
 

 
 

SHAPE PRESERVING INTERPOLATION USING 
RATIONAL CUBIC BALL TRIANGULAR 

PATCHES 
 

 

 

 

 

 

 

 

 

 

SITI JASMIDA BINTI JAMIL 

 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA  

2019 



 

 
 

SHAPE PRESERVING INTERPOLATION USING 
RATIONAL CUBIC BALL TRIANGULAR 

PATCHES 
 

 

 

 

by 

 

 

 

 

 

SITI JASMIDA BINTI JAMIL 

 

 

 

 

Thesis submitted in fulfillment of the requirements  
for the degree of 

Doctor of Philosophy 
 

 

 

 

 

June 2019 



 

ii 
 

ACKNOWLEDGEMENT 

It is my pleasure to acknowledge the roles of several individuals who was instrumental 

for completion of my Doctor of Philosophy (PhD) research. Firstly, I would like to 

express my sincere appreciation to my supervisor Dr. Ahmad Lutfi Amri Bin Ramli 

for his quality supervision and motivation, during my tough times to finish this thesis. 

I would also like to thank Prof. Dr. Abd Rahni Mt Piah, my ex-supervisor, for his 

guidance and encouragement since I started my PhD journey until he ended his 

professional career at Universiti Sains Malaysia (USM). His guidance helped me in 

improving my understanding towards my research field. My sincere thanks also go to 

Dr. Azizan Saaban, my field supervisor from Universiti Utara Malaysia (UUM), for 

his comments and ideas in my research. His given ideas incent me to widen my 

research from various perspectives.  I also would like to give special thanks to 

Universiti Sains Malaysia especially the Dean of the School of Mathematical Sciences, 

which provides laboratory facilities and financial support in the publication of my 

research study. Of course, this success can also been achieved with the support of loved 

ones around me. Therefore, I would also like to thank my parents and family member 

for their continuous support and prayers. Without all this encouragement, I would not 

have been able to completing my thesis. Finally, I would like to thank all the lab mates 

especially Wan Nurhadani Binti Wan Jaafar for her encouragement when I was 

experiencing difficulty in the research as well as excitement that we have experienced 

throughout my PhD journey here.  



 

iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT                                        ii 

LIST OF TABLES                                             vii 

LIST OF FIGURES                                            viii 

LIST OF ABBREVIATIONS                                        xi 

LIST OF SYMBOLS                                            xii 

 



 

iv 
 

           2.3.2(a)  Directional derivative                            46 

         2.3.2(b)  Calculation of boundary Ball ordinates                48 

         2.3.2(c)   1C  continuity conditions                          51 

         2.3.2(d)  Calculation of inner Ball ordinates                 53 

 

 

 



 

v 
 

 – MONOTONICITY PRESERVING OF SCATTERED DATA          

 

 – CONVEXITY PRESERVING OF SCATTERED DATA          



 

vi 
 

 
 – CONCLUSION, CONTRIBUTION AND FUTURE                     

LIST OF PUBLICATIONS  
 

 

 



 

vii 
 

LIST OF TABLES 

Page 
 

Table 6.1  Weights of the triangular Bézier patch obtained from a given          
triangular Ball patch                                                       131 

Table 6.2  Control points of the triangular Bézier patch obtained from a       
given triangular Ball patch               134 

Table 6.3  Weights of the triangular Ball patch obtained from a given     
triangular Bézier patch                              138 

Table 6.4  Control points of the triangular Ball patch obtained from a           
given triangular Bézier patch                  141 

Table A.1  Positive surface data set of 36 points                       160 

Table A.2  Positive surface data set of 36 points                       160 

Table B.1  Monotone surface data set of 64 points                     161 

Table B.2  Monotone surface data set of 81 points                     161 

Table C.1  Convex surface data set of 8 points                          162 

Table C.2  Convex surface data set of 36 points                         162 

Table D.1  Positive surface data set of 33 points                       163 

 



 

viii 
 

LIST OF FIGURES 

Page 
 

Figure 1.1 Flowchart of the work 33 

Figure 2.1 A cubic control net 35 

Figure 2.2 Triangle T with vertices 1 2 3, ,V V V  38 

Figure 2.3 The relationship of (a) Delaunay triangulation (b) Voronoi                   
diagram and (c) Delaunay and Voronoi (Source: WolframAlpha) 41 

Figure 2.4 Five triangles sharing the same node O  42 

Figure 2.5 Vector plane 43 

Figure 2.6 Node O  on the boundary of the triangle domain 45 

Figure 2.7 Inward normal direction to the edges of triangle T 46 

Figure 2.8 Two adjoining domain triangles 50 

Figure 2.9 Two adjacent triangular patches 51 

Figure 3.1 Function ( )G s  for 0s ³  66 

Figure 3.2 1e  is a common edge of two triangles 70 

Figure  3.3 Flowchart of positivity preserving interpolation 71 

Figure 3.4 Delaunay triangulation of domain for ( )1 ,F x y  73 

Figure 3.5 Linear interpolant for data ( )1 ,F x y  73 

Figure 3.6 (a) Interpolating surface without positivity conditions                         
(b) xz -view 74 

Figure 3.7 Positivity preserving surface using rational cubic Ball                  
interpolation for ( )1 ,F x y  with different values of free parameters 75 

Figure 3.8 Delaunay triangulation of domain for ( )2 ,F x y  76 



 

ix 
 

Figure 3.9 Linear interpolant for data ( )2 ,F x y  77 

Figure 3.10 (a) Interpolating surface without positivity conditions                       
 (b) xz -view 77 

Figure 3.11 Positivity preserving surface using rational cubic Ball          
interpolation for ( )2 ,F x y  with different values of free parameters 78 

Figure 4.1 Flowchart of monotonicity preserving interpolation 93 

Figure 4.2 Delaunay triangulation of domain for data in Table B.1 95 

Figure 4.3 Linear interpolant for data in Table B.1 95 

Figure 4.4 (a) Interpolating surface without monotonicity conditions                        
(b) yz -view 96 

Figure 4.5 Monotonicity preserving surface using rational cubic Ball 
interpolation with different values of free parameters and   

( )0, 8=d  97 

Figure 4.6 Delaunay triangulation of domain for ( )3 ,F x y  98 

Figure 4.7 Linear interpolant for data ( )3 ,F x y       99 

Figure 4.8 (a) Interpolating surface without monotonicity conditions                          
(b) xz -view    99 

