖𝑗 − 𝑅𝑖𝑗)],  𝑅𝑖𝑗 < 𝑟𝑖𝑗 < 𝑆𝑖𝑗, 

 

(3.3) 

where 𝑖 and 𝑗 stands for C or Si. The first term in Eq. (3.2) (denoted by the subscript 

“R”) represents a repulsive part, whereas the second (denoted by the subscript “A”) 

an attractive one. 𝑉R(𝑟𝑖𝑗) and 𝑉A(𝑟𝑖𝑗) in the square brackets in Eq. (3.2) are both 

expressed in the Morse potential form, namely, 

𝑉R(𝑟𝑖𝑗) = 𝐴𝑖𝑗 exp[−𝜆𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑖𝑗
(0)

)] 

𝑉A(𝑟𝑖𝑗) = −𝐵𝑖𝑗 exp [−𝜇𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑖𝑗
(0)

)]. 

 

(3.4) 

The coefficients in Eq. (3.4) are defined via 𝐴𝑖𝑗 = (𝐴𝑖𝐴𝑗)1/2 , 𝐵𝑖𝑗 = (𝐵𝑖𝐵𝑗)1/2 , 

whereas coefficients in the exponents are 𝜆𝑖𝑗 = (𝜆𝑖 + 𝜆𝑗)/2 and 𝜇𝑖𝑗 = (𝜇𝑖 + 𝜇𝑗)/2.  

It is reasonable to assume that the interaction among the atoms is effective up 

to a distance set by the first-neighbor shell. Such assumption leads an approximated 

expression for the coefficient 𝑎𝑖𝑗, namely, 𝑎𝑖𝑗 = 1.  

𝑏𝑖𝑗  is much complicated quantity. It measures the bond order describing the 

coordination of atoms 𝑖 and 𝑗. Cast in the most general form, it reads  

𝑏𝑖𝑗 = 𝜒𝑖𝑗(1 + 𝛽𝑖
𝑛𝑖𝜍𝑖𝑗

𝑛𝑖)
−

1
2𝑛𝑖 , 

(3.5) 
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where the parameter 𝜒𝑖𝑗 plays the role of strengthening or weakening the heteropolar 

bonds, relative to the value estimated by interpolation, and  

𝜍𝑖𝑗 = ∑ 𝑓𝑐(𝑟𝑖𝑘)

𝑘≠𝑖,𝑗

𝑔(𝜃𝑖𝑗𝑘) exp[𝑣𝑖𝑗
𝑚(𝑟𝑖𝑗 − 𝑟𝑖𝑘)𝑚]. (3.6) 

Eq. (3.7) contains the three-body interaction function 

𝑔(𝜃𝑖𝑗𝑘) = 𝛾𝑖𝑘[1 +
𝑐𝑖𝑘

2

𝑑𝑖𝑘
2 −

𝑐𝑖𝑘
2

𝑑𝑖𝑘
2 + (ℎ𝑖𝑘 − cos 𝜃𝑖𝑗𝑘)2

] 
(3.7) 

In Eq. (3.7), 𝜃𝑖𝑗𝑘  is the bond angle between bond 𝑖𝑗  and any atom at 𝑘 (≠ 𝑖, 𝑗) 

bonded with atom 𝑖  forming bond  𝑖𝑘 , and constants 𝛾𝑖𝑘, 𝑐𝑖𝑘, 𝑑𝑖𝑘 and ℎ𝑖𝑘  are 

accordingly determined by three-body interactions.  

3.1.2 Construction of 6H-SiC substrate  

To begin with the MD simulation, a data file containing the details of the 

positions of all atoms in the unit cell and the lattice parameters of a 6H-SiC (0001) 

crystal has to be first prepared. The information of the crystal structure of the 6H-SiC 

(0001) substrate was obtained from the NRL (Naval Research Laboratory) structure 

database [45], and is reproduced in Table 3.1.  
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Table 3.1: LAMMPS input requires for the data files which provides information 

required for constructing a rhombus shape 6H-SiC substrate. The information was 

extracted from http://cst-www.nrl.navy.mil/lattice/struk/6h.html [45]. 

The numerical values of the primitive vectors 𝐀1, 𝐀2, 𝐀3  (correspond to 

a(1), a(2), a(3) in Table 3.1) are, according to the NRL database, 

𝐀1 = {1.54035000, −2.66796446,0 .00000000}, 

𝐀2 = {1.54035000,2.66796446,0.00000000}, 

𝐀3 = {0.00000000,0.00000000,15.11740000}, 

in nanometers. In a more conventional notation, the three primitive 

vectors 𝐀1, 𝐀2, 𝐀3  are denoted 𝒂 ≡ 𝐀1, 𝒃 ≡  𝐀2, 𝒄 ≡ 𝐀3 respectively. The norm of 𝒂, 

𝒃, 𝒄, denoted by 𝑎, 𝑏, 𝑐, are the three lattice constants defining the SiC unit cell. The 

value of a can be easily solved for, as per 

http://cst-www.nrl.navy.mil/lattice/struk/6h.html%20%5b45
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𝒂2 = 𝐀1
2 =  1.540350002 + 2.667964462 = (

𝑎

2
𝐗 −

√3𝑎

2
𝐘)

2

= 𝑎2 

⇒  𝑎 = 3.08 

𝒃2 = 𝐀2
2 = 1.540350002 + 2.667964462 = (

𝑎

2
𝐗 −

√3𝑎

2
𝐘)

2

= 𝑏2 

⇒ 𝑏 = 𝑎 = 3.08. 

𝐗, 𝐘, 𝐙  denote the elemental basis vectors, namely, 𝐗 = {1,0,0}, 𝐘 = {0,1,0}, 𝐙 =

{0,0,1}. Since 6H-SiC belongs to the hexagonal class, by definition, 𝑏 = 𝑎, 𝛼 = 𝛽 =

90° and 𝛾=120°, where 𝛼 is the angle between the lattice vectors 𝒂 and 𝒄, 𝛽 the 

angle between the lattice vectors 𝒃 and 𝒄, 𝛾 he angle between the lattice vectors 𝒂 

and 𝒃. The lattice parameter 𝑐 is simply the norm of 𝐀3, 𝑐 = 15.12, The unit cell for 

the SiC crystal so constructed is rhombus in shape. However, LAMMPS does not 

support direct input for the angles of hexagonal lattice. The lattice constants a, b, c 

and angles in the form of 𝛼, 𝛽 and 𝛾 need to be converted into LAMMPS-readable 

form, lx, ly, lz, xy, xz and yz. The conversion is shown in Equation 3.8. 
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                                                                                    (3.8) 

 

 

 

 

 

 

 

Figure 3.1: Visualization of the SiC unit cell. Si atom is in light blue. The type of 

atom can be read off from column 3 in the inset. The 𝑧-coordinate of each atom, 

which are labeled No. 1 to No. 12 in the first column of the inset, are clearly shown 

in the last column of the inset.  

There is a total of 12 atoms in a unit cell of a 6H-SiC crystal, see Figure 3.1. 

Coordinates of each atom in the unit cell are also displayed. The last column in the 

figures of Fig. 3.1 refers to the 𝑧 -coordinates of the respective atoms. Vertical 

distance between the atoms can be deduced from their 𝑧 -coordinates 

straightforwardly. The unit cell when repeated along the 𝑥-direction and 𝑦-direction 

via periodic boundary condition will form an infinite substrate along these two 
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