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SISTEM NAVIGASI MEDAN KEUPAYAAN BUATAN SEIMBANG 

HIBRID UNTUK  KENDERAAN PERMUKAAN BERAUTONOMI DI 

DALAM PERSEKITARAN SUNGAI 

ABSTRAK 

Keperluan kepada Kenderaan Permukaan Berautonomi (ASVs) bagi aplikasi-

aplikasi seperti pengukuran Bathymetri Sungai dan pengawasan persekitaran 

semakin meningkat sejak akhir-akhir ini. Walaubagaimanapun, secara relatifnya, 

kesukaran masih wujud bagi navigasi berautonomi platform ASVs yang terkesan 

dengan faktor-faktor tidak diketahui dan laluan air tidak berstruktur, dan kewujudan 

halangan-halangan objek statik dan dinamik. Platform ASV memerlukan takat 

keupayaan autonomi dan kepintaran tertentu untuk megambil keputusan dan 

melakukan analisa risiko bagi navigasi berautonomi yang selamat. Terdapat dua isu 

yang berkait dengan navigasi berautonomi sungai bagi ASV; pemodelan persekitaran 

sungai dan perancangan jejakan secara autonomi dan pengelakan objek. Maka, 

matlamat penyelidikan ini adalah untuk membangunkan algoritma pengenalpastian 

persekitaran sungai, dan algoritma penjejakan sungai dan pengelakan objek. Bagi 

algoritma pengenalpastian persekitaran sungai, bahagian tebing sungai dipilih 

sebagai isyarat visual untuk penjejakan sungai. Terdapat kesukaran-kesukaran untuk 

menentukan tebing sungai kerana faktor-faktor seperti perubahan warna dengan 

keadaan pencahayaan, balikan air dan gambaran rumit bagi paparan tumbuhan-

tumbuhan sepanjang tebing sungai. Bagi mengatasi masalah ini, algoritma 

pembezaan warna terhad penjelmaan Hough dicadangkan. Bagi menilai prestasi 

kaedah yang dicadangkan, ralat purata dan varians telah dikira. Jarak Euclidean bagi 

garisan-garisan yang dikesan daripada titik benar telah digunakan untuk 
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membandingkan prestasi kaedah yang dicadangkan. Purata ralat lencongan bagi 

kaedah yang dicadangkan, kaedah segmentasi warna dan kaedah penjelmaan Hough 

adalah 3.145 piksel, 16.736 piksel dan 27.507 piksel. Ralat lencongan varians bagi 

ketiga-tiga kaedah adalah 0.099, 5.467 dan 19.749. Bagi masalah jejakan sungai, satu 

skim kawalan seimbang dicadangkan dengan sasaran menyelesaikan jejakan sungai 

dan pengelakan halangan secara serentak. Kaedah hibrid seimbang-APF yang 

dicadangkan adalah kaedah yang tidak menggunakan maklumat GPS bagi navigasi 

sungai dan ini bermaksud ia sesuai untuk kes tanpa maklumat pemetaan sungai. 

Halangan-halangan statik dan dinamik di dalam sungai telah digunakan untuk 

mengesahkan kaedah seimbang-APF yang dicadangkan. Keputusan-keputusan 

menunjukkan kaedah seimbang-APF telah berjaya untuk menyelesaikan jejakan 

sungai dan pengelakan halangan-halangan secara serentak. Sebagai tambahan, 

Ketetapan berkenaan Peraturan Antarabangsa untuk Pengekangan Pelanggaran di 

Laut (COLREGs) telah digabungkan ke dalam sistem navigasi ASV yang telah 

membolehkan ASV mematuhi peraturan-peraturan piawai trafik marin. Daripada 

adaptasi keperluan COLREGs, platform ASV boleh melakukan navigasi secara 

selamat bagi sebarang pertembungan di sungai seperti pengelakan halangan statik 

dan dinamik, pertembungan berhadapan dan pergerakan memintas. Secara 

ringkasnya, sebuah sistem navigasi persekitaran sungai berasaskan penglihatan 

berautonomi untuk ASV telah berjaya dibangunkan.  
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HYBRID BALANCE ARTIFICIAL POTENTIAL FIELD NAVIGATION 