Figure 4.9 Monotonicity preserving surface using rational cubic Ball  
interpolation for ( )3 ,F x y  with different values of free         

parameters  and ( )3, 3=d  100 

Figure  5.1 Flowchart of convexity preserving interpolation 112 

Figure 5.2 Delaunay triangulation of domain for ( )4 ,F x y  114 

Figure 5.3 Linear interpolant for data ( )4 ,F x y  114 

Figure 5.4 (a) Interpolating surface without convexity conditions                        
(b) xz -view   115 

Figure 5.5 Convexity preserving surface using rational cubic Ball        
interpolation for ( )4 ,F x y  with different values of free         

parameters 116 



 

x 
 

Figure 5.6 Delaunay triangulation of domain for ( )5 ,F x y  117 

Figure 5.7 Linear interpolant for data ( )5 ,F x y  118 

Figure 5.8 (a) Interpolating surface without convexity conditions                         
(b) xz -view 118 

Figure 5.11 Convexity preserving surface using rational cubic Ball       
interpolation for ( )5 ,F x y  with different values of free         

parameters      119 

Figure 6.1 Triangular patches using rational cubic Ball 147 

Figure 6.2 Triangular patches using rational cubic Ball conversion 147 



 

xi 
 

LIST OF ABBREVIATIONS 

2D   Two Dimensional  

3D   Three Dimensional 

ADC Analog to Digital Converter 

CAD Computer Aided Design 

CAGD Computer Aided Graphic Design 

DAC Digital to Analog Converter 

DP  Delgado-Peña 

ESR Erythrocyte Sedimentation Rate 

GPRC  General Piecewise Rational Cubic 

RBF Radial Basis Function 



 

xii 
 

LIST OF SYMBOLS 

0C     Zero order parametric continuity 

1C     First order parametric continuity 

2C     Second order parametric continuity 

1G     First order geometric continuity  

O2    Oxygen 



 

xiii 
 

INTERPOLASI PENGEKALAN BENTUK MENGGUNAKAN TAMPALAN 

SEGI TIGA BALL KUBIK NISBAH 

 

ABSTRAK 

 

 Interpolasi pengekalan bentuk merupakan bidang yang penting untuk 

persembahan grafik data bertaburan yang mana paling dikehendaki dalam komputer 

grafik, pembuatan berbantukan komputer, rekabentuk geometri berbantukan 

komputer, pemodelan geometri, geologi, meteorologi, dan juga dalam proses fizikal 

dan kimia. Dalam banyak masalah interpolasi, ciri-ciri bentuk data permukaan yang 

lazimnya dipertimbangkan adalah kepositifan, keekanadaan dan kecembungan. Oleh 

itu, tumpuan tesis ini adalah pada paparan grafik permukaan segi tiga data bertaburan 

yang mempunyai ciri-ciri bentuk positif, ekanada dan cembung, masing-masing. Skim 

pemeliharaan bentuk akan dipaparkan untuk tampalan segi tiga dengan menggunakan 

fungsi Ball kubik nisbah dengan parameter-parameter bentuk (fungsi pemberat-

pemberat). Ia akan menunjukkan bahawa skim yang dicadangkan ini menghasilkan 

visual yang menyenangkan apabila parameter yang sesuai dipilih. Terlebih dahulu, 

setiap set data dalam rantau dua dimensi ( , )x y  dibahagikan kepada elemen-elemen 

segi tiga dengan menggunakan kaedah penyegitigaan Delaunay. Permukaan 

interpolasi data bertaburan adalah gabungan cembung daripada tiga tampalan segi tiga 

Ball kubik nisbah dengan set sama bagi ordinat sempadan. Syarat-syarat untuk 

mendapatkan pemeliharaan permukaan kepositifan, keekanadaan dan kecembungan, 

masing-masing diperoleh pada ordinat Ball dengan parameter bebas untuk 

mengekalkan ciri-ciri bentuk yang diwariskan daripada data asas. Akhir sekali, 

hubungan antara asas nisbah Bézier dan asas nisbah Ball akan ditunjukkan dengan 



 

xiv 
 

menggunakan formula penukaran. Formula penukaran ditakrifkan dengan 

menggunakan matriks pekali yang menyediakan transformasi antara kedua-dua jenis 

fungsi asas bivariat yang mewakili polinomial bivariat yang berdarjah sama dan 

sebaliknya. Dalam tesis ini, algoritma untuk membina permukaan dengan menukarkan 

set titik kawalan dan pemberat daripada fungsi nisbah Bézier kepada fungsi nisbah 

Ball pada permukaan yang sama dengan menggunakan data positif telah dicadangkan. 

Algoritma ini boleh digunakan sebagai alternatif lain dalam membina permukaan 

interpolasi selain menggunakan fungsi biasa seperti fungsi segi tiga Bézier nisbah. 

Beberapa contoh akan dibentangkan secara grafik dalam tesis ini dengan 

menggunakan fungsi ujian yang diketahui. 

 

 



 

xv 
 

SHAPE PRESERVING INTERPOLATION USING RATIONAL CUBIC 

BALL TRIANGULAR PATCHES 

 
 
 

ABSTRACT 

 

 Shape preserving interpolation is an important area for graphical presentation 

of scattered data where it is most desired in computer graphics, computer aided 

manufacturing, computer aided geometric design, geometric modeling, geology, 

meteorology, as well as in physical and chemical process. In many interpolation 

problems, shape characteristics of the surface data commonly considered are 

positivity, monotonicity and convexity. Thus, the focus of this thesis is on the graphical 

displays of triangular surfaces of scattered data which possess positive, monotone and 

convex shape features, respectively. Shape preserving schemes will be displayed for 

triangular patches using rational cubic Ball function with free shape parameters 

(weights function). It will be shown that the proposed scheme is visually pleasing when 

appropriate parameters are chosen. Firstly, for each data set in two dimensional (2D) 

region ( , )x y  is divided into triangular elements using Delaunay triangulation method. 

