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MODEL EMPIRIK UNTUK MENGANGGARKAN AIR BOLEH KERPAS 

DENGAN MENGGUNAKAN DATA SATELIT ADVANCED TIROS 

OPERATIONAL VERTICAL SOUNDER DI SEMENANJUNG MALAYSIA  

ABSTRAK 

Air boleh kerpas (PW) merupakan satu pemboleh ubah yang giat berubah, 

tetapi gas rumah hijau ini penting untuk mengawal bajet sinaran bumi. Pengetahuan 

yang mencukupi mengenai pengagihan dari segi ruang dan masa adalah diperlukan 

untuk penerangan dan pemahaman yang lebih baik mengenai cuaca dan iklim global. 

Terdapat beberapa kajian di Semenanjung Malaysia yang mengangar jumlah air 

yang kerpas (TPW) dengan menggunakan data in situ, cara ini kurang 

mempertimbangkan situasi persekitaran dengan mengeluarkan kesan peredatan 

tempatan dan perbezaan topografi yang dianggap penting dalam kajian cuaca 

berskala kecil. Penggunaan parameter meteorologi tunggal untuk menganggarkan 

TPW biasanya melemahkan parameter lain yang mungkin mempunyai kesan 

gabungan pada wap air lajur. Oleh sebab ini, algoritma baru berdasarkan regresi 

linear berganda (MLR) untuk menganggarkan TPW dicadangkan dengan 

menggunakan rekod data iklim homogenisasi yang diperolehi dari ATOVS di atas 

NOAA bersama dengan pemerhatian permukaan untuk tempoh 2001 - 2011. Data 

ATOVS mempunyai padanad yang baik dengan pengukuran radiosonde dari segi 

spasial mahupun musim dengan pekali korelasi (r) dari 0.60 - 0.98. Hubungan baru 

antara lapisan bawah (WL) dan lapisan lain yang lebih tinggi, daripada bentuk 𝑊 =

𝛼(𝜑)[𝑊𝐿]𝛽(𝜑) telah dicadangkan, dengan W adalah lapisan tengah atau lebih tinggi 

PW, β ialah koefisien yang berfungsi latitud (φ). Model-model ini memberikan 

kesilapan persegi dan rintangan akar min (RMSE) dari nilai masing-masing antara 
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0.867 - 0.926 dan 1.65 - 2.38 mm bagi kedua-dua ramalan WM dan WH di zon yang 

digariskan. Gambaran keseluruhan pengedaran spatial TPW purata bermusim 

menunjukkan penurunan secara umum dari selatan ke utara di Semenanjung 

Malaysia, dengan gradien mendatar di sepanjang sempadan barat semasa NEM. 

Kadar variasi bulanan bagi spatial dan temporal pada parameter meteorologi yang 

terpilih menunjukkan bahawa kitaran tahunan dan corak spatial kelembapan relatif 

padan dengan TPW, dengan nilai maksimum diperolehi dalam SWM dan sekurang-

kurangnya semasa tempoh NEM. Nilai yang lebih tinggi didapati secara spatikal 

dalam SZ dengan nilai yang lebih rendah yang digambarkan di NZ. Suhu 

menunjukkan struktur yang hampir seragam di zon dengan nilai maksimum pada 

bulan Mei / Jun dan nilai yang berkurangan pada bulan Januari. Secara umumnya 

kelembapan relatif mempunyai kesan spatial dan temporal yang dominan pada TPW 

di seluruh kawasan kajian. Algoritma baru yang dicadangkan untuk menganggarkan 

TPW memberikan hasil yang sangat menggalakkan dalam semua zon. Bagi tempoh 

gabungan, nilai R2 adalah 0.967, 0.946, dan 0.935 di NZ, SZ, dan CZ masing-

masing, dengan nilai MBE dan RMSE pada 0.09, 0.81, -0.97 mm dan 0.93, 1.34, dan 

1.68 mm dalam susunan yang sama. Algoritma rangkaian neural buatan (ANN) 

menunjukkan kuasa ramalan yang sangat baik apabila dibandingkan dengan MLR. 

Prestasi kedua-dua algoritma MLR dan ANN berbeza-beza dalam ruang dan musim 

dengan hasil yang memuaskan adalah di NZ dan kurang memuaskan di SZ. Kedua-

duanya menunjukkan data yang lebih baik di kebanyakan bahagian NEM daripada 

tempoh SWM. Pada umumnya, kedua-dua MLR dan ANN mempamerkan potensi 

yang besar dalam ramalan TPW di Semenanjung Malaysia dengan yang lebih rendah 

mengatasi bekas. 
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EMPIRICAL MODELS FOR ESTIMATING PRECIPITABLE WATER 

USING ADVANCED TIROS OPERATIONAL VERTICAL SOUNDER 

SATELLITE DATA OVER PENINSULAR MALAYSIA 

 

