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p  Initial value 
 

*p  Fixed point 
 

Q  Electrical charge 
 

q  Initial value 
 

R  Maximum conductance in FHN 
 

r  Radius 
 

 Phase plane 
 

S  Singleton radius 
 

s  Continuous time 
 

T  Bigger positive number 
 

t  Time 
 

dt  Dimensionless time 
 

 Smallest positive number 
 

w  Rate constant for opening calcium channel 
 

 Temperature-like time scale factor 
 

 Flow map 
 

U  Space 
 

V  Membrane potential 
 

1V  Potential at which 0.5m  
 

2V  Reciprocal of slope of voltage dependence of m  
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3V  Potential at which 0.5w  
 

4V  Reciprocal of slope of voltage dependence of w  
 

CaV  Resting potential of calcium 
 

dV  Dimensionless membrane potential 
 

KV  Resting potential of potassium 
 

lV  Resting potential of leak 
 

NaV  Resting potential of sodium 
 

 Minimum radius 
 

W  Dimensionless recovery variable 
 

w  Probability of activation gate of potassium channel 
to be open in ML 
 

w  Probability of activation gate of potassium channel at 
steady state to be open in ML 
 

 Asymptotic parameter 
 

X  Lyapunov function 
 

x  Equilibrium point 
 

y  Equilibrium point 
 

z  Time limit 
 

 Negative semi-conductance 
 

 Positive semi-conductance 
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KAJIAN SISTEM DINAMIKAL UNTUK MODEL HODGKIN-HUXLEY, 

FITZHUGH-NAGUMO DAN MORRIS-LECAR  

UNTUK MEMBRAN SARAF 

  
ABSTRAK  

Mekanisme isyarat yang memancar dalam satu neuron telah dimodelkan 

dalam neurosains matematik sejak beberapa dekad yang lalu. Salah satu model 

neuronal matematik yang terkenal ialah model Hodgkin-Huxley (HH) yang 

memodelkan dinamik saluran ionik yang tertanam di sepanjang akson. Apabila nilai 

parameter berubah, model HH boleh menunjukkan pelbagai sifat kualitatif yang 

berbeza-beza. Ini bermakna sistem saraf telah mengalami perubahan dan ini mungkin 

berhubung kait dengan penyakit neuron tertentu. Diagnosis perubatan yang baharu 

boleh dibuat dengan membawa kembali nilai-nilai parameter ke julat yang 

munasabah. Oleh itu, adalah sangat penting untuk menganalisis sistem dinamik satu 

model neuron tunggal dalam rajah bifurkasi satu dan dua parameter, dan mengkaji 

kestabilan setiap rantau parameter dengan menggunakan simulasi komputer XPPAut 

dan MatCont. Memandangkan sebuah model HH terdiri daripada empat persamaan 

pembezaan, para saintis telah menurunkan model HH kepada dua persamaan 

pembezaan untuk mengurangkan beban pengkomputeran dalam kajian neuronal yang 

lebih kompleks. Model yang diringkaskan seperti model FitzHugh-Nagumo (FHN) 

dan model Morris-Lecar (ML) sepatutnya dapat menjelaskan pandangan dinamik 

mekanisma satu neuron tunggal dengan cara yang lebih ringkas atau lebih mudah 

tanpa kehilangan apa-apa sifat dinamik daripada pemodelan asal. Malangnya, dalam 

proses penurunan, beberapa pemboleh ubah perlu dihapuskan dan mengakibatkan 

beberapa pautan kualitatif kepada data biologi turut hilang. Dengan membandingkan 
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keputusan dalam rajah bifurkasi satu dan dua parameter, kesimpulan dapat dibuat 

bahawa FHN ialah satu model kualitatif yang hanya menghasilkan semula ciri-ciri 

utama pola dinamik neuronal satu potensi tindakan (AP), tanpa membekalkan 

maklumat biologi yang dapat diukur. Bentuk gelombang letusan yang diperhatikan 

dalam model ML boleh membawa lebih banyak kandungan maklumat berbanding 

bentuk gelombang berkala yang stabil. Namun demikian, neuron yang tidak meletus 

secara terpencil boleh menghasilkan aktiviti letusan dalam satu rangkaian. Model HH 

mempunyai rantau letusan dalam struktur global. Oleh itu, walaupun rantau tersebut 

berada dalam skala arus suntikan negatif, model HH tetap berpotensi menghasilkan 

gelombang letusan jika nilai parameter diubah sehingga dapat membawa rantau 

letusan tersebut ke dalam skala arus suntikan positif disebabkan AP hanya boleh 

menghasilkan tindakbalas dalam skala arus suntikan positif.  
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DYNAMICAL SYSTEM STUDY OF THE HODGKIN-HUXLEY,  