The interpolating surface of scattered data is a convex combination of three rational 

cubic Ball triangular patches with the same set of boundary Ball ordinates. Conditions 

to obtain positivity, monotonicity and convexity preserving surfaces, respectively, are 

derived on the Ball ordinates with free parameters in order to preserve the inherited 

shape characteristics of the underlying data. Finally, a relationship between rational 

Bézier and rational Ball bases will be shown using conversion formulae. The 

conversion formulae are defined using coefficient matrices which provide a 

transformation between the two types of bivariate basis functions representing 
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bivariate polynomials of the same degree  and vice versa. In this thesis, an algorithm 

to construct a surface by converting a set of control points and weights from rational 

Bézier function into rational Ball function on the same surface using positive data is 

proposed. This algorithm can be utilised as another alternative in construction of 

surface interpolation besides using ordinary function likes rational Bézier triangular 

function. A number of examples will be presented graphically in this thesis using well-

known test functions. 
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INTRODUCTION 

Computer Aided Graphic Design (CAGD) is a field that was initially developed to 

bring the advantage of computers to manufacturing industries of products such as 

automotive, aerospace and shipbuilding. CAGD has now expanded rapidly and is a 

branch of applied mathematics that is applied in scientific data visualization, 

computational geometry, graphics, numerical analysis and vision. In recent years, a 

few researchers have worked in the area of scientific data visualization, especially in 

shape preserving interpolation, both for curves and surfaces. According to Friendly 

[1], scientific visualization concerns the visualization of 3D phenomena such as in the 

architectural, meteorological, medical and biological fields, where the emphasis is on 

realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps 

with a dynamic (time) component. This situation is considered especially when data 

arises from some complex mathematical functions or scientific data to visualize 

graphical insights. This graphical insight provides limited or incomplete information 

to users to understand the various physical phenomena and data understanding. 



 

2 
 

1.1 Shape Preserving Interpolation  

Shape preservation and interpolation are a fundamental process in scientific 

visualization for graphical presentation of data. The known data represent only a 

sample and may not be sufficient to let one visualize the entire entity accurately. 

Therefore, a sufficiently smooth univariate or bivariate function that interpolates or 

approximates these data preserving the same characteristic features should be 

constructed. There are some special characteristic features in the data that are most 

often used in shape preserving interpolation such as positivity, monotonicity and 

convexity. 

 

Positivity is one of the shape properties that are most discussed by researchers in this 

field. There are many physical situation applications where entities only have meaning 

when the visualization of physical quantity is positive. Meteorological measurement 

at different weather stations is an important branch of science that concerns the 

phenomena of the atmosphere, especially as a means of forecasting the weather. The 

rainfall data are reconstructed graphically [2], where the positivity of the values should 

be preserved, otherwise negative values are not physically meaningful. Another 

application of positivity preservation in a real-life problem is measurement of oxygen 

(O2) concentration in the Gulf of Mexico. The oxygen concentration is measured after 

the incident of oil spill and allows one to determine oxygen deficits in the water column 

resulting in O2 anomaly that are 0 (no O2 missing) or positive (indicating O2 that has 

been consumed). However, in the absence of the oxygen generating process in the deep 

waters, the value is never negative [3]. Similarly, when dealing with the levels of gas 

released in certain chemical processes, concentration of sugar in blood and population 
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density [4]. All these physical situations are meaningful when they have positive 

quantities only. 

 

The second shape characteristic that commonly arises in various application areas is 

the monotonicity, either increasing or decreasing, where the entities only have a 

meaning when their values are monotone. For example, monotonic function are very 

commonly used in pricing models in economic and financial application involving 

demand, supply and pricing [5]. Monotonicity is also involved in medical diagnosis 

like the level of blood uric acid in patients having gout problem or Erythrocyte 

Sedimentation Rate (ESR) in cancer patients and rate of dissemination of drug in blood 

[6]. In engineering fields, monotonicity is one of the key specifications that help 

engineers to ensure that the production of Digital to Analog Converter (DAC) or 

Analog to Digital Converter (ADC) meet the characteristics of monotonicity. These 

devices are considered monotone; when the input to the device increased (decreased), 

the output must also increase (decrease) accordingly. In general, a non-monotonic 

DAC is unacceptable [7]. Other examples in other fields include dose-response curves 

and surfaces in biochemistry and pharmacology, approximation of copulas and quasi-

copulas in statistics and design of aggregation operators in multiple criteria decision 

making and fuzzy logic [6]. 

 

Another shape property that is most applied in CAGD is convexity. The clear example 

could be seen in the manufacturing industry of television screens. The requirement of 

convexity preservation is very important to construct well-shaped surfaces of the mask 

that are located in a cathode tube behind the television screen. Other examples are 

related to car modelling in the automobile industry, aeroplane and ship designs. In the 
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process of modelling a car, the aesthetic requirements also play an important role in 

this process apart from considering the technical and physical conditions. For example, 

an unwanted feature on the car model is that its surface contains wiggles and produces 

poorly-shaped images. Therefore, it is very important that this visual situation put 

certain constraints on the shape to produce smooth visual shapes without swing. Other 

than that, examples of convexity can be viewed in scientific applications such as 

optimal control, parameter estimation and approximation of function [8].  

 

There are some families of functions commonly used for interpolation such as 

polynomials, rational functions, trigonometric functions and exponential functions. 

The simplest type of interpolation is to use polynomial and it is a well-known fact that 

any univariate data set can be interpolated by any degree polynomial. In general, the 

resulting interpolation of curves or surfaces will have more oscillations when the 

number of data points becomes larger even though that polynomial interpolation 

generates function of high smoothness. These wiggles are undesirable in many 

applications because it completely deviates the data from its natural features and need 

to be eliminated [9]. The curve or surface produced that contains no extraneous 

wiggles, will make it more readily acceptable to scientists and engineers. Thus, spline 

is an appropriate method for many problems regarding interpolation defined as 

piecewise polynomials that are connected in a smooth way. The most commonly used 

interpolation method is Bézier spline, which in practice, appears to be sufficiently 

smooth. The spline interpolation method reduces the occurrence of large oscillations 

due to their relatively low degree if compared to polynomial interpolation. However, 

the splines cannot completely avoid the unwanted wiggles in certain practical 

problems. Therefore, it is important to suggest simpler functions in the interpolation 
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method to enforce shape preservation. In the last few years, there have been important 

advances in the study of shape preserving interpolation (positivity, monotonicity, 

convexity) where the representations of curve designs have considered the use of 

univariate spline [4, 7, 9 – 16] for regular data. Some work [4, 8, 17 – 20] on shape 

preservation extended their results of univariate interpolation to bivariate interpolation 

for data arranged on rectangular mesh. Most of them have solved the interpolation 

problems of regular data; and, only some authors have considered the interpolation of 

scattered data over a triangular grid. Therefore, bivariate spline using triangular patch 

is another method that is commonly used to construct the interpolation of scattered 

data [2, 3, 21 – 38]. This method will be applied to construct interpolation of scattered 

data and one of the main objectives in this thesis.  