ABSTRACT 

Precipitable water (PW) is a highly variable, but important greenhouse gas that 

regulates the radiation budget of the earth. Adequate knowledge on its distribution, 

in space and time, is required for a better description and understanding of weather 

and global climate. The few existing studies in Peninsular Malaysia utilized in situ 

data to estimate TPW, with the consequences of oversimplifying the situation by 

masking the effects of local circulation and topographical difference, which are 

considered important in small scale weather studies. Also, the use of single 

meteorological parameter to estimate TPW usually undermines other parameters that 

may have combined effect on the column water vapour. New models based on 

multiple linear regression (MLR) to estimate TPW have, therefore, been proposed 

using homogenized climate data records derived from ATOVS onboard NOAA 

along with surface observations for the period 2001 – 2011. ATOVS data agreed 

well with radiosonde measurements, both spatially and seasonally, with correlation 

coefficients (𝑟) ranging from 0.60 – 0.98. New relationship between lower layer 

(WL) and other layers aloft, of the form 𝑊 = 𝛼(𝜑)[𝑊𝐿]𝛽(𝜑) have been proposed, 

with W being either middle or higher layer PW, 𝛼 and 𝛽 are coefficients that are 

functions of latitude (φ). The models gave 𝑟 and root mean square error (RMSE) of 

respective values between 0.867 – 0.926 and 1.65 – 2.38 mm for both the WM and 

WH predictions across the delineated zones. An overview of the spatial distribution 
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of seasonal mean TPW showed general decreases from south to north over 

Peninsular Malaysia, with intense horizontal gradients along the western boundary 

during the NEM. Spatial and temporal variability of monthly mean of selected 

meteorological parameters show that annual cycle and spatial pattern of relative 

humidity are similar to those of TPW, with maximum values obtained in SWM and 

least during the NEM period. Higher values are spatially found in the SZ with lower 

values depicted in NZ. Temperature presents almost uniform structures across the 

zones with maximum values in May/June and least in the month of January. 

Generally, relative humidity had dominant spatial and temporal impact on TPW in 

the entire study area.  The proposed models gave very encouraging results in all the 

zones. For the overall period, R2 was 0.967, 0.946, and 0.935 in NZ, CZ, and SZ 

respectively, with MBE and RMSE being 0.09, 0.81, -0.97 mm and 0.93, 1.34, 1.68 

mm in the same order.  Artificial neural networks (ANN) models showed excellent 

predictive power when contrasted with the MLR models.  The performance of both 

the MLR and ANN models vary in space and season, with best results in NZ and 

least in SZ. They both showed better data fitting in most part of the NEM than the 

SWM period. Generally, both the MLR and ANN exhibited great potentials in the 

prediction of TPW in Peninsular Malaysia with the latter marginally outperforming 

the former. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

Atmospheric water vapour, also known as precipitable water vapour or 

simply, precipitable water (PW), is the gaseous phase of water in the Earth’s 

atmosphere. It is formed due to the constantly changing phases of water within the 

range of normal atmospheric temperatures because of evaporation, 

evapotranspiration, vaporisation of liquid water, or the sublimation of ice (Figure 

1.1). The amount of water vapour in the air is usually determined through the 

quantification of its humidity content such as mixing ratio (gkg-1), specific humidity 

(gkg-1), vapour pressure (hPa or mb), or relative Humidity (%). 

Deposition 

Sublimation 

 

 

Figure 1.1 Phase transitions of water in the hydrologic cycle 

Though PW represents a small percentage (0 – 4%) of the entire atmospheric 

gas constituents, it is environmentally significant in determining weather and climate 
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(Lagzi, 2013). Water vapour is arguably the most abundant and most influential of all 

the major greenhouse gases in the atmosphere. It plays a prominent role in the 

greenhouse effect  (Ernest Raj et al., 2008; Forster and Collins, 2004; Marsden and 

Valero, 2004) due to its transparency and opacity to shortwave and longwave 

radiations from the sun and the surface of the earth respectively.  

Aside being the most abundant of the greenhouse gases, PW exhibits high 

spatial and temporal variability, with values ranging from about 50 mm near the 

equator to less than 5 mm as much at the poles (Mockler, 1995; NCDC, 2013). The 

global distribution of total precipitable water, whose concentration is indicative at the 

lower latitudes, is depicted in Figure 1.2.  Its spatial variation is more pronounced  

 

Figure 1.2 Global monthly total precipitable water vapour (TPW) for 2009 derived 

 from Advanced TIROS Operational Vertical Sounder (ATOVS) 

measurements (Courcoux & Schröder, 2015) 

vertically, in which 50% or more is found below the 850 hPa pressure level, while 

over 90% is confined to the layer below 500 hPa (Peixóto & Oort, 1983). The 

vertical concentration slides gradually with altitude at higher latitude, but at the 

lower latitudes it experiences steep vertical decrease (Peixóto & Oort, 1983; 

Parameswaran & Murthy, 1990) as shown in  Figure 1.3. The average residence time 
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of tropospheric water vapour is  about 8 days, with the tropical convergence zones 

condoning it for about 12 days (Trenberth, 1998) while the residency at subtropical 

high regions is much shorter (Grody, et al., 2001).  

 

Figure 1.3 Annual mean specific humidity (Oort, 1983). The red solid line indicates 

humidity variation for the latitude 100 S – 100 N, the green and blue dash-lines are 

for latitudes 400 – 500 N and 700 – 800 N respectively. 

Knowledge of the total vertical column of water vapour is considered more 

useful than surface humidity, particularly in the studies of radiation budget (Jacob, 

2001), and the forecast of precipitation or nocturnal radiation loss, (Tuller, 1977). 