FITZHUGH-NAGUMO AND MORRIS-LECAR MODELS  

OF NERVE MEMBRANES 

  
ABSTRACT  

The mechanism of signals transmitting in a single neuron has been modelled 

in mathematical neuroscience since the past few decades. One of the well-known 

mathematical neuronal models is the Hodgkin-Huxley (HH) model that models the 

dynamics of ionic channels embedded along the axon. When parameter values are 

varied, the HH model can show a variety of different qualitative behaviours. This 

means that the nervous system has been altered and this might relate to some 

neuronal diseases. New medical diagnosis can be made by bringing the parameter 

values back to its reasonable range. Thus, it is very important to analyse the 

dynamical systems of a single neuron model in one- and two-parameters bifurcation 

diagrams, and to study the stabilities of each parameter regions using computer 

simulations XPPAut and MatCont. Since a HH model consists of 4-differential 

equations, scientists have reduced the HH model to two-parameters differential 

equations to reduce the computational load of a more complex neuronal study. 

Reduced models such as the FitzHugh-Nagumo (FHN) and Morris-Lecar (ML) 

models are supposed to be able to explain the dynamical view of the mechanism of a 

single neuron in a better or simpler way without losing any dynamical properties 

from the original modelling. Unfortunately, in the reducing process, some variables 

need to be eliminated and this means that some qualitative links to biological data are 

lost. By comparing the results in one- and two-parameter bifurcation diagrams, we 

can conclude that FHN is a qualitative model that only reproduces the main features 
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of neuronal dynamics patterns of action potential (AP), without providing 

quantifiable biological information. Bursting waveforms that we observed in ML 

model can carry more informational content compared to stable periodic waveforms. 

Even so, neurons that do not burst in isolation can often produce bursting activity in 

a network. HH already has bursting region in a global structure. Therefore, despite 

being in negative scale of injection current, the possibility for HH to spike a series of 

bursting AP still exists, if we vary the parameter so that the bursting region is moved 

into a positive scale of injection current since AP can only activated in positive scale 

of injection current.  
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary  

The predominant question is how does the brain process information? For instance, if 

a human touches a hot stove with his hand, the sensory organs from his hand send 

information to the brain, which consequently registers the data and returns a message 

to the hand to pull away. To understand the mechanism of information processing 

and impulse transmission in the brain, it is important to understand the dynamical 

system of single neuron in neuronal model. 

The first chapter introduces the mechanism of single neuron and the 

mechanism of signal transmission. To further clarify the principal facts of the thesis, 

the main terminologies such as resting potential (RP) and action potential (AP) will 

be defined first. RP refers to the electrical potential along the membrane when the 

nerve cells are not stimulated by impulses while AP refers to short-lasting event of 

electrical potential which contain impulses along the membrane of the nerve cells 

(Hodgkin and Huxley, 1952a; 1952b; 1952c; 1952d; Hodgkin et al., 1952). This 

chapter also discuss the theoretical and concept of dynamical system applied on 

nerve membrane models in this whole thesis. 

 Subsequently, the next section elaborates the motivation, problem 

statements, objectives, and significance of the research. The last section presents an 

overview of the outline and organization of the thesis.  
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1.2 Mechanism of Single Neuron 

Neurons exist in many different shapes and sizes but share certain characteristics 

(Kandel et al., 2000; Bear et al., 2007). Figure 1.1 shows a schematic view of a 

neuron. The neuron structure can be divided into three basic parts, namely soma, 

axon and dendrites.  The soma plays a key role in the actual processing of 

information that passes through the neuron.  The axon acts like an ‘output cable’ of a 

neuron and the length can reach 1 meter in humans. The axon shape is thin and 

similar to the cell cable-like projections which convey electrochemical messages in 

the form of an electric signal or APs. Information from soma travels down the axon 

allowing the neuron to communicate with other neurons or other cells. The third part 

of the neuron is dendrite, an extension of the neuron cell body, and it specializes in 

receiving and processing excitatory synaptic inputs from other neurons. 

 

Figure 1.1: The general structure of a neuron (Bear et al., 2007) 

 



3 
 

Neuron’s cell membrane is made of a lipid bilayer which comprises protein 

ionic channels, thus preventing ions from flowing freely through it (Marbán, 2002). 

The cells have various mechanisms of transportation that allow different types of 

ions to cross the plasma membrane via its ionic channels embedded along the neuron 

with their own corresponding characteristics, resulting in a net imbalance of charges 

or concentration gradients. Figure 1.2 shows major ionic constituents, namely 

sodium ions Na , potassium ions K  and calcium ions 2Ca  residing in a single 

neuron. These ions diffuse their electrochemical gradient via dependent voltage or 

dependent ligand gated channels. These ion channels render the cell 

membrane selectively permeable to various ions and other substances (like glucose). 