SYSTEM FOR AN AUTONOMOUS SURFACE VESSEL IN RIVERINE 

ENVIRONMENT 

ABSTRACT 

The demands of Autonomous Surface Vessels (ASVs) for applications such 

as river bathymetry survey and environmental monitoring are increasing rapidly.  

However, it is still relatively challenging for the ASVs platform to navigate 

autonomously due to factors such as unknown and unstructured waterway, and the 

presence of static and dynamic obstacles. The ASV platform needs some level of 

autonomy and intelligence in order to make reasonable decisions and risk analysis 

for safe autonomous navigation. There are two issues related to ASV autonomous 

riverine navigation; river environment modelling and autonomous path planning and 

obstacles avoidance. Thus, the objectives of the research are: to develop a riverbanks 

identification algorithm for ASV navigation; and to develop a marine traffic rules 

compliant navigation and obstacles avoidance algorithm for ASV in the unstructured 

riverine environment. The riverbanks are selected as the visual cues for the river 

tracking. The issues of recognising the riverbanks include factors such as color 

variation with the light condition, water reflection and the complex scene of plants 

on the riverbanks. In order to overcome these issues, a Color Segmentation 

Constrained Hough Transform Algorithm is proposed. The results show that the 

proposed method identified all the riverbanks successfully. To evaluate the 

performance of the proposed method, the average and variance error deviation are 

calculated. The Euclidean distances of detected lines from ground truth are used to 

compare the accuracy of the proposed method. The average error deviation of the 
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proposed method, color segmentation method, Hough Transform method are 3.145 

pixel, 16.736 pixel and 27.507 pixel, respectively. The variance error deviation of the 

three methods are 0.099, 5.467 and 19.749, respectively. For the river tracking 

problem, a balance control scheme is proposed in order to achieve simultaneous river 

tracking and obstacles avoidance. The proposed Hybrid Balance-Artificial Potential 

Field (APF) method is a method that does not utilize the GPS information for the 

river navigation which means that it is suitable for the case without known river map. 

Static and dynamic obstacles in the river are used to verify the proposed balance-

APF method. The simulation results show that the Hybrid Balance-APF method 

successfully achieved simultaneous river tracking and obstacles avoidance. In 

addition, convention on the International Regulations for Preventing Collisions at 

Sea (COLREGs) is integrated into the ASV navigation system, which makes the 

ASV able to abide by the standard marine traffic rules. From the adaptation with 

COLREGs requirements, the ASV platform can navigate safely from typical riverine 

encounter such as static and dynamic obstacles avoidance, head-on and overtaking 

encounter. In summary, feasible autonomous riverine environment navigation system 

for ASV has been successfully developed. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Introduction 

Water transportation is an ancient mode of transportation. More than 90% of 

the global trade are achieved by water transportation (Dobbins & Abkowitz, 2002). 

Owing to the advantages of large volume of transport, low energy consumption, low 

cost, less space occupied, water transportation has irreplaceable advantages in the 

comprehensive transportation system of the world. With the development and 

increasing demands of inland river shipping, the number of floating crafts/ships 

increases rapidly. The risks of marine traffic accidents such as collision of ships and 

collision of ships with bridges are also increasing, which seriously threaten the safety 

of navigation of ships and the ecological environment of rivers. Thus it becomes 

more challenging to deploy an Autonomous Surface Vehicle (ASV) on the river – 

without colliding or crashing into the other ships/boats.  