The determination of horizontal inflow of moisture over an area is useful in the 

quantitative forecast of the amount of precipitation received by a particular area in a 

given time or from a given storm (Ojo, 1970). Its role in amplifying global warming, 

through the provision of the largest positive feedback in model projections of climate 

change, is acknowledged by Held & Soden (2000). This has led to huge impacts on 

economic activities such as agriculture, communications, utilities as well as services 

in a region or local community (Lazo & Demuth, 2009). 
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 Furthermore, a better description and understanding of weather and global 

climate, requires sufficient knowledge of the distribution and evolution of water 

vapour, which is a dominant feedback variable in the atmosphere (Dessler & 

Sherwood, 2009; IPCC, 2007). Its changes in the middle and upper troposphere are 

particularly crucial in discerning climate change (Held and Soden, 2000). The 

relevance of PW, particularly, in the tropics includes, but not limited to the provision 

of: (i) fresh water to drive the economies of most tropical communities through its 

condensation; (ii) latent heat, during freezing or condensation, for atmospheric 

motion and convective weather systems, which are important mechanisms for the 

upward transport of heat in the tropics; (iii) atmospheric correction of high spatial 

resolution satellite data as well as the enhancement of the precision of land surface 

temperature estimates. 

Peninsular Malaysia, being an equatorial region, is exposed to many climatic 

factors, including year-round high solar insolation, seasonality in monsoon 

circulations, the movement of convective systems and higher temperature 

(Devasthale, et al., 2011).These factors are prominent in the zonal distribution and 

vertical structure of the climate system. A lot of rain is ushered into the region, 

particularly during the monsoon seasons, the consequences of which are frequent 

floods. Monsoon, in the context of this study, connotes a seasonal prevailing wind in 

South and Southeast Asia regions, blowing as westerlies or easterlies, between May 

and September and from November to March respectively. In between these periods 

are inter-monsoon months of April and October. 

Due to the foregoing impacts and relevance of PW, there is increasing interest 

in its measurement at the surface and in its total abundance in a vertical column 
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through the atmosphere. The latter parameter is called the integrated, columnar, or 

total precipitable water (TPW), and its estimation is the central subject of this thesis. 

When measured in linear unit [1mm =1kg/m2 (IPCC, 2001)], it is defined as the 

depth (or thickness) of liquid water that collects, if all the vapour in the zenith 

direction were condensed, at the surface of a unit area (Dupont, et al., 2008; Gruber 

& Watkins, 1982). 

Despite the importance of PW in many different applications, scientists were 

unable to study its spatial and temporal distribution until global radiosonde data 

became available in the later part of 1940s (Trenberth, et al., 2005). Figure 1.4 shows 

the spatial distribution of global radiosonde network as at 2005 and Table 1.1 

contains the number of stations that reported to European Centre for Medium-Range 

Weather Forecasts (ECMWF) in the latter part of 2016. 

 

Figure 1.4 Global radiosonde network (Courtesy: NOAA’s National Weather Service) 

Routine surface meteorological observations, whose global stations 

distribution is shown in Figure 1.5, are also deployed in the measurements of water 
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vapour content. Other techniques deployed by the atmospheric science community to 

estimate PW at the local, regional or global scales include: ground-based microwave 

radiometers, LIDAR systems, sun photometers or equivalent instruments. Algorithms 

to derive the PW from temperature measurements by infrared (IR) radiometers as 

well as satellite observations, have also been deployed. However, each of these 

methods has its merits and limitations. 

Table 1.1 Number of radiosonde stations from which reports are received at ECMWF 

for 2016 by World Meteorological Organization (WMO) region. For 0000 UTC and 

1200 UTC. These are those that report 30 hPa temperature at least 25 times. 

Region Number of 

Stations 

Period of Observations 

0000 UTC 1200 UTC 

Africa 43 25 37 

Antarctica 15 9 11 

Asia 301 294 265 

Europe 155 143 134 

North America & Caribbean 156 138 156 

South America 55 37 54 

Southwest Pacific 97 95 70 

 

 

Figure 1.5 Global distribution of integrated surface database (source: NCEI-NOAA). 

One of the great challenges of climatological analysis is the issue of inhomo-

geneous data (Kassomenos & McGregor, 2006), particularly for radiosonde network 
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(Elliott & Gaffen, 1991). Generally, due to frequent changes in data assimilation 

systems and models, operational analyses from in situ and satellite observations are 

short in providing homogenous data sets on the atmospheric moisture budget. In 

recent decades, however, strong improvements have been witnessed owing to the 

accuracy of atmospheric model analyses, re-analyses, and forecasts (e.g. Jakobson & 

Vihma, 2010; Uppala et al., 2005). Retroactively produced (reanalysis) data, based 

on the utilization of the same model and data assimilation procedure are, therefore, 

better in this respect. 