The selective permeability of the cell membrane allows the inner part to have a 

different composition from the outer part of the membrane. This creates a potential 

difference across the membrane along the long cylindrical membrane.  

 

 
Figure 1.2: Ion channels function as pores to permit the flux of ions down their 

electrochemical potential gradient (Marbán, 2002) 

 



4 
 

1.2.1 Resting Potential  

A disturbance such as mechanical, electrical, or sometimes chemical disruption 

triggers a few sodium channels in a small portion of the membrane to open causing 

sodium ions to flow into the cell and potassium ions to flow out (Bear et al., 2007). 

The positive charge from the sodium ions produces less negativity inside the cell 

(depolarizes the cell), thus their RP is at 60 mV  to 80 mV (Lodish et al., 2000). If 

the RP is increased above a certain threshold value, more sodium channels in that 

area will open. More sodium that flows in can trigger an AP. The inflow of sodium 

ions reverses the membrane potential in that area, making it positive inside the cell 

and negative outside the cell. These processes have the net effect of locally 

increasing the potential within the neuron to about 40 mV  before it is restored to 

the RP, where potassium ions leave the cell through the open potassium channels 

rendering it more negative inside the cell (see Figure 1.3). The whole process lasts 

for about 1 ms. The membrane potential slightly overshoots the resting potential, 

which is corrected by the sodium-potassium pump, and restores the normal ion 

balance across the membrane, subsequently returning the membrane potential to its 

resting level. This results in a voltage difference or AP which prompts the nerve 

pulse to provide the key method in transmitting information (Bear et al., 2007). 

1.2.2 Action Potential  

AP refers to a series of sudden changes in the electric potential as ions flow across 

the plasma membrane of a neuron. The process is repeated and finally, the signal 

courses down the entire length of the neuron. Then, an electrical charge or a release 

of neurotransmitters such as serotonin or dopamine allows the signal to leap across a 
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gap called a synapse to the next neuron. Neurons do not fire on their own; they fire 

as a result of incoming spikes from other neurons.   

Circuits of neurons in the brain are complicated due to the multiple 

nonlinearities, different types of neurons, complex dendritic geometries, diverse 

connectivity patterns and dependencies on learning and development. Neurologists 

use electroencephalographs (EEGs) to record the overall electrical activity in the 

brain via electrodes placed on the scalp.   

 

 

Figure 1.3: Recording of an AP in an axon following stimulation due to changes in 
the permeability of the cell membrane to sodium and potassium ions  

(Lodish et al., 2000) 
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1.3 Theoretical and Concept of Dynamical Systems 

1.3.1 Dynamical Systems 

Definition 1.1: Dynamical systems. Dynamical systems refers to the system in 

which a function describes the time dependence of a point in a geometrical space. 

The evolution rule of dynamical systems is an implicit relation of differential 

equations that gives the state of the system for only a short time into the future. If the 

system can be solved by given an initial condition, it is possible to determine all its 

future positions and collection of points known as a trajectory or orbit (Blanchard et 

al., 2006).  

Let U  be an open subset in NN  on a 1C  map 

  : U UU UU ,               (1.0) 

which satisfies the group action axioms:   

  0, p p ,  for all p U ,                   (1.1) 

and 

 , , ,t s p t s p , for all p U , and all ,t s .           (1.2) 

Thus, a continuous dynamical system can be thought of as a 1C  action of the group 

,,  on the open set NU N  (Adolfo, 2019). 

Example 1.1. Let : NF U N  be a 1C  vector field. Then, the flow map, , of F  

defined as a dynamical system if, for all p U , the initial value problem (IVP) 

  ,dx F x
dt

                                      (1.3) 

with initial 

0 ,x p                                       (1.4)     

has a solution that exist for all t  (Adolfo, 2019). 
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Example 1.2. Define 2 2: 2 22  by 

  
cos sin

,   
sin cos

p t t p
t

q t t q
, for , ,t p q .           (1.5) 

To see that  defines a dynamical system, first observe that 

  0,
p p

A
q q

,                          (1.6) 

where A  denotes that 2x2 identity matrix. Consequently, 

  0,
p p
q q

.               (1.7) 

Finally, we use the trigonometric identities  

  
cos cos cos sin sin

sin cos sin sin cos

t s t s t s

t s t s t s
             (1.8) 

to verify that  

cos sin cos sin
,     

sin cos sin cos
p t t s s p

t
q t t s s q

,           (1.9) 

from which we obtain that  

, , ,
p p

t s t s
q q

.           (1.10) 

For each t , the dynamical system, : U UU UU , induces a map on U , denoted 

by :t U U , and given by  

  ,t p t p ,  for all p U .                      (1.11) 

The map :t U U  defined by (1.10) is 1C . Furthermore, it follows from (1.1) and 

(1.2) that 

  t t id ,                         (1.12) 
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where id  denoted the identity map in U , and 

  t t id .              (1.13) 

It then follows that t  is invertible with inverse t . Hence, t  is 1C  with an inverse 

which is also 1C . We say that t  is a diffeomorphism of U . Hence, a dynamical 

system t  induces a family of diffeomorphisms, t t , of the set U  into itself 

(Adolfo, 2019).  