As an unmanned platform, Autonomous Surface Vehicle (ASV) which is also 

called Unmanned Surface Vehicle (USV), is able to undertake long-term, large-scale 

and low-cost marine scientific research and engineering missions in the water area 

(Bertaska et al., 2015; Murphy et al., 2011). Therefore, unmanned craft has an 

extremely wide application prospect in civil and military fields, such as hydrological 

information collection, underwater topography survey, environmental monitoring 

and surveillance, and various military applications (Bertaska et al., 2013; Casalino, et 

al., 2009; Kitts et al., 2012; Sarda & Dhanak, 2014). 

Compared with the well known Unmanned Aerial Vehicles (UAVs), 

Autonomous Surface Vehicle (ASV) is still being stranged for people although it has 
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appeared for more than 70 years (Manley, 2008). It is a member of four unmanned 

vehicles families, other unmanned vehicles include Unmanned Aerial Vehicles 

(UAVs), Unmanned Ground Vehicles (UGVs) and Autonomous Underwater 

Vehicles (AUVs). Same as other unmanned vehicles, ASVs are widely used in 

complex environments for harsh and dangerous missions (Bertram, 2008; M Breivik, 

2010; Roberts & Sutton, 2012). The complex water environment normally refers to 

the water area with wave, current, or obstacles. ASV technology has great potential 

for further development in many aspects, such as the design of the hull, propeller 

system, and control system. As an unmanned platform, ASV has the following 

characteristics: 

i. ASV has certain autonomous mobility, it is able to carry out dangerous 

tasks, but the crew is not in danger of life. It shows certain intelligent 

features, and can automatically execute specific tasks according to the 

requirements of users with strong autonomy and adaptive ability such 

as target tracking and obstacles avoidance (Liu & Bucknall, 2015).  

ii. Activities of ASV are not easily affected by the environment, such as 

climate, and can be arranged to perform tasks in specific areas for a 

long time without considering the adaptability of personnel (Kitts et al., 

2012). Therefore it has a wide range of activities, low operating cost, is 

able to work in shallow water areas such as in ports and other areas. 

iii. ASV can collaborate with other unmanned platforms, such as UAV, 

UGV, and AUV, to form heterogeneous communication and 

surveillance networks (Huntsberger & Woodward, 2011). The network 

will have unique situational awareness, which is helpful to the 

realization of the network-centric platform. It is able to communicate 
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with an underwater and above water devices at the same time, or work 

as a relay station. ASV could also be used to track the target such as 

moving ship, which will significantly improve the ability of ships to 

perform various monitoring tasks. 

The present chapter is organized as follows: Section 1.1 describes the 

research background. The problem statements are described in Section 1.2. Section 

1.3 presents the research objectives, while Section 1.4 describes the research scope in 

order to fulfill the research objectives. Finally, Section 1.5 presents the thesis outline. 

1.2 Problem Statements 

The ASV in this research is required to cruise in river area. Thus, the 

problems for ASV riverine navigation are studied. The river environment is a 

confined water area, where the ASV’s motion is limited by the riverbanks. ASV 

navigated in river is similar with the mobile robot moving in corridor. However, 

generally the river environment is more complex because the river is natural and 

unstructured. More specifically,  a fully autonomy of the ASV is required when the 

river map is unknown or GPS is denied. To perform ASV navigation in unknown and 

unstructured riverine environment, there are two problems needed to be solved. The 

first problem is that the riverbanks are needed to be detected from the natural 

complex river scene (El-Gaaly et al., 2013; Subramanian et al., 2006). The second 

problem is ASV simultaneous river tracking and obstacles avoidance of ASV 

navigation, in where the existing riverine path planning methods mostly are based on 

the GPS, thus they are not suitable for unknown and unstructured riverine 

environment (Yang et al., 2011).  
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1.2.1 The riverbanks detection for natural and unstructured riverine 

environment 

The GPS-based methods are very popular for the ASV navigation (Caccia, et 

al., 2008). However, these methods are not working for two cases of ASV riverine 

navigation. One case is that there is no prior river map for the ASV navigation, such 

as the riverbanks of the river are unknown (Snyder, et al., 2004; Sonnenburg & 

Woolsey, 2013). The other case is that the Global Position System (GPS) signals are 

blocked due to the thick and high canopy, especially in tropical riverine. For these 

two cases the image processing technique is a solution of riverbanks detection which 

is needed to be achieved for the ASV navigation. 