 

The earlier study in a piecewise Bézier-Bernstein polynomial interpolation over a 

triangle was introduced by Farin [39] in 1986, which is most popular and very 

commonly used in interpolation surface of scattered data problems. Each triangular 

patch of the interpolating surface is formed as a convex combination of three cubic 

Bézier triangular patches with parametric or geometric continuity. Besides using 

Bézier triangular surface, some other examples of triangular surface models are Said-

Ball [40] and Wang-Ball [41]. Early history associated with the cubic Ball curve is 

introduced by Ball [42] for CONSURF system by British Aircraft Corporation at 

Warton. From the work of Hu et al. [41], it is known that there are two types of higher 

degree generalized Ball basis functions and corresponding curves have been derived 

by Wang [43] and Said [44] independently. Later, Hu et al. [45] provided another 

generalization and recursive algorithm for the resulting curve, which has been shown 

to be more efficient than Said [44]. Subsequently, this effort has been continued to 



 

6 
 

achieve a bivariate basis for both types of Ball bases on triangle where the basis 

functions are reduced to the univariate basis functions on each side of the triangle. 

Goodman and Said [40] extended the bivariate generalized Ball surfaces into odd 

degrees only which is defined as Said-Ball triangular surface. They proved that the 

recursive algorithm for evaluation and degree raising in [40] is more efficient 

compared to the de Casteljau algorithm for evaluating a polynomial expressed in the 

more usual Bézier form. Later, Hu et al. [41] extended the univariate Wang-Ball basis 

[43] to the bivariate case on a triangle, which is defined as a triangular Wang-Ball 

surface. They claimed that Wang-Ball curves are much better than Bézier curves and 

Said-Ball curves in terms of evaluation, degree elevation and degree reduction. 

Therefore, automatically the recursive algorithm for triangular Wang-Ball surfaces is 

better than both recursive algorithms for Bézier triangular surfaces and Said-Ball 

triangular surfaces. Even so, generalized Ball representations by Wang [43] and Said 

[44] possess the same shape preserving properties as the Bézier representation. 

Therefore, designers in graphic design should consider the generalized Ball function 

instead of the Bézier function in the construction of curves and surfaces. The definition 

of Bézier, Said-Ball and Wang-Ball triangular functions will be discussed in the next 

chapter. 

 

Interpolation techniques are fundamental in shape preserving curve and surface 

visualizations, and can be categorized into global methods and local methods [46]. The 

global methods create the curves or surfaces using all the data points at once. If the 

shape of the curves or surfaces needs to be modified by adding or deleting the 

particular data points, the problem must be solved again and the entire surface changes. 

Global methods are practically limited to small data sets because it is based on a 
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minimization problem and involve large-scale computations. On the other hand, in the 

local methods, the interpolation is performed locally. If any one of the data points 

changes, only a part of the interpolated surface must be re-computed and only 

influenced by the values from points nearby in the scattered point set. Local methods 

can treat much larger data sets because they do not need large-scale computations since 

no optimization procedure has to be performed. Besides that, local methods are less 

sensitive to data modifications, because they only influence the solution in a restricted 

area. However, local methods may become quite complex, too, if a smooth result is 

needed. In this thesis, all the interpolation schemes are local methods, and they are 

limited to the proposed scheme.  

1.2 Interpolation of Scattered Data 

Nowadays, the problem of shape preservation by the interpolation method is that it not 

only aims to preserve the nature of the data but is also concerned to get a smooth 

surface for pleasing visual display of the data. The types of data can be divided into 

two cases, namely, regular data and irregular or scattered data. Many shape preserving 

interpolation schemes have been introduced, which commonly used regular grid. For 

example, univariate polynomial spline in [4, 7, 10 – 12, 16, 20, 47 – 55]. Some of these 

schemes were extended to bivariate cases to preserve the shape of data over rectangular 

mesh. In other cases, interpolation of scattered data using the triangulation method is 

more suitable for the problem of fitting smooth surfaces through a non-uniform 

distribution of data points. Among examples of the main sources of scattered data in 

the real applications are geology, meteorology, oceanography, medical imaging, 

experimental results in sciences and engineering [56].  
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In this thesis, we are concerned about the interpolation of scattered data. There are 

several scattered data techniques used in the scattered data interpolation problem such 

as Shepard’s method [57], Radial Basis Function (RBF) methods [58] and 

triangulation-based method. In this thesis, we apply triangulation techniques to 

interpolate the scattered data. The idea of this technique is to construct triangulated 

domain of data points using Delaunay triangulation [59] and generate piecewise 

construction of the triangular patches with parametric or geometric continuous for each 

triangle. Each triangular patch is bounded by three curves formed by one or more 

polynomial or rational surface patches, so that parametric or geometric continuity of 

the overall surface will be achieved. There are several methods proposed to form these 

triangular patches, such as polynomial interpolating method [39, 60], discrete-

triangular method [61], split-triangle method (known as Clough-Toucher interpolant) 

[62, 63], Powell-Sabin split [64], the minimum norm network [65 – 67] and convex 

combination method [22, 68, 69]. In this thesis, we shall concentrate on the convex 

combination method to generate the interpolating surface. This method is applied to 

fill the triangular patch without splitting the triangle. The idea behind this method is 

to develop three triangular patches with each triangular patch constructed by 

interpolating the boundary data that satisfies the required continuity condition over 

each triangle boundary. Then, three triangular patches are blended using the convex 

combination method into a single patch. In that way, the resulting triangular patches 

will interpolate all the scattered data. This method requires less computation which is 

advantageous compared to methods in [70] and [71]. 