1.3.2 Orbits  

Definition 1.2: Orbits. Let ,t p  denote a dynamical system on an open set 

NU N  (Adolfo, 2019). Given p U , the orbit of the flow, t , through p  is the 

set, p , defined by  

  | ,p x U x t p  for some t ,          (1.14) 

or in other words, p  is the image of the map :p UU  defined by  

  ,p t t p , for all t .           (1.15) 

Example 1.3. For the dynamical system 2 2: 2 22  as in Example 1.2, ,p q  is 

a circle of radius 2 2p q  around the origin for the case , 0,0p q ; and 

(0,0) 0,0 . Figure 1.4 shows 1,0 , 0,0  and another typical orbit of the 

dynamical system  (Adolfo, 2019). The arrows on the two circular orbits portrayed 

in the figure indicate the direction on the orbit induced by the parameterization 

2
, :p q

2  defined by 

  , ,p q

p
t t

q
,  for all t ,           (1.16) 

at t  increases.  
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Figure 1.4: Phase portrait of  in Example 1.2 (Adolfo, 2019) 

 

1.3.3 Phase Portrait  

Definition 1.3: Phase portrait. A depiction of all possible kinds of orbits that a 

dynamical system can have is known as a phase portrait of the systems (Adolfo, 

2019).  

Example 1.4. Figure 1.4 shows the phase portrait of the dynamical systems, 

2 2: 2 22  as in Example 1.2. Observe that, for , 0,0p q  and ,p q  as 

defined in (1.16),  

 
2 2 2

, cos sin sin cosp q t p t q t p t q t  

       2 2 2 2cos 2 sin cos sinp t pq t t q t           (1.17) 

   2 2 2 2sin 2 sin cos cosp t pq t t q t  

       2 2p q ,    for all t , 

which shows that ,p q  lies in the circle of radius 2 2r p q  around the origin in 

22 . On the other hand, if , 0,0rx y S , the circle of the radius r  around the 

origin in 22 , where 0r , by letting 
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  arctan arctany qt
x p

,            (1.18) 

we can show that 

  ,p q

x
t

y
.                        (1.19) 

In other words, ,, p qx y . Consequently, , 0,0rp q S , for 2 2r p q , as 

claimed in Example 1.3. On the other hand, if , 0,0p q , then , 0,0p q . 

Thus, the singleton 0,0  and concentric circle around the origin are the only kinds 

of orbits that the dynamical system, ,t p , defined in Example 1.3 can have 

(Adolfo, 2019).  

1.3.4 Infinitesimal Generator  

Given a dynamical system, : U UU UU , on an open set NU N , we can define a 

vector field, : NF U N  (Adolfo, 2019), as follows: 

  0, |tF x t x
t

  for all x U ,                                (1.20) 

or in other words, 

  
0

, 0,
lim
z

z x x
F x

z
,  for all x U .          (1.21) 

Since we are assuming that the dynamical system, : U UU UU  is a 1C  map, it 

follows that : NF U N  defined in (1.20) is a 1C  vector field defined in U . We 

show next that : U UU UU  is the flow map for the vector field F . The vector 

field, F , defined in (1.21) is called the infinitesimal generator of the dynamical 

system t , for t  (Adolfo, 2019). 
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Thus, we need to show that the map :p UU , given by  

  ,p t t p , for all t                       (1.22) 

is the unique solution to the IVP in (1.3). 

Using the group action axiom for ,t p  in (1.2), we see that p  defined in (1.22) 

satisfies  

  , , ,p t z t z p z t p , for ,t z .                    (1.23)   

We then have that  

  ,p pt z z t ,  for ,t z .          (1.24) 

Thus, for 0z  we obtain from (1.24) that 

  
, 0,p pp p z t tt z t

z z
,                     (1.25) 

where we have also used the group action axiom for ,t p  in (1.1) (Adolfo, 2019). 

Next, letting 0z  in (1.25) and using the definition of the field, F , in (1.21), we 

obtain that 

  '
p pt F t ,             (1.26) 

where prime '  denote the differentiation with respect to t . Equation (1.26) shows 

that p  solves the differential equation in the IVP (1.3). Finally, since 0p p , by 

the group action axiom for ,t p  in (1.1), we see that :p UU  solves the IVP in 

(1.3), which was to be shown. 