The riverbanks detection is a challenging task since the river water area is 

poorly mapped, constrained and unstructured natural environment, in which the 

topography and the scene of the riverbanks are changing. As shown in Figure 1.1, 

there are two issues for the riverbanks detection by image processing, one is the  

color of the river water area is close to the color of the plants on the riverbanks; the 

other is the water surface reflection is strong (Furfaro et al., 2009). Hence, there is a 

need to develop a image processing algorithm to identify the riverbanks from the 

river scene. 
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(a)                                                               (b) 

Figure 1.1 Riverbank scenes with tropical plants 

 

1.2.2 Marine traffic rules compliant navigation of the ASV in unknown 

riverine environment 

Path planning and obstacle avoidance are basic issues for autonomous 

vehicles navigation ( Caccia et al., 2008). Artificial Potential Field (APF) which was 

first proposed by Khatib (1986) for mobile robot obstacles avoidance, is widely used 

in local path planning and obstacle avoidance because of its simplicity and 

effectiveness. The basic idea of the APF is that the robot in the environment is 

subjected to the attractive potential field from the target point and the repulsive 

potential field from the obstacle. The robot's motion information is determined by the 

combined potential field composed of the attractive potential field and the repulsive 

potential field in the environment. The basic APF method is able to achieve static 

obstacles avoidance but not dynamic obstacles avoidance since only the distances 

between the robot to target and obstacle are taken into account.  

To make the APF method be able to avoid dynamic obstacles avoidance, Ge 

and Cui (2002) modified the APF method by adding the velocity information of the 

robot into the attractive and repulsive force potential field. They proposed a potential 
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field method for mobile robot motion planning in a dynamic environment where both 

the target and obstacles are moving. The potential functions take into account not 

only the relative positions of the robot with respect to the target and obstacles, but 

also the relative velocities of the robot with respect to the target and obstacles. 

Accordingly, the virtual force is defined as the negative gradient of the potential with 

respect to both position and velocity. The motion of the mobile robot is then 

determined by the total virtual force through the Newton’s Law or steering control 

depending on the driving type of the robot. Computer simulations and hardware 

experiments demonstrated the effectiveness of the mobile robot motion planning 

schemes based on the proposed potential field method. 

Furthermore, Naeem et al. (2016) proposed a marine traffic rules compliant 

APF method to make the ASV have the ability to abide the The International 

Regulations for Preventing Collisions at Sea (COLREGs). All these methods are 

suitable for the open water area such as open sea and large lake. However, the river 

is a confined water area. Therefore, a novel ASV navigation method in riverine 

environment is needed to be developed. 

1.3 Research objectives 

The aim of this research is to develop a navigation algorithm for the ASV to 

be navigated in riverine environment in different conditions, such as scenarios with 

static and dynamic obstacles. Therefore, the sub-objectives are as below: 

i. To develop a riverbanks identification algorithm to improve the color 

segmentation method in natural river scene. 
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ii. To develop a marine traffic rules compliant navigation and obstacles 

avoidance algorithm to improve the Artificial Potential Field method 

for ASV in the unstructured riverine environment. 

1.4 Research scopes 

In order to achieve the objectives stated above, the scope of this research is 

confined to the simulation of developing a riverine navigation system for the ASV. 

In addition to the riverbanks identification algorithm, the main contribution of the 

research is to develop a marine traffic rules compliant navigation algorithm for the 

riverine ASV.  