 

The convex combination of surfaces is normally built with rational weight functions, 

which produce rational interpolant on all faces. There are several weight functions 
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which are commonly used in the previous works on this method such as a lower degree 

rational weight function [32, 68, 72], and upper degree rational weight function [22, 

31, 69]. Several approaches have been proposed in the previous studies to construct 

triangular surfaces using the convex combination method. This method was first 

introduced by Barnhill [73] which considered the combination of interpolation 

operators consisting of univariate interpolation along lines parallel to the sides of the 

triangle. Another method is the side-vertex method proposed by Nielson [72] which 

presented interpolation scheme over each triangular patch defined by the convex 

combination method. These interpolants are generated by univariate interpolation on 

boundary edges joining a vertex and its opposite side. The interpolant scheme not only 

interpolates data values at the vertices but also interpolate to first order derivatives on 

boundary. One of the famous approaches in [68] and [22] presented the construction 

of a 1C  cubic Bézier triangular scheme for scattered data interpolation by using a 

different weight function in the convex combination method. Further, Chang and Said 

[69] extended this approach to 2C  quantic Bézier triangular patch schemes which 

need to be derived from second-order partial derivatives at the vertices of the triangle 

in order to determine Bézier control points for the triangular patch. Most recently, a 

new method has been presented by Zhang and Cheng [74] to construct 1C  triangular 

patches that interpolates on boundary curves and cross-boundary slopes by combining 

four interpolation operators. The interpolation operators include three side-vertex 

interpolation operators [72] and an interior operator is based on that three quartic 

curves. In this thesis, we shall review the 1C  side-vertex method proposed by [72] to 

interpolate the data arranged over the triangular grid to generate the triangular patches 

defined by the convex combination. 
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This thesis presents the construction of shape preserving interpolation using triangular 

patches for positive data, monotone data and convexity data. Thus, we may describe 

the given functional data as follows: 

    ( ), , , 1,2, , ,i i ix y z i N=   where 0,iz i³ " , 

we wish to construct  a 1C  surface ( ),z F x y=  such that 

    ( )  , , 1,2, , ,i i iz F x y i N= =   and ( )  , 0, , .F x y x y³ "  

Generally, the construction process for generating the triangular surface are 

summarized as follows: 

1. triangulation of the domain, 

2. define derivatives at the data points, 

3. assign boundary and inner Ball ordinate values for each triangular patch, 

4. generate the triangular patches of the surface by using convex combination 

methods. 

1.3 Conversion between Two Types of Functions 

As mentioned earlier, there are two generalized Ball curves known as Said-Ball and 

Wang-Ball curves, named by Hu et al. [41], which were introduced as alternative 

models to the popular Bézier curve. The effectiveness of the Said-Ball and Wang-Ball 

curves was described in the work by Hu et al. [45] in 1996. Goodman and Said [40] 

pointed out that all recursive evaluations of Said-Ball and Wang-Ball curves are faster 

than the Bézier curve. The advantage of these generalized Ball basis is efficient 

evaluation of a polynomial at any point, which is better than de Casteljau algorithm 

for Bernstein form [75].  
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Lately, there have been several studies about the conversion for two types of 

parametric curve, which are the non-rational and rational curves that allows conversion 

from one curve to the other. Jiang and Wang [76] proposed a relationship between 

Bézier-Bernstein basis and Delagano-Peña (DP) Ball basis. They proved that these 

formulae are not only valuable for studying the geometric properties, such as 

subdivision, of the curves and surfaces constructed by this generalized Ball basis, but 

also can improve the computational speed of the Bézier curves and surfaces. Tien et 

al. [77] derived the relationship between Bézier and Said-Ball for non-rational and 

rational curves of the same degree and vice versa. The formulae that relate to control 

points and weights were derived using the polar form approach. In contrast, 

Dejdumrong et al. [78] discussed the relationships between Bézier and Wang-Ball for 

non-rational and rational curves. They obtained a recursive algorithm for plotting the 

rational Bézier and Wang-Ball curves from the de Casteljau and Wang algorithm using 

homogeneous coordinates. Besides that, there are some work on the conversion 

between two types of parametric surface, such as Chen et al. [79] and Pokavanich et 

al. [80]. Chen et al. [79] proposed a new type of surface that is called triangular DP 

surface. They also derived basis conversion formula from triangular DP basis to 

triangular Bézier for degree three and vice versa. Later, Pokavanich et al. [80] 

proposed a new algorithm to evaluate Bézier triangular surfaces by converting a set of 

control points for a given Bézier triangular patch into a new set of Hu’s Wang-Ball 

control points of the same surface. They believed that it has a great future in application 

of geometric design, especially in computing. In this thesis the similar approach in [80] 

is used to convert from a Bézier triangular surface into Wang-Ball triangular patch by 

substituting the relationships between two types of such triangular surfaces. 
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1.4 Motivation of Study 

Shape preserving of data has been an important advancement in the area of scientific 

visualization for the last two decades. Shape preserving interpolation is a method to 

interpolate the original data but at the same time still preserve the geometric properties 

on the constructed interpolants with the shape of the given data being positive, 

monotone or convex. Ordinary interpolation schemes just guarantee the smoothness of 

curve or surface but does not focus on the shape characteristics of data, which is also 

required to inherit the resulting curves or surfaces. To overcome this problem, 

traditional interpolating schemes need to add extra data points to modify the shape of 

curves or surfaces. Hence, the efficiency of the shape preserving interpolating scheme 

needs to be raised, the smoothness of curves or surfaces needs to be retained and the 

shape of the given data needs to be preserved.  

  

Many researchers have put much effort to propose various rational spline schemes as 

given in [12, 14, 15, 49, 50] by introducing free parameters to preserve the shape of 

data. Furthermore, previous citations have extended their schemes to visualize the 

shape of 3D regular data over rectangular grid surfaces as considered in [18, 19, 20, 

48, 81 – 84]. However, in many practical problems, the rectangular mesh is very 

difficult to fit an interpolation of scattered data. Thus, it is vital to construct the 

bivariate interpolation function over the triangular domain, which has a great potential 

of constructing complex shapes. There are some researchers who have made great 

efforts on the establishments of triangular grid surfaces that addressed the problem of 

shape preserving interpolant using spline for the scattered data as considered in [31, 

32, 36, 85] (positive data), [26, 35, 38, 86] (monotone data) and [25, 87, 88] (convex 

data). In recent years, the studies in interpolation of shape preservation for scattered 
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data by using rational spline have received attention in the literature such as rational 

Bézier function in [24, 27, 33, 35, 37, 38, 86, 89] and a rational trigonometric function 

[34]. However, most of the earlier works often uses Bernstein-Bézier as a basis 

function of their scheme in the problem of shape preserving interpolating surfaces. 