When the required PW data are scarce or compromised by spatial or temporal 

homogeneity, the use of empirical models are common practices (Maghrabi & Al 

Dajani, 2013; Hussain, 1984; Guerova et al., 2005). Such models have been found to 

be the most popular technique providing both simplicity and straight forward means 

of estimating the value of PW. Rencher & Schaalje (2008) are also of the view that 

empirical models in many cases, provide useful approximations of the relationships 

among variables. Several parametric models of PW, using empirical data, have been 

developed in the past. The methods are usually based on the statistical fit between the 

PW data and surface meteorological parameters (e.g. Ruckstuhl, et al., 2007; 

Maghrabi & Al Dajani  2013). 

Very few attempts to parameterize PW over tropical Asia are reported in the 

literature. For instance, Gautam, et al., (1992) applied a relationship obtained by Liu, 

(1991) on instantaneous data from the Indian Ocean but got very large root mean 

square error. Using surface observations for stations in north and central India, 

Hussain (1984) developed an empirical model for the estimation of PW as a function 

of air temperature and relative humidity. To the best of the researcher’s knowledge, 
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there is no existing report in the literature, on the use of multiple regression models 

to parameterized PW in Peninsular Malaysia. The few studies on the quantification 

of TPW are based on the use of GPS measurements (e.g. Musa et al., 2011; Opaluwa, 

et al., 2014). Suparta, et al. (2017), however, proposed a method for the estimation of 

PW in Peninsular Malaysia, applying a one-month surface meteorological data at the 

Universiti Kebangsaan Malaysia Bangi station, using Adaptive Neuro-fuzzy 

Inference System (ANFIS) technique. These studies are generally localized point 

assessment of TPW concentration without enough insight on its behavior or trend 

elsewhere within the peninsular. 

1.1.1 The Structure of the atmosphere 

The atmosphere, which consist of 4 major layers: troposphere, stratosphere, 

mesosphere, and thermosphere, is a blanket of varying air composition that envelops 

the Earth (see Figure 1.6). Apart from providing gases and regulating heat energy 

from the sun for the adaptation of life, the Earth’s atmosphere plays an important role 

in the water cycle, just as it shields the Earth from harmful UV rays and small 

meteors by causing them to be incinerated through friction. 
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Figure 1.6 The Structure of the Atmosphere, showing the variation of global 

temperature with altitude and pressure (Teachertech, 2006) 

1.1.2 Gaseous composition of the Atmosphere 

The Earth’s dry atmosphere is composed mainly of nitrogen (N2), oxygen 

(O2), and argon (Ar) (Table 1.2). These gases have limited interactions with the 

incoming solar radiation and do not interact with the infrared radiation emitted by the 

Earth. However, there are a number of trace gases, known as greenhouse gases, such 

as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3), which 

absorb and emit infrared radiation. These so-called greenhouse gases, with a total 

volume mixing ratio in dry air of less than 0.1% by volume, play essential role in the 

Earth’s energy budget. Moreover, the atmosphere contains water vapour (H2O), 

which is also a natural greenhouse gas with highly variable volume mixing ratio. 

Because these greenhouse gases, including H2O, absorb the infrared radiation 

emitted by the Earth, they tend to raise its surface temperature. 
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Table 1.2 Gaseous composition of the atmosphere (Source: http://geogrify.net/-

 GEO1/Images/FOPG/03T2) 

Permanent Gases  Variable Gases 

Gas Symbol %/Dry Air  Gas Symbol 

Nitrogen N2 78.08  Water vapour H2O 

Oxygen O2 20.95  Carbon dioxide CO2 

Argon Ar 0.93  Methane CH2 

Neon Ne 0.0018  Nitrous oxide N2O 

Helium He 0.0005  Ozone O3 

Hydrogen H2 0.0006    

Xenon X2 0.000009    

1.1.3 Pressure and temperature profiles of the Atmosphere 

As shown in Figure 1.6 above, pressure levels in the troposphere and indeed 

the atmosphere are highest at sea level and decrease exponentially with increase in 

altitude. Temperature is also higher at low altitudes and generally decreases linearly 

upwards until the end of the troposphere where there is a discontinuity called the 

Tropopause. Temperature inversion occur just beyond the Tropopause and then 

begins to increase further up into the Stratosphere. 

1.1.4 The Troposphere 

The Troposphere is the lowest of the Earth’s atmospheric layers and holds 

approximately 80 and 99% of its mass and water vapour content respectively. Most 

of the parameters associated with the temporal evolution of weather are generated in 

this layer. The average height of the troposphere is ~ 7 km in the Polar Regions and 

about 20 km at the low latitudes (Danielson et al., 2003). However, these heights 

have been shown to increase with rising mean temperature. The less convection 

experienced by air in cold regions compare to warmer areas explains the lower 

http://geogrify.net/-
http://geogrify.net/-
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tropospheric heights at the poles and higher heights at the equator (Geerts & Linacre, 

1997). 

1.2 Probing the Earth’s atmosphere from space 

The advent of satellite platforms in geostationary and low-earth orbits has 

enhanced the observation of earth and its atmosphere, whereby observations are 

almost simultaneously made at a global scale. This has greatly ameliorated the spatial 

limitations surfer by ground-based observations, particularly over oceans and remote 

land areas. Space-based measurements of PW are achieved either from passive 

microwave sounding or near-infrared (thermal-infrared) channels. Passive 

microwave observations have the advantage of being able to detect PW on both 

cloudy and cloud-free atmosphere compared to infrared measurements because they 

are able to penetrate clouds easily. 