The simulated riverine environment is acquired from the Sungai Kerian River 

which is located in Nibong Tebal, Penang, Malaysia, near Universiti Sains Malaysia 

Engineering Campus. For the riverbanks identification, a video with 4200 frames are 

captured for image processing. For the marine traffic rules compliant navigation, a 

part of Google map of the Sungai Kerian River with the length of 1km, with the 

maximum width of 166m and the minimum width of 56m is used as the river 

environment.  

In the riverbanks identification phase, the ASV is navigated with a vision 

system and to recognize the unknown riverine environment, the navigation is 

determined by the visual cues that are provided by two lateral cameras which is to 

detect the riverbanks. This ASV is required to track along the river by keeping in the 

center of the river, and be able to avoid obstacles in the meantime. To perform this 

task, the first work to be performed is to measure the distance from ASV to the left 

and right side riverbanks. However, it is difficult for rangefinders since there are 

many plants on the riverbanks. Thus a riverbank lines recognization method is 
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proposed with image processing approach. The riverbank lines are extracted from 

complex nature scenes with various plants, water surface reflection and changing 

riverbanks.  

After the riverbanks detection, the ASV is expected to use the riverbank lines 

cues to keep in the center of the river. However, the riverbank lines detected by 

monocular vision is still not a distance information to navigate the ASV. Therefore, a 

balance control scheme is proposed to achieve the navigation, which is to imitate 

navigation manoeuvre of the human being. The left and right side riverbank lines 

instead of distances are compared to keep the ASV in the center of the river. The 

heading of the ASV is determined by the comparison of riverbank lines. This method 

is not an accurate guidance approach but it is simple and practical to perform ASV 

river navigation.  

Another issue in ASV riverine navigation is obstacles avoidance. Thus the 

Artificial Potential Field (APF) is combined with the proposed balance control 

scheme when the ASV encounters objects on the river. The objects that the ASV 

encounters include static and dynamic obstacles, which may be a moving boat. Some 

of the surface vehicles (with or without crew) follow the marine traffic rules when 

they traverse the water area. So the ASV is required to obey the marine traffic rules 

when encountering other vehicles to decrease the collision risk. In this research, the 

marine traffic rules are integrated into APF method to perform obstacles avoidance. 

In addition, the maximum speed of the  ASV limited by the time-cost of image 

processing is discussed. 
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1.5 Thesis outline 

This thesis has 5 chapters, including the introduction, literature review, 

methodology, results and discussion, and conclusions of the research. The 

orgnization of this thesis is as below.  

Chapter 1 briefly addresses the introduction of the research work. Section 1.1 

introduces the research background. The application and characteristics of ASV are 

described. The problem statements are presented in Section 1.2. In Section 1.3, the 

research objectives are listed, while the research scopes are presented in Section 1.4. 

At last, the thesis outline is presented in Section 1.5.  

Chapter 2 discusses the literature review. The literature review summarizes 

the related previous research work by other researchers. Section 2.1 presents a brief 

introduction of ASV. The historical Overview of ASV is reviewed in Section 2.2. 

The Modelling, Navigation, Guidance and control (NGC) system of ASV are 

addressed in Section 2.3. The riverbanks identification is reviewed in Section 2.4. 

The global and local path planning methods are discussed in Section 2.5. Section 2.6 

reviews the ASV riverine navigation researches. Finally, a summary of Chapter 2 is 

presented in Section 2.7. 

Chapter 3 explains the methodology of the research. Section 3.1 presents the 

overall research steps. In Section 3.2, the riverbank detection by image processing is 

described, which includes image segmentation and Hough Transform line detection. 

Section 3.3 presents the Hybrid Balance Artificial Potential Field method for river 

tracking and obstacles avoidance. In addition, the marine traffic rules are integrated 

into the ASV navigation algorithm as well. At last, a summary is presented in 

Section 3.4. 