Goodman and Said [90] proved that the generalized Ball basis provided the same kind 

of shape preserving properties as the Bernstein basis, though to a lesser degree.   

 

Following that, we proposed a Ball function as an alternative scheme to the popular 

Bézier function. Motivated by the previous studies [25, 26, 32, 33], the proposed 

scheme in this thesis can preserve the inherent shape feature of data (positivity, 

monotononicity and convexity) by introducing the weights functions in the definition 

of the proposed scheme as free shape parameters. Control points are the points that 

give effect to the shape of the curve or surface. However, weights could be treated as 

shape parameter to control how much each control point influence the curve or surface. 

Therefore, we could adjust the shape of the rational Ball triangular patch conveniently 

by using the shape parameters without changing the control net. The following 

problems are discussed in this thesis: 

Problem 1: Construction of positivity preserving interpolation using rational cubic 

Ball triangular patches for the visualization of 3D data. 

Problem 2: Construction of monotonicity preserving interpolation using rational cubic 

Ball triangular patches for the visualization of 3D data. 

Problem 3: Construction of convexity preserving interpolation using rational cubic 

Ball triangular patches for the visualization of 3D data. 

Problem 4: Development of an algorithm for conversion matrices for Ball and Bézier 

triangular surfaces. 
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1.5 Objectives of Study 

This thesis generally aim to construct the shape preserving triangular patch by using 

rational cubic Ball functions. 

The specific objectives are: 

1. To derive the conditions for positivity, monotonicity and convexity to preserve 

shape of data. 

2. To construct a 1C  interpolation of scattered data using rational cubic Ball 

triangular patches for positivity preserving, monotonicity preserving and convexity 

preserving interpolation. 

3. To derive the conversion formulae of weights and control points between a rational 

cubic Ball triangular function and a rational cubic Bézier triangular function.   

4. To construct rational cubic Ball triangular patches using the conversion technique. 

1.6 Literature Review 

Descriptions of the importance of data visualization in this field are discussed in this 

section. Generally, this study aims to document the contributions of various 

researchers in this field with a concise explanation of the main findings of the case 

studies discussed. In many interpolation problems, it is vital that the interpolant 

preserves shape properties such as positivity, monotonicity and convexity of data 

points. In general, ordinary interpolating techniques normally ignore all the desired 

features of the data. Hence, a lot of research towards on the shape preserving 

interpolation schemes was carried out during the past years.  
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1.6.1 Positivity preserving interpolation 

At the beginning of the previous study, a number of the positivity scheme have been 

proposed as univariate positivity preserving interpolants, for example, quadratic spline 

[91], cubic spline [92, 93, 94], quartic spline [95], quintic spline [93], rational function 

[96]. The positivity preserving interpolation in [91, 94] could be achieved by inserting 

one or two extra knots where the shape of the curves is not preserved, or by modifying 

the given derivative values to ensure that the condition acquired are satisfied [92, 93, 

95]. Other than that, positivity preserving could be achieved by introducing the weight 

functions of the rational spline as a free shape parameter that is used to generate the 

desired curves as required [96]. 

 

In recent years, a number of work on positivity preserving using bivariate cases 

interpolating data on rectangular [4, 19, 48, 97, 98] or over triangular meshes [2, 3, 27 

– 29, 32, 33, 36, 38, 85, 99, 100] have been considered by extending the corresponding 

results from the univariate cases. Among the preliminary studies,  this problem have 

been found in [97] to derive positivity sufficient conditions on first partial derivatives 

and mixed partial derivatives to preserve the shape of positive data by using the key 

results that were obtained in [92] for the univariate case. The surface interpolation was 

generated using a piecewise bi-cubic Hermite interpolant addressing the positivity 

problems by generating interpolants subject to linear constrains as lower and upper 

bounds through a set of regular data points arranged over rectangular grid.  

 

The problem of shape preservation of surface (positivity, monotononicity and 

convexity) on scattered data have received less attention compared to shape 

preservation on regular data. Therefore, we focused on shape preserving of surface 
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data defined on scattered data using triangular patch which were motivated by earlier 

works in [25, 26, 32]. The first approach to construct the surface of scattered data 

interpolant is the Shepard’s method as considered in [101] and [102]. Both papers, 

visualized positive scattered data to positivity constraints using the modified quadratic 

Shepard method where the positivity was attained by scaling the basic functions as far 

as it was needed. The second approach is to triangulate data points, which leads to 

surface piecewise construction and commonly used by researchers nowadays. 

 

In 1994, Mulansky and Schmidt [99] introduced a constrained 1C  positivity 

preserving scheme using a quadratic spline on the Powell-Sabin triangulation of the 

data sites. The sufficient conditions were derived to fulfil the range conditions 

resulting in a solvable system of linear inequalities with the gradients as parameters 

and is separated with respect to data sites. The selection of the interpolant is based on 

a fit-and-modify approach or the minimization of a suitable objective function. 

 

Subsequently, other ways are seen in [29, 31, 32,] and [36], which have considered 

positive features in scattered data interpolation by using the cubic Bézier triangle patch 

method when the data provided is positive. The main difference between studies in 

[29, 31, 32,] and [36] are the way they introduced the calculation of the sufficient 

conditions on Bézier ordinates in each triangle to preserve the positivity of data. The 

study by [32] suggested more relaxed conditions and easier to calculate compared to 

[31] and [36]. If the Bézier ordinates fail to satisfy the derived lower bounds to the 

Bézier ordinates, then the gradients at data points are re-calculated to be consistent 

with the positivity conditions. [31] and [36] also extended their interpolation scheme 

to the construction of a range restricted interpolating surface of the form ( ),z C x y=  
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where ( ),C x y  is a constant, linear, quadratic or cubic polynomial as a lower or upper 

constraint. The work of [29] considered a similar approach adopted in [32] to develop 

the construction of 1C  bivariate interpolant using the cubic Ball function. The 

sufficient conditions were imposed on 10 Ball ordinates to ensure the positivity on all 

triangular patches. 