NOAA's operational weather satellite system, from which data for the current 

study are derived, is composed of two types of satellites: geostationary operational 

environmental satellites (GOES) for short-range warning, and polar-orbiting 

satellites for longer-term forecasting. The polar orbiters can monitor the entire Earth, 

tracking atmospheric variables and providing atmospheric data and cloud images. 

The satellites provide visible and infrared radiometry data that are used for imaging, 

radiation measurements, and temperature profiles. These satellites send more than 

16,000 global measurements daily via NOAA's Command and Data Acquisition 

(CDA) station to NOAA computers, adding valuable information for forecasting 

models, especially for remote ocean areas, where conventional data are lacking. 

Currently, NOAA is operating five polar orbiters. The newest being NOAA-19, 
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which was launched in 2009. NOAA-15 to -18, however, continue to transmit data as 

stand-by satellites.  

The Advanced [Television Infrared Observation Satellite (TIROS) 

Operational Vertical Sounder (ATOVS)] suite of instruments; High Resolution 

Infrared Radiation Sounder (HIRS); Advanced Microwave Sounding Unit-A and -B 

(AMSU-A/B); and Microwave Humidity Sounder (MHS), on NOAA and 

Meteorological Operational (Metop) satellites, represent infrared spectrometers and 

microwave radiometers. The combination of these three instruments contains enough 

information to infer atmospheric profiles of temperature and specific humidity. 

Satellite Facility for Climate Monitoring (CM-SAF) provides water vapour products, 

retrieved from ATOVS, with comparably high spatial resolution at the regional and 

global scales, 

1.3 Statement of the Research Problem 

The variability of PW in space and time, including its radiative features, 

poses a great challenge in its sampling and measurement. This explains why several 

different techniques are used by scientists to quantify the parameter. The traditional 

profiling instruments, such as Radiosonde, GPS, and Water Vapour Radiometer 

(WVR), have varying limitations as mentioned in subchapter 1.1 above. For instance, 

the accurate instantaneous data obtained from radiosonde system (Nash et al. 2011) 

is thwarted by its temporal and spatial heterogeneity (Oltmans & Hofmann, 1995), 

particularly in Peninsular Malaysia, where only four stations are currently 

operational. Although GPS are adjudged to perform well under clear and 

rainy/cloudy weather (Solheim, et al., 1999), the ground-based receivers, especially 

in the tropics, are spatially sparse (Musa et al., 2011; Opaluwa, et al., 2014). For 
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instance, Musa et al. (2011), have identified very few Continuously Operating 

Reference Stations (CORS) for effective calibration of the GPS profiles. Water 

Vapour Radiometer (WVR), in addition to being limited in spatial resolution 

(Lanzante, et al., 2003), its performance deteriorates under intense convective 

weather (Chan, 2009). 

By contrast, since the tropics have a relatively homogeneous air mass and 

fairly uniform distribution of surface temperature and pressure than the mid- and 

higher- latitudes, local and mesoscale systems are considered more important in 

weather studies than synoptic system (Gaffen, et al., 1992; Trenberth et al., 2005). 

The limitations of the traditional profiling instruments in the peninsular, however, 

makes the studies of spatial and temporal variability of PW and its prediction, over 

large area, unreliable. This is because large areas of great local diversity have 

generally been treated as unity by previous quantifiers. The oversimplification of the 

situation by these macro-studies can be seriously misleading since the effects of 

small topographical differences and local circulation are most likely to be eclipsed.  

The few investigations on the estimation of PW in Peninsular Malaysia, cited 

earlier, were also unmindful of the variability in the vertical profile of humidity, 

which plays significant roles in the accurate estimation (or prediction) of precipitable 

water (e.g. Tuller, 1977; Gaffen, et al., 1992). Furthermore, the use of single 

meteorological parameter (e.g. mixing ratio, specific humidity, etc.), which may be 

compromised by either measurement accuracy, data coverage, or analysis 

uncertainty, by most scholars to empirically estimate PW, undermines other 

parameters (e.g. surface pressure, station height, temperature, etc.) that have 

combined effect on the TPW above an area. 
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To ameliorate the limitations posed by the various tools deployed in 

estimating PW, i.e. the use of few meteorological parameters, and limited knowledge 

on its vertical component, particularly in Peninsular Malaysia, multiple linear 

regression (MLR) models become imperative. Homogenized humidity data from 

ATOVS are, therefore, used to propose empirical relationships between: (i) the 

surface and other isobaric layers of PW. (ii) TPW and selected surface 

meteorological parameters (temperature, pressure, and relative humidity) for 

Peninsular Malaysia. 

1.4 Aim and Objectives 

The aim of the research is to develop models, based on surface 

meteorological parameters, for the estimation of TPW in Peninsular Malaysia, with 

the following specific objectives: 

i. To analyse the behaviour of TPW and layered precipitable water (LPW) 

over Peninsular Malaysia, using data retrieved from radiosonde and 

ATOVS on board NOAA and Meteop satellites, as an initial step in 

establishing data climatology in the study area. 

ii. To evaluate the spatial distributions and temporal variations of PW from 

ATOVS as well as establishing empirical relationships between the 

boundary layer and upper layers of the humidity quantity. 

iii. To determine the impacts of temperature, relative humidity, and 

pressure on TPW over the study area. 

iv. To develop models using multiple linear regression (MLR) method and 

comparing with artificial neural network (ANN) models for the 
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prediction of TPW in Peninsular Malaysia, using surface temperature, 

relative humidity, and pressure as input parameters. 