10 

Chapter 4 presents the results and discussions of the research. Section 4.2 

indicates the results of riverbanks detection with the proposed Color Segmentation 

Constrained Hough Transform method. Section 4.3 presents the results of the 

riverine navigation of ASV, which is realized by the proposed Hybrid Balance 

Artificial Potential Field. Finally, a summary is presented in Section 4.4. 

At last, Chapter 5 addresses the conclusion and highlights the contributions of 

this study. The recommendations for future works are presented as well. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter discusses the literature review on ASV technologies, which 

contains a historical overview of ASVs, Guidance, Navigation and Control system 

(GNC). Besides, the global and local path planning methods are discussed, and the 

Artificial Potential Field (APF) method for obstacle avoidance is extensively 

reviewed. Finally, the collision risk assessment approaches and marine traffic rules are 

discussed. 

2.2 Historical overview of ASV 

ASV technology dates back to World War II and was originally designed as 

torpedo shape to clear mines and other obstacles on the sea. ASVs are widely used for 

civil, science research and military applications (Veers & Bertram, 2006). For Civil 

applications, ASVs are employed for ocean observation, marine resource exploration 

and exploitation, marine environment monitoring and so on (Veers and Bertram, 

2006; Bertram, 2008; Manley, 2008;  Motwani, 2012). After 911, the security of ports 

has become a key concern. The US Navy has added more attention to the coastal war 

and anti-terrorism, thus promoting the rapid development of the ASV. It has been an 

important component of the future US naval force. At present, a variety of ASVs have 

been used in the military field (Campbell et al., 2012). Recent developments of ASVs 

are listed in Table 2.1. 
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Table 2.1 ASV prototypes (Liu et al., 2016; Peng et al., 2017; Zhao et al., 2011) 

Country  
Name of 

ASV 
year Length (m) Endurance  

Max 

speed(/kn) 

USA 

Sea Owl 1993 3 10h/12kn 45 

AN/WLD-1 2001 7 20-24h 10 

Spartan Scout 2002 7/11 8h/28kn 50 

Ghost Guard  2003 8 24h 40 

Piranha 2003 8 24h 40 

Blue Knight 2005 40.4 24h 50 

Israel 

Protector 2003 9 400nm/30 kn 40 

SeaStar 2005 11 10h 40 

Stingray 2005 8 8h 40 

Silver Marlin 2007 10.67 24 45 

France FDS-3 1999 8.3 20h 12 

Japan OT-91 2005 4.4 20h 40 

China Jinghai-I 2013 6.28 10h/10kn 18 

 

where kn denotes the speed with knot, 1kn=1 n mile/h= 0.5144444 m/s= 1.852 km/h. 

2.2.1 ASV developed by the USA 

As the only superpower in the world at present, the USA’s ASV development 

is in the leading level in the world and dominates the direction of ASV development. 

The typical high-speed ASVs developed by the USA are the “Spartan Scout” and 

“SSC San Diego”, as shown in Figure 2.1 and Figure 2.2. The main objectives of 

Spartan Scout are to protect troops from asymmetric threats; to enhance battlefield 

space early warning capabilities; to verify the sensor and weapon effectiveness of 

ASV. The platform is capable of unmanned control, in which the task module can be 

replaced by modularization according to the requirements (Motwani, 2012). There are 

also several companies in the USA that are developing various types of ASVs. They 

have achieved good research results. For example, the high speed ASV SSC San 

Diego which is developed by the Space and Naval Warfare Systems Center of USA 

(Larson, Bruch, Halterman, Rogers, & Webster, 2007). 
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Massachusettes Institute of Technology's study of ASV began in 1993 with the 

first ASV known as “ARTEMIS” ( Vaneck et al., 1996; Vaneck, 1997). The ASV is a 

scale-down model of a fishing vessel, which is used to test ASV's navigation and 

control system. The craft was used to collect simple ocean data from Boston's Charles 

River. The research team at MIT in 2000 studied autonomous coastal exploration 

systems and designed a  new type of "AutoCat" catamaran. "AutoCat" can be 

conveniently deployed and surveyed by remote control or autonomous navigation 

(Manley et al., 2000). 