 

Following this, some researchers extended their studies in the construction of 

interpolating surface of positive data for the higher degrees such as quartic in [2] and 

[85] where sufficient conditions are derived on Bézier ordinates using triangular 

Bernstein-Bézier basis functions of degree five with 2C  continuity and 1G

continuity, respectively. Their studies are motivated by the earlier works of [23] and 

[32]. The interpolating  surface in [85] is formed as a single quartic Bézier triangular 

patch, where the interpolant is positive everywhere according to the positivity 

conditions derived. They also extended their positivity preserving interpolants to the 

range restricted data by putting upper and lower constraints to the interpolant surfaces. 

There are many methods discussing positivity preserving with range restricted 

interpolation using bivariate functions that can be discovered in the literature [31, 36, 

84, 97] and [103] for more detailed explanations since this problem is not the main 

objective in this thesis. In other studies such as [2], the interpolating surface is formed 

as a convex combination of quartic Bézier triangular patches, where the resulting 

surface must be positive everywhere that satisfies the positivity condition and achieve 

2C  continuity for all sides of the triangles. The actual data for average monthly 

rainfall data in Peninsular Malaysia was used in this study to construct the visualization 

of 3D rainfall interpolant. The advantage of the proposed scheme can also be used to 
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approximate the amount of rainfall at intermediate locations within the convex hull of 

the triangulation domain. 

 

Besides using bivariate splines in interpolation of scattered data, visualization of 

positive data using bivariate rational splines has also received attention from 

researchers by introducing the weights in the definition of functions as free shape 

parameters to refine the shape of surfaces as desired. In 2011, Hussain and Hussain 

[33] proposed a rational cubic Bernstein-Bézier scheme to interpolate positive 

scattered data. The proposed positivity condition by [33] are derived in the same way 

as in [32] where the sufficient condition is derived on the Bézier ordinates to preserve 

the shape of positive data. The main difference between their works is that the 

proposed scheme by Hussain and Hussain [33] involves weight function in their 

definition which has advantage for user to modify the shape of data if the Bézier 

ordinates in any triangular patch does not meet the requirement of the designated lower 

bounds. Initial values of boundary Bézier ordinates are calculated in the same way as 

in [32], but not for initial values of inner Bézier ordinates which are calculated by 

adopting the local scheme concept in [22] in order to satisfy 1C  continuity 

requirement on all edges of the triangle. In 2014, Hussain et al. [37] continued their 

work on the rational quartic Bernstein-Bézier interpolation scheme for positive 

scattered data. This scheme has 15 Bézier ordinates and 15 weight functions compared 

to the previous scheme in [33]. Due to the high number of weight functions in this 

scheme, it gives advantage to the user by providing degrees of freedom for refinement 

of the surface shape, if required. There are three free parameters (weight functions at 

each vertex of triangle) in [37], while the remaining parameter are constrained by these 

free parameters. This is in contrast to [33] where all the weight functions are defined 
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as a free shape parameter to enhance the resulting shape of surface and preserve the 

shape of positive data. Both developed schemes in [33] and [37] are local with 1C  

continuity and applicable for data accompanied with derivatives or not.   

 

The authors in [24, 27, 34] and [89] considered another approach to preserve positive 

[24, 27, 89] and monotone [89] scattered data by arranging over a triangular domain. 

All of these studies discussed the problem of a 1C piecewise function by using the 

Nielson side vertex method [72] for interpolation over a triangle. Delaunay 

triangulation [59] is used to triangulate the domain of scattered data. The study by [89] 

proposed the scheme of a cubic interpolant with one parameter to interpolate along 

each edge of each triangular patch and along the line segments joining a vertex to the 

opposite edge. Other literature such as [24] derived data dependent constraints on 

shape parameters to preserve the shape of the positive scattered data but does not 

provide free parameters for shape refinement; and in contrast to [27] and [34], they 

constructed a rational cubic Bézier and a rational trigonometric basis function with 

more than one free parameter, respectively. Both authors introduced four free 

parameters in the definition of the interpolant to generate the interpolating surface. Out 

of these four parameters, two parameters are constrained to preserve the shape of 

positive data. Meanwhile, the remaining two parameters are free for users to make 

modifications on the surface as desired. Thus, with additional free parameters, it could 

give more advantage to obtain visually pleasing surface compared with one free 

parameter as given in [89] and no free parameters in [24] which does not give the 

freedom to users to refine the shape of the data.  

 



 

20 
 

Hussin et al. [38] discussed two shape properties which is positivity and monotonicity 

of triangular surface data. The side vertex scheme triangulates initial data to interpolate 

the given data over each triangle. In their studies, they have introduced rational 

function with three parameters at each boundary and radial curve. Therefore, there are 

18 parameters in each triangular patch, where six of these parameters are derived from 

data dependent constraints to preserve the shape of positive and monotone data and 

the remaining 12 parameters are free for users to modify the shape as required. The 

proposed scheme is also used if data are given with derivatives or otherwise. 

 

This thesis worked on contributions towards this progress. A 1C  bivariate 

interpolation on positive data is constructed using rational cubic Ball function which 

has similar basis function as in [29]. The proposed scheme that involves weight 

function in the interpolant scheme can give advantage for users to make surface’s 

shape refinement but still preserve the positive shape which are not considered in [31, 

32] and [36]. The interpolant surface not only visualizes the shape preservation but 

also provides a smooth visual image as it is an important concern by researchers 

nowadays. The computation of positivity condition is more relaxed and simpler as 

compared to existing methods. Besides that, the construction of surface also local and 

fulfil the 1C  continuity for each boundary of triangular patch.  

1.6.2 Monotonicity preserving interpolation 

The other fundamental shapes of data that are most often considered by researchers in 

shape preserving interpolation is monotonicity. In 1998 and 2000, the concept of 

monotonicity preservation on rectangular and triangular surfaces have been introduced 
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in Floater and Peña [104, 105] by characterizing types of monotonicity preservation, 

namely, axially monotone [104, 105], strongly monotone [105] and monotone [105] 

by using Bernstein polynomial in both cases, four-sided and three-sided patches. It was 

proven that the Bernstein basis on rectangular surfaces and Bézier triangles are axially 

monotonicity preserving and even monotonicity preserving as mentioned in Delgado 

and Peña [106]. Subsequently, Delgado and Peña [106] displayed some examples 

which show that rational Bézier surfaces are not axially monotonicity preserving, and 

that surfaces generated by the tensor product of rational bases do not fulfil the stronger 

properties of monotonicity preservation, in spite of the fact that they are axially 

monotonicity preserving. They also proved that surfaces generated by rational Bézier 

functions with weights on a triangle are not axially monotonicity preserving unless all 

weights in the functions are equal to one.  