1.5 Research Question 

Previous empirical methods to estimate TPW have been deployed by many 

researchers at different stations and regions as reported in subchapter 1.1. Some 

salient questions, therefore, arise in the quest to establish models to predict PW in 

Peninsular Malaysia. These include: (i) to what extent does the ATOVS-retrieved 

data agree, both in space and time with the radiosonde-derived data over Peninsular 

Malaysia? (ii) how is PW distributed both in space and time over Peninsular 

Malaysia? (iii) is there any empirical relationship between the lower layer PW and 

other layers aloft? (iv) how does TPW relate with surface meteorological parameters 

(temperature, pressure, and relative humidity)? (v) can the relationship in (iv), if any, 

be determined using multiple linear regression models? (vi) given values of the 

screen level parameters, can the determined relationship effectively predict TPW? 

(vii) how accurate can the method of Artificial Neural Networks (ANN) predict TPW 

compared to the MLR method? 

1.6 Research Hypothesis 

Generally, it is believed that effective relationship between PW at the 

boundary (surface) layer in the troposphere with other layers aloft, points to possible 

relationship between TPW and surface moisture content (e.g. specific humidity, 

mixing ratio, dew point, vapour pressure, or relative humidity).   

Columnar relative humidity, for a given site in tropical climate, assumes a C-

shape structure with values gradually decreasing with rising altitude, culminating at 
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least values in the mid-troposphere. Higher up towards the upper troposphere, the 

trend resumes increasing tendency with height up to the tropopause (Folkins, et al., 

2002). This, points to a possible linear relationship between RH and PW, which is 

also noted to decrease with altitude.  It is therefore, expected that higher PW implies 

higher RH and vice versa. Decreasing temperature and pressure with altitude within 

the troposphere, as seen in subchapter 1.1.1, also indicate some form of relationships 

between the duo and TPW.  

From the foregoing, the method of MLR model can be used to build a 

relationship between TPW and the three parameters (temperature, pressure, and 

relative humidity). Considering the carefully reanalysed ATOVS data over a region, 

it is possible to develop predictive models that combine satellite and surface data for 

the accurate prediction of TPW, with temperature, relative humidity and pressure 

factored in as input variables. The predicted TPW is expected to compare very well 

with that derived from the radiosonde technique, which is regarded as the standard 

water vapour profiling instrument. 

1.7 Scope of the Study 

This research is limited to establishing the variability of precipitable water, 

and developing models, based on MLR, to quantify TPW using homogenized 

ATOVS data and the meteorological variables mentioned in section 1.4. The period 

covered by the study is between 2001 and 2011, with the geographical scope being 

Peninsular Malaysia, as described in subchapter 3.2. Peninsular Malaysia was 

selected for this study because of the high amount of atmospheric water vapour 

experienced, mainly due to the high evaporation rates ascribed to the prevailing 

monsoons that exhibit seasonal changes within the region. Though the homogenized 
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ATOVS data are available from 1999 to 2011, the first 2 years are constraint in 

quality due to a large number of missing values, which explains the use of only 11 

years observations. 

Empirical relationships between the isobaric layers of tropospheric water 

vapour, using ANOVA technique on ATOVS data, have also been developed in the 

study. Although climate models, based on computer simulations, have become 

widely used tools for the study of global and regional climate phenomena, the 

approach has not been used in the current study. This research has been restricted to 

the use of actual satellite-retrieved, radiosonde-derived (for validation) data, and 

surface observations from selected meteorological stations across Peninsular 

Malaysia (see Figure 3.1). ANN models, with TPW as output and the selected 

meteorological variables as inputs have also been developed and compared with the 

proposed MLR models.  An attempt has also been made to explore the spatial 

distribution and seasonal variations of tropospheric water vapor over the peninsular.  

1.8 Novelty and Significance of the Study 

Knowledge of the spatial distribution and temporal variability of PW, both in 

the vertical and horizontal dimensions, is not only important in forecasting regional 

weather and the understanding of the global climate system, but also for information 

on weather variability, as mentioned earlier. Therefore, for precise prediction and 

modelling of weather, the required information on the vertical profile of its 

parameters needs accurate and continuous gathering, both in time and space 

(Shuman, 1978). Due to the spatial limitations of the various water vapour profiling 

instruments and platforms, particularly in the current study area as earlier 

enumerated, an attempt has been made to mitigate the over masking of local 
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circulations occasioned by the scarcity of homogenous spatial and temporal data. 

This is achieved by using retroactively homogenized data from ATOVS to develop 

empirical models for the estimation of both LPW and TPW for Peninsular Malaysia. 