Example 1.5. Let 2 2: 2 22  be the dynamical system given in Example 1.2 

(Adolfo, 2019). To find the inifinitesimal generator of , we first compute 

  
sin cos

,   
cos sin

x t t x
t

y t t yt
, for all 2x

y
2 ,        (1.27) 



12 
 

so that 

  0,
x x

F
y yt

                        (1.28) 

   
0    1
1       0

x
y

  

   
  

y
x

, 

for all 2x
y

2 . It then follows that the infinitesimal generator of  is the vector 

field, 2 2:F 2 2 , given by  

  
  

x y
F

y x
,  for all 2x

y
2 .                      (1.29) 

In other words, the dynamical system, 2: 2 , given by  

  
cos sin

,   
sin cos

p t t p
t

q t t q
,  for , ,t p q ,         (1.30) 

is the flow of the linear system of differential equations 

  ,dx y
dt

              (1.31) 

and 

.dy x
dt

                                    (1.32) 

1.3.5 Fixed Points and Equilibrium Solutions    

Attractive fixed points are a special case of a wider mathematical concept 

of attractors where this point occurs when there is an intersection of trajectories. An 

attractive fixed point is said to be a stable fixed point if it is also a Lyapunov stable 

and this Lyapunov stable leads to periodic orbit (Lyapunov, 1966). 
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Let : U UU UU  be a 1C  dynamical system in U  with infinitesimal generator

: NF U N   (Adolfo, 2019).  A fixed point of the flow t  in U  is a point *p U   

such that  

, * *t p p , for all t ,           (1.33) 

or  

* *p t p ,  for all t .                                 (1.34) 

Taking the derivative with respect to t  on both sided of (1.34) we obtain that  

*
' 0
p

t ,  for all t ,           (1.35) 

so that, by the definition of the infinitesimal generator of t , 

* 0pF t , for all t .                      (1.36) 

Combining (1.34) with (1.36) we obtain 

* 0F p .               (1.37) 

Thus, a fixed point of the dynamical system with infinitesimal generator : NF U N  

is a solution to the equation 

0F p .              (1.38) 

Solutions to (1.38) are also known as equilibrium points, or singular points. A point 

p U  which is not a fixed point of the system generated by F  is called a regular 

point of F . A solution to the system (1.3) defined by (1.34) where *p U  satisfies 

(1.37) is called an equilibrium solution (Adolfo, 2019).  

Example 1.6. Consider the two-dimensional system 

     ,dx x y
dt

                         (1.39) 
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and    

.dy y
dt

              (1.40) 

where 0 . 

In this case the field, 2 2:F 2 2 , is given by 

  
x x y

F
y x

, for all 2x
y

2 .           (1.41) 

The equilibrium points are therefore solutions to the system 

0,x y                                                (1.42) 

and 

  0.y                          (1.43) 

Since 0 , the only solution to the system in (1.42) and (1.43) is the origin, 0,0 , 

in 22 . Thus, 0,0  is the only equilibrium point of the system in (1.39) and (1.40) 

(Adolfo, 2019).  

1.3.6 Cycles and Periodic Solutions  

A periodic solution is a function that repeated values in regular intervals or periods. 

Periodic solutions are used to describe oscillations of waves. The appearance or the 

disappearance of a periodic solution through a local change in the stability properties 

of a steady point is known as Hopf bifurcation in codimension of bifurcation 

(Blanchard et al., 2006). 

Definition 1.4: Cycles. An orbit of a dynamical system is a called a cycle when it is 

a simple closed curve (Adolfo, 2019). 

Let : U UU UU  be a dynamical system in an open set NU N . Suppose that for 

p U , the orbit of p , p , is a cycle. Then, there exists a positive number T  such 
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that ,p T p p  and : 0,p T U  is a parameterization of p . In other words, 

: 0,p T U  is one-to-one, and 0,p p T . The function p  is said to be 

periodic with period T . 

Definition 1.5: Periodic solutions. Let NU N  be open and : NF U N  be a 1C  

vector field. A solution :u UU  of differential equation in (1.3) which is not an 

equilibrium solution, is said to be periodic if there exists a positive number, , such 

that  
  ,u t u t  for all t .           (1.44) 

The smallest positive number, , for which (1.44) is called the period of u  (Adolfo, 

2019).  