 

In the univariate case, previous literatures that highlighted the problem of 

monotonicity preserving approximation and interpolation can be found in [6, 54, 107, 

108] and the reference therein. In the bivariate case, most of the earlier work focus on 

rectangular mesh (essentially grounded on tensor product or partially blended) using 

various types of polynomial spline and rational spline interpolant and deal with the 

problem shape preservation of monotone data [19, 20, 81 – 83].   

 

In 1985, Beatson and Ziegler [81] interpolated monotone regular data that are arranged 

over a rectangular grid using a 1C  piecewise quadratic spline where each rectangle in 

rectangular grid is subdivided into 16 triangles. Necessary and sufficient constraints 

on functional and derivative values are derived to ensure the monotonicity preservation 

of the given data. However, there are disadvantages in the developed scheme [81]; it 
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is not applicable to data with derivatives. In the same year, Carlson and Fritch [82] 

extended a univariate case [108] to a bivariate piecewise bi-cubic interpolation scheme 

for monotone data arranged on rectangular mesh. In their study, necessary and 

sufficient conditions on first partial derivatives and mixed partial derivative were 

derived to preserve monotonicity. 

 

Hussain and Hussain [20] visualized monotone data in the view of monotone curve 

and rectangular surface with two shape parameters. Then, by extending to partially 

blended rational bi-cubic function (Coons patches), simple constraints are derived on 

free parameters to preserve the shape of monotone data. These schemes are local but 

there is no freedom for designers to do the curve and surface modification. For that 

reason, Hussain et al. [17] developed partially blended rational bi-cubic function with 

16 shape parameters extended from the General Piecewise Rational Cubic (GPRC) 

function. Dependent sufficient constraints derived eight constraint shape parameters 

to preserve the monotonicity, while the remaining are free parameters. Unfortunately, 

scheme [17] is computationally expensive because it has many free parameters. 

Therefore, a rational bi-cubic function with six free parameters in each rectangular 

patch which extended from a piecewise rational cubic function to preserve the 

monotonicity of 3D monotone data was presented in [83]. These free parameters are 

arranged with two of them as constraint parameters for retaining shape of monotone 

data, while the remaining free parameters are for improvements, if necessary. This 

scheme is not only local but also computationally economical and visually pleasant.  

 

Besides using rational cubic spline in shape preserving interpolation, the study in [19] 

has used the greater degree such as rational quartic spline. Liu et al. [19] constructed 
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positivity and monotonicity preserving with bi-quartic rational interpolation spline 

surface over rectangular domain including the classical bi-cubic Coons surface as a 

special case to preserve for positive and monotone surface data. They provided a set 

of simpler basis functions, where only four parameters are used in their method to 

represent the positive or monotonic surface data from [4, 20] as a comparison. 

Moreover, shape preserving of positive and monotone surfaces could be visualized by 

selecting the appropriate parameters of the spline. 

 

The common approach to preserve monotone data in a bivariate case is based on the 

triangulation method by a piecewise construction of the interpolant which are suitable 

for dealing with scattered data such as in [26, 35, 38, 86, 109]. Han and Schumaker’s 

[109] scheme was based on conversion of scattered data to regular data by applying 

the Sibson split of each rectangle into four triangles. This conversion is generated in 

new data sites. The necessary and sufficient conditions on functional and derivative 

values at these new data sites were calculated by the scattered data interpolant to 

preserve monotone surfaces. Then, these conditions were applied to construct a new 

algorithm for fitting a monotone surface by reducing scattered data to gridded data. 

However, the only shortcoming of this method is when the system of N  scattered data 

points reduced to order- 2N  rectangles and some of the rectangles were very small in 

one or both directions as mentioned by [109]. 

 

Saaban et al. [26] developed sufficient conditions on the gradients at the data points in 

order to preserve the shape of monotonic scattered data. The definition of monotonicity 

used in [26] is taken from Floater and Peña [105]. The initial estimation of gradients 

at data points were derived by using a similar approach as in Goodman et al. [110] and 
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then modified if necessary, to fulfil the monotonicity conditions in certain directions. 

The interpolating surface is constructed by piecewise cubic Bézier triangular mesh. 

However, the resulting surface is only 0C  continuity on each triangle boundary, 

which is not enough to have a smooth surface. The smoothness of surfaces remains an 

important issue in the shape preserving interpolation. Therefore, many attempts have 

been made to produce a smooth monotonicity interpolant as presented in [35, 38, 86]. 

Studies by Hussain and Hussain [35], Hussain et al. [38] and Sarfraz et al. [86] 

described a bivariate 1C  interpolant using the rational cubic Bézier function to 

preserve the shape of monotone scattered data arranged over triangular domain with 

respect to a certain direction. The interpolating surfaces in all of these proposed 

schemes have been constructed by taking a convex combination of three side vertex 

interpolants to generate triangular patches by yielding to 12 free parameters in [35, 38] 

and 24 free parameters in [86] for each triangular patch to refine the shape of monotone 

surfaces. In practice, interpolation schemes with higher number of parameters such as 

[86] are more flexible than [35, 38] to improve the shape of the monotone surface. By 

taking the definition of monotonicity in Floater and Peña [105] and as used in [26], 

simple sufficient conditions were derived on these free parameters to visualize the 

shape of monotone scattered data in a given direction. In each case study, [35, 38] and 

[86] have introduced different number of constraint parameters such as six, nine and 

12, respectively, to preserve the shape of 3D monotone scattered data while the 

remaining are left free for user's choice to achieve a smooth surface interpolation as 

desired. The advantages of all these local schemes have the same degree of smoothness 

1C  which give improvements compared to previous work by [26]. In addition, 

schemes [35, 38, 86] are also acceptable to both rectangular and triangular grids. This 

is comparable to Han and Schumaker [109] that required arrangement in a rectangular 