This study, based on available literature, is the first to develop and apply 

empirical methods for the estimation of both layered and total precipitable water over 

the entire Peninsular Malaysia using satellite and surface observations across data 

void regions. It is also the first to formulate inter-layer PW relationship with latitude 

factored in. Moreover, novel MLR models, from the amalgamation of satellite and 

surface observations, for the estimation of TPW in the study area have been 

developed. The use of ANN model to produce models capable of estimating TPW 

using satellite data in the study area also appears to be unique. The first ATOVS data 

climatology, involving a distinctive picture of both temporal and spatial variability of 

layered and total precipitable water over Peninsular Malaysia, has been conducted. 

The proposed models, apart from being cost effective, are expected to provide 

simple means for continuous estimation of TPW as an initial input in local weather 

predictions for environmental and meteorological applications. More so, the analysis 

of the temporal and spatial variability of PW, spanning a period of 11 years, is 

expected to provide further understanding on its distribution patterns, which is vital 

in the effective mitigation of weather and climate impacts in the study area, as 

already stated.  

1.9 Thesis Outline 

The content of this dissertation, which is structured into five broad sections, 

organized as chapters, is briefly outlined in the following paragraphs; 
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Chapter 1 is on the general introduction of the entire research, and 

commences with the background of the study, providing an overview of the thesis. 

This is immediately followed by a brief description of the vertical structure of the 

atmosphere, with its gaseous composition as well as the profiles of pressure and 

temperature. The roles and significance of PW measurements in the climate system 

are also outlined in this chapter.  The research problem and objectives, as well as the 

research question and hypothesis, are all presented here. The chapter concludes with 

a highlight of scope, novelty and significance of the study. 

A broad review of relevant and related literature in previous studies on 

precipitable water is presented in Chapter 2. The essence is to locate the knowledge 

gaps that require filling in the current research. The review is carried out in different 

segments. First, the importance of PW study is identified. Secondly, brief description 

of global and regional wind patterns, and also some impacts of precipitable water in 

the tropics are reviewed to reveal the significance of the study. Thirdly space-based 

and in situ observations of TPW are reviewed to establish data climatology. Fourthly, 

various techniques used for the global, regional and meso-scale estimation of 

precipitable water, as documented by previous scholars, have been reported. Finally, 

a brief review of temporal and spatial variability of precipitable water studies at the 

global, regional and local levels is done.  

Chapter 3 hosts the description of the geographic and climatic representation 

of the study area. The description of the data sets and their sources as well as the 

software and tools used are presented in this chapter. Details of data pre-processing 

steps and techniques/methodology used to achieve the desired objectives are 

contained in the chapter as well. 
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In Chapter 4, results of findings are analysed and discussed, including 

comparison between ATOVS-retrieved and radiosonde-derived data. The results of 

the vertical distribution of PW and the formulation of inter-layer relationship are 

presented and discussed. The impacts of the selected meteorological variables on 

TPW are analyzed and the results of the MLR models are compared with those 

obtained using ANN models. 

Chapter 5, which is the concluding chapter, presents summary of the results 

and suggestions for feature research.  
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2 CHAPTER 2                                                                                                    

LITERATURE REVIEW 

2.1 Introduction 

With the principal desire of this dissertation being the utilization of data from 

satellite and surface observations to develop models for estimating precipitable water 

over a region, relevant studies in literatures are reviewed in this chapter. The review 

includes the role of precipitable water in the atmosphere and the relevance of its 

quantification. Various platforms and techniques used in the quantification of 

precipitable water in literatures have been surveyed to identify knowledge gaps in 

order to address same in this study. Some previous studies on global and regional 

climatology of TPW particularly, in the tropics have also been reviewed. Cursory 

looks at some empirical formulation of layered and total precipitable water, 

particularly, on linear regression and artificial neural networks techniques, have also 

been delved into in the chapter. 

2.2 Importance of Precipitable Water Study 

Measurement of precipitable water in the atmosphere is particularly 

important. Being the most important natural greenhouse gas, PW exerts great 

influence on the radiation budget of the Earth's atmosphere and, thus, affects our 

climate. Additionally, water is also responsible for the formation of clouds and 

precipitation, which makes its quantification an essential measurand in all climate 

models. However, when weather forecasting and climate development are desired, 

accurate estimation of atmospheric water vapour is imperative (Möhler et al., 2008). 

Knowledge of the amount of water present in the atmosphere, both horizontally and 

vertically, is vital in many applications, including the hydrologic cycle (Schneider, et 
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al., 2010), radiation balance (Jacob, 2001; Courcoux & Schröder, 2015), and the 

predictions of cloud and precipitation (Tuller, 1977; Sherwood, et al., 2010; Wang, et 

al., 2010).  

2.2.1 The hydrologic cycle 

The hydrologic cycle describes the movement of water, within and between 

the Earth's atmosphere, continents, and oceans, in its three phases. The vapour form, 

also called precipitable water vapour, plays a cardinal role in the hydrologic cycle, in 

which the climate and weather systems are affected (Follette, et al., 2009). This cycle 

begins with evaporation of water from the surface of oceans when moist air in form 

of water vapour, is lifted due to temperature difference between the surface and the 

atmosphere, cools and condenses to form clouds. The moisture is then 

transported around the globe until it finally returns to the surface as precipitation.  