Example 1.7. Suppose that the differential equation in (1.3) has a flow, 

: U UU UU , and that the orbit, p , for p U , is a cycle. Let 0T  be such that  

  , ,T p p               (1.45) 

  0, ,p pT                         (1.46) 

and 

  : 0,p T U  is one-to-one.            (1.47) 

We show that the function 

  :p UU                                     (1.48) 

is periodic with period T . To see why this claim is true, observe that, for any t , 

  , , , ,t T p t T p t p ,                   (1.49) 

where we have used (1.45). We therefore have that 

  p pt T t , for all t ,                                            (1.50) 

which shows that p  is periodic (Adolfo, 2019).  
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1.3.7 Lyapunov Stability   

Various types of stability may be discussed for the solutions of differential 

equations in describing dynamical systems especially the stability of solutions near to 

the equilibrium point. If all solution nears the attractive fixed point converge to 

equilibrium point, it known as Lyapunov stable or also known as asymptotically 

stable (Lyapunov, 1966). 

Let U  denote an open subset of NN  and : NF U N  be a 1C  vector field. Suppose 

that x  is an equilibrium point of the system in (1.3). Assume also that there exists 

0r  such that rB x U , and rB x x  contains no equilibrium points of F ; 

in other words, x  is an isolated equilibrium point of F  in U . In this section we are 

interested in conditions that will guarantee that if a solution of (1.3) begins near the 

equilibrium point, x , then it will remain near x  for all 0t . This is the concept of 

stability which we make precise in the following definition (Adolfo, 2019). 

Definition 1.6: Lyapunov stability. Let x  be an isolated equilibrium point of the 

system in (1.3) and let 0r  be such that rB x U , and rB x x  contains no 

equilibrium points on F  (Adolfo, 2019). We say that x  is stable if, for every 

0,r r , there exists 0  such that, if p x , then the solution, 

: ,p pu J U  to the IVP (1.3) exists for all 0t , and there exists 1 0t  such that 

  p ru t B x , for 1t t ,                      (1.51) 

where pJ  is the maximal interval of existance.  

Definition 1.7: Asymptotic stability. An isolated equilibrium point, x , of the 

system in (1.3) is said to be asymptotically stable if x  is stable and there exists 

0  such that, if p x , then p x  (Adolfo, 2019). 
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Definition 1.8: Unstable equilibrium points. An isolated equilibrium point, x , of 

the system in (1.3) which is not stable is said to be unstable (Adolfo, 2019). 

Example 1.8. Consider the system 

  3dx y x
dt

                         (1.52) 

and  

3,dy x y
dt

             (1.53) 

where 0 . We want to show that 0,0  is an unstable equilibrium point of the 

system in (1.52) and (1.53) (Adolfo, 2019). First, note that 0,0  is the only 

equilibrium point of the system in (1.52) and (1.53). Indeed, suppose that ,x y  is 

an equilibrium point of the system in (1.52) and (1.53) with , 0,0x y . We then 

have that 

  3 0y x                      (1.54) 

and  

  3 0.x y               (1.55) 

We see that 0x  and 0y . To show the impossible case for x  and y , suppose 

that 0x  in (1.55), we get 0y  since 0 , which is impossible since we are 

assuming that , 0,0x y . Similarly, 0y . Next, multiply (1.54) by x  and 

(1.55) by y  to get   

  4 0xy x                      (1.56) 

and  

  4 0.xy y              (1.57) 
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Adding (1.56) and (1.57) we get 

  4 4 0x y ,                                    (1.58) 

which yields that  

  4 4 0x y ,               (1.59) 

since 0 . Note that (1.59) is impossible for , 0,0x y . We have therefore 

shown that 0,0  is an isolated equilibrium point of the system in (1.52) and (1.53). 

Next, we show that 0  implies that 0,0  is unstable by letting , 0,0p q  be 

such that 2 2p q  and let 2
, ,:p q p qu J 2  denote the solution to the system in 

(1.52) and (1.53) subject to initial condition 

  0 , 0 ,x y p q .                        (1.60) 

Suppose by way of contradiction that  

  , 0,0rp qu t B ,  for all , 0,p qt J .         (1.61) 

It follows from (1.61) that ,p qu  is defined for all 0t .  

Let’s define 2 2,X x y x y  for all 2,x y 2  and put 

  , ,p qu t x t y t , for all 0t .          (1.62) 

Applying the Chain Rule we obtain that 

  
4 4

, 2p q
d X u t x t y t
dt

, for all 0t .         (1.63) 

Note also that, since , 0,0p q , it follows from uniqueness that  

  , 0,0p qu t ,  for all 0t           (1.64) 

thus, (1.63) become  

  , 0p q
d X u t
dt

,  for all 0t ,          (1.65) 
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since 0 . Consequently, ,p qX u t is increasing in t . Thus,  

  , ,p qX u t X p q , for all 0t .          (1.66) 

Using the definition of X  and (1.61), we obtain from (1.66) that 

  0 ,p qr u t r ,  for all 0t ,          (1.67) 

where 0 ,r p q . Since we are assuming that , 0,0p q , we have that 0 0r . 

Put  
  

0

4 4

,
min 2

r x y r
v x y .            (1.68) 

Then, 0v  since 0 0r  and 4 4 0x y  if and only if , 0,0x y . It follows 

from (1.63), (1.67) and (1.68) that 

  ,p q
d X u t v
dt

  for all 0t .          (1.69) 

Integrating the inequality in (1.69) from 0 to t  then yields 

  , ,p qX u t X p q vt , for all 0t ,          (1.70) 

which implies that  

  ,p qu t   as t ,          (1.71) 

which contradicts (1.61). This contradiction shows that 0,0  is an unstable 

equilibrium point for the system in (1.52) and (1.53) for 0  (Adolfo, 2019). 

Definition 1.9: Lie derivation. Let : NF U N  be a 1C  vector field on a open 

subset, U , of NN  (Adolfo, 2019). Given a 1C  function, :X U , we define the 

derivative of X  along orbits of the system in (1.3) to be map :X UX U:  given by 

  X x X F xX x XXX , for all x U                                   (1.72) 

where  denotes the gradient of .X   
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Definition 1.10: Lyapunov function. Let U  be an open subset of NN  and  be an 

open subset of U  with U  (Adolfo, 2019). A 1C  function, :X U R , is said to 

be a Lyapunov function of the system in (1.3) in on the set  if and only if  

0X x 0X x , for all x .             (1.73) 

Definition 1.11: Positive definite functions. Let U  be a neighbourhood of 

0 . Let :X U  be a continuous function satisfying 0 0X . We say that X  is 

positive semi-definite in  if 0X x  for all x . We say that X  is positive 

definite in  if 0X x  for all x 0  and 0 0X  (Adolfo, 2019). 

Definition 1.12: Negative definite functions. Let U  be a neighbourhood 

of 0 . Let :X U  be a continuous function satisfying 0 0X . We say that X  

is negative semi-definite in  if X  is positive semi-definite. We say that X  is 

negative definite in  if X  positive definite (Adolfo, 2019).  

Theorem 1.1: Lyapunov Stability Theorem. Let 0x  be an isolated equilibrium 

point of the system in (1.3). Suppose that the system in (1.3) has Lyapunov function, 

X , in a neighbourhood 
_

U  of 0 . Assume also that X  is positive definite in 

. Then 0x  is a stable equilibrium point of the system in (1.3). In addition, if V  

is negative definite in , then 0p  for all p  (Adolfo, 2019). 

1.3.8 Bifurcation   

According to Blanchard et al. (2006), bifurcation is the mathematical study of 

changes in the qualitative when a small change made to the parameter values of the 

differential equation. When the vector field is derived depends on a parameter, the 

structure of the phase space will also depend on this parameter. Thus small changes 
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may produce no qualitative changes in the phase space until a special value is 

reached. At this point the phase space change qualitatively and this may change its 

stability.  

The codimension of a bifurcation is the number of parameters which must be 

varied for the bifurcation to occur, it can be in codimension one bifurcation or 

codimension two bifurcations (Lyapunov, 1966). Codimension one bifurcation 

appear to have Hopf (H), Limit Point (LP) and Limit Point of Cycle (LPC). While 

codimension two bifurcations appear when two parameters varied and this lead to 

observation of Cusp Point (CP), Bogdanov-Takens (BT), Cusp Bifurcation of Cycles 

(CPC) and Generalized Hopf (GH) (Kuznetsov and Kuznetsov, 2004). 

1.3.8 (a)      Codimension One Bifurcation (Curves) 

Hopf (H) curve: The location of a Hopf bifurcation on the equilibrium point is 

characterized by a complex conjugate pair of linear eigenvalues of the Jacobian 

matrix whose real part passes through zero. When the secondary path is stable or its 

first Lyapunov coefficient is negative, it becomes the supercritical Hopf bifurcation 

(sH). Conversely, when the secondary path is unstable or its first Lyapunov 

coefficient is positive, it becomes the subcritical Hopf bifurcation (uH) (Hale and 

Kocak, 1991). 

Limit Point (LP) curve: Appears when two equilibrium points coalesce and 

disappear. At this bifurcation point, the Jacobian matrix of the equations at the 

equilibrium point has a zero eigenvalue (Boeing, 2016).  

Limit Point Bifurcation of Cycles (LPC) curve: Appears when two periodic 

solutions with finite amplitude coalesce and disappear (Lyapunov, 1966).  
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1.3.8 (b)        Codimension Two Bifurcations (Points) 

Cusp (CP) point: Appears when two LP bifurcation curves meet and disappear 

(Boeing, 2016).  

Bogdanov-Takens (BT) point: BT point located on the LP curve and the Hopf curve 

is tangent to the LP curve at this point (Boeing, 2016). 