Once at the surface of the earth, some of the water may percolate and become 

groundwater while some eventually evaporate back into the atmosphere. The 

groundwater is either released into the atmosphere through transpiration or seeps 

itself into streams, rivers, lakes or oceans. The remaining water on the surface of the 

Earth, known as runoff, is then   emptied into either lakes, rivers or streams and 

transported back into the oceans to recommence the cycle. The vapor phase 

redistributes energy occasioned by evaporation and condensation due to its fast 

movement in the atmosphere. This movement is strongly linked to precipitation and 

soil moisture, which have important practical implications (AGU, 1995). Figure 2.1 

is a schematic representation of the hydrologic cycle showing estimates of the 

current global water budget and its annual flow using observations from 1979 – 2000 

(Trenberth, et al., 2007).  
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Figure 2.1 Long-term mean estimates of global water budget and its annual flow 

based on Trenberth, et al. (2007). Estimates are in 103 km3 for storage and 

 103 km3/year for exchanges. 

2.2.2 The effects of precipitable water on radiation balance 

Being respectively transparent and opaque to solar and terrestrial radiations, 

precipitable water acts as a greenhouse gas (Forster & Collins, 2004; Marsden & 

Valero, 2004; Ernest Raj et al., 2008). The climate of the Earth, therefore, supports 

life in large part due to the greenhouse effect in collaboration with the workings of 

the hydrologic cycle. For instance, water vapor is involved in an important climate 

feedback loop that exerts great influence on the radiation budget of the Earth's 

atmosphere which affects our climate. This is seen in the increase of atmospheric 

temperature in response to increasing Earth's surface temperature, causing the 

atmosphere to hold more water vapor. As a greenhouse gas, therefore, water vapor 

absorbs energy that would otherwise escape to space, thereby causing further 

warming. The water vapour greenhouse feedback is viewed as the strongest positive 

feedback in the climate system (e.g. DelGenio, et al. 1991). Observational studies by 
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Duvel & Breon (1991), who relied on  correlations between satellite measurements 

of column water vapour over open oceans and sea surface temperature, have also 

lend credence to the positive feedback of the greenhouse effect. 

Water vapour is also crucial to the energy balance processes within the 

climate system by modulating and transmitting radiative energy between space and 

the Earth’s surface, through the atmosphere (Held and Soden 2000), as well as in the 

transfer of latent heat from the surface to the atmosphere (Trenberth, et al., 2011). 

The laws of thermodynamics constrain the humidity structure of the atmosphere as 

water transits through vapour and condensate (Stevens & Bony, 2013). For instance, 

it is common for water, which is a phase-changing substance, to have maximum 

saturated (or partial) pressure as a strongly increasing function of temperature that is 

governed by the Clausius-Clapeyron relation. A physical relationship exists in the 

Clausius-Clapeyron relation which provides that for liquid water to transit to vapour 

phase, energy at constant pressure is required. This is such that whenever vapour 

pressure exceeds the saturation vapour pressure, a condensation linked to latent heat 

released occurs. According to Allan (2012), the Clausius-Clapeyron equation, which 

poses a fundamental controls on the climate system, provides a powerful constraint 

on how saturated moisture content varies with air temperature. This constraint places 

only an upper bound on the dependent of water content on any temperature. 

However, its implications for weather and climate is not straightforward because 

water vapour is mostly unsaturated in the atmosphere (Pierrehumbert & Roca, 2007). 

Nevertheless, the dynamical effects of radiation and convection provide foundation 

for discerning wide characteristics of the circulation of the atmosphere, especially in 

the tropics, where water is often saturated (Stevens & Bony, 2013).  
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2.2.3 Predictions of clouds and precipitation 

TPW is regarded as a necessary condition for rainfall. Areas of relatively high 

precipitable water, also known as atmospheric rivers or moisture plumes, are often 

associated with intensive rainfall events (Junker et al., 2008). It is, therefore, 

expected that increased atmospheric moisture automatically results to increased 

precipitation. This relationship is, however, not straight forward because several 

factors, including convection, horizontal flow dynamics, and the presence of cloud 

condensation nuclei, contribute to the occurrence of rain. Nonetheless this humidity 

variable can be used as surrogate for the forecast of cloud and precipitation 

(Sherwood et al., 2010). 

The interaction between TPW and precipitation is such that within the 

horizontal large-scale advection, the small-scale motions often interact with the water 

vapour field through a convective process. This process occurs mainly when an air 

parcel rises by itself in an unstable atmosphere. During airlift, the parcel expands and 

cools at the dry adiabatic temperature lapse rate of 9.8 0C/km (Stevens & Bony, 

2013), causing its saturation vapour pressure to decrease. The parcel then continues 

its updraft, so long as its adiabatic lapse rate is less than the lapse rate of the 

surrounding atmosphere, until dew point temperature is reached and subsequent 

condensation (cloud formation) occurs. As long as the air parcel is warmer than its 

surrounding, the upward movement will continue unabated, resulting in continuous 

condensation of water vapour. Consequently, a steady release of latent energy then 

reduces the adiabatic cooling of the parcel. This indicates the generous contribution 

of moist convection to the vertical transport of heat and moisture on various scales 

(Pierrehumbert et al., 2007). Weather and climate are, therefore, influenced by water 


	COVER.pdf (p.1-2)
	Thesis_Final Makama.pdf (p.3-233)