Cusp Bifurcation of Cycles (CPC) point: Appears when two LPC bifurcation 

curves meet and disappear (Lyapunov, 1966).  

Generalized Hopf (GH) point: Appears as a twisted point between uH and sH 

curves where Hopf bifurcation curve changes its stability at GH point. Each GH is 

the termination point of the LPC curve tangent to the Hopf curve (Lyapunov, 1966).  

1.4 Motivation 

Numerical simulation models are required to understand the mechanism of single 

neuron inside a human brain. Mathematical model that represents 

phenomenological model needs to be computationally simple and capable of 

producing periodic firing patterns of AP to exhibit information transmission in real 

neurons communication mechanism.  

 The three main motivations emphasized by this research are:  

(i) Varied parameters as a means of predictions in certain situations  

Neuronal model has been studied in computational neuroscience over the past few 

decades. In 1952, two physicians, Alan Lloyd Hodgkin and Andrew Fielding 

Huxley, modelled the dynamics of ion channels that underlie the initial and 

propagation of AP in neuron via a simple and biophysically realistic model based on 

data from the squid giant axon (Hodgkin and Huxley, 1952a; 1952b; 1952c; 1952d; 

Hodgkin et al., 1952). Hodgkin-Huxley (HH) model for AP generation has been 

applicable for half a century because it is relatively simple and experimentally 
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testable model which embodies the major features of membrane nonlinearity namely, 

voltage-dependent ionic currents. The original HH equations not only provide a good 

model for spike generation and conduction in the squid axon, but also incorporate 

important features of neuronal excitability, activation and inactivation of voltage-

dependent currents. Instead of studying the pattern or mechanism of AP in single 

neuron, analysing the dynamical systems in single neuron model is more informative 

in understanding the behaviour of neuron or its bifurcation under varied parameters 

as a means of predictions in certain situations. HH equation shows a variety of 

qualitatively different behaviours when the external injection current ( )I , resting 

potential of potassium ( KV ) and resting potential of sodium ( )NaV  in HH equations 

are varied (Fukai et al., 2000a; 2000b). Periodic solutions emerge via Hopf (H) 

bifurcations, where this analysis of the bifurcation conditions allows us to identify 

different regimes in the parameter space. This approach of studying bifurcations is 

useful because it is believed that computational properties of neurons are based on 

the bifurcations exhibited by these dynamical systems in response to some changing 

stimulus (Grassia et al., 2012; Doruk, 2017). 

(ii) Persuasive discovery in simplified 2-differential model  

Experimental and theoretical developments of the past 20 years force HH model 

practicality to be re-evaluated.  

In 1962, FitzHugh and Nagumo reduced 4-differential equations of HH 

model to 2-differential equations of FitzHugh Nagumo (FHN) model (FitzHugh, 

1962; Nagumo et al., 1962). In 2018, a theoretical bifurcation control strategy is 

presented for FHN model where the bifurcation conditions are tracked by varying 

membrane potential ( )dV  and recovery variable ( )W  (Doruk and Ihnish, 2018). This 

paper revealed Hopf (H) and Limit-Point (LP) bifurcation.   
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In 1981, Catherine Morris and Harold Lecar developed a reduced model 

named Morris-Lecar (ML) model (Rinzel and Ermentrout, 1998). In 2014, the 

dynamical behaviours of a Morris–Lecar neuron model presented in one-parameter 

bifurcation diagrams and pay much attention to the emergence of periodic solutions 

and bistability by changing injection current ( )I , fast activation potential 1( )V  and 

slow recovery potential 3( )V  (Liu et al., 2014). Bistable systems have an important 

neurocomputational property where they can be switched from one state to the other 

by an appropriate stimulation. Bursting oscillations can bring more information 

compared to normal oscillations, since bursting oscillation carry a bunch of wave 

signals in one period observation compared to normal oscillation that only carry 

single signal in periodic waves (Liu et al., 2014). 

(iii) Corrective scale for any detected abnormal waves behaviour  

In 2000, the dynamics of the HH were explored for a wide range of parameter 

values in the multiple parameter space and the global structure of bifurcation of the 

HH determined where parameter plane was divided into several regions according 

to the qualitative behaviour of equations. The global structure of bifurcations in the 

multiple-parameter space in the HH suggested that the bistabilities of the periodic 

solutions are associated with the degenerate Hopf bifurcation points (Fukai et al., 

2000a; 2000b). Thus, the study of the behaviour and global structure of bifurcations 

on this neuronal model become important as a scale guide for each type of wave 

behaviours.  

The studies of dynamical systems for the three neuronal models namely, HH, FHN 

and ML models in this thesis are based on these three main motivations.  

 