ASV is working on the air-sea interface, which can act as a relay station 

between underwater acoustics and aerial radio communications, thus it can be seen 

that ASV is a key component of future network-centric warfare (Liu et al., 2016). In 

recent years, the ASV applications of moving along baseline navigation have been 

verified (Peng et al., 2017). In the future, ASV may become the network node of naval 

application. In this research background, “Kayak” has been developed by MIT, which 

can be used as the reference point for mobile navigation of AUV (Motwani, 2012). 

 

 

Figure 2.1 Spartan ASV (Motwani, 2012) 
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Figure 2.2 SSC San Diego ASV (Larson et al., 2007) 

2.2.2 ASV developed by other countries 

Although Israel is a small country in the Middle East, it has very high research 

and development capabilities in military science and technology, especially in the 

field of unmanned system research, such as Unmanned Aerial Vehicle (UAV). Israel 

is not only a member of the "Spartan" ASV research program but also independently 

developed "Protector" and other advanced ASVs. 

In 2003, Israel's Rafal Company and Aeronautics Defense Systems developed 

a multipurpose ASV "Protector", which is a typical example of Israeli ASVs. 

"Protector" is a rigid shell inflatable planning craft. It has a total length of 9m, a 

displacement of 4 ton, a maximum speed of 40 kn and a maximum payload of 1000 

kg. It can be operated either by autonomous navigation or by remote control ( Breivik 

et al., 2008). 

Israel's Elbit Systems Ltd developed the “Silver Marlin” in 2006 and began sea 

trials in early 2007 (Bertram, 2008). The craft, known as the second generation ASV, 

can be operated remotely but mainly autonomously. The ASV is with a length of 
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10.67m, weight 4 ton, payload 2500kg, speed up to 45knn, endurance 500n mile, 

duration 24 hours. 

In 2005, Israel's Elbit Systems Ltd developed the "Stingray" ASV (Bertram, 

2008). This ASV is based on a civilian water-jet propulsion boat, which can travel at a 

speed of 40 kn, with a payload of 150 kg and a self-sustaining capacity of more than 8 

hours. It can achieve coastal target identification, reconnaissance, surveillance, 

electronic warfare and electronic reconnaissance and other functions. It is easy to 

stealth due to the small hull.  

Israel Aeronautics Defense Systems has also designed the ASV "Starfish", 

which is 11m in length, 6 ton in weight, 2500kg in payload, 45kn in cruising speed 

and 300 n mile (Yang et al., 2011). It is equipped with two diesel engines and uses 

water-jet propulsion. The ASV uses an open architecture, equipped with 

optoelectronic systems, target search systems, communications and intelligence 

systems, and a small caliber naval gun that can be controlled by land-based, sea-based 

or space-based platforms. 

Since 2000, France's Sirehna company has been working on the development 

of  ASV. In 2007,  they successfully developed an unmanned high-speed planning 

boat “Rodeur” (Bertram, 2008). It is capable of carrying out multiple missions, such 

as mine hunting, anti-submarine warfare, protection and surveillance of marine 

pollution investigation and chemical detection, etc. The French Navy also designed 

multi-type of ASVs such as "Seakeeper" (Yang et al., 2011). In addition, the French 

company ACSA has developed ASVs such as BasilI\ II Mini VAMP and so on 

(Bertram, 2008). 
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Yamaha of Japan has carried out research on ASV, the main models of which 

are Unmanned Marine Vehicle High-Speed (UMV-H) and Unmanned Marine Vehicle 

Ocean type (UMV-O), as shown in (Bertram, 2008). UMV-H ASV is a V-shaped 

planing boat, equipped with 90KW engine and jet propulsion, with a max speed of 

40kn. It can be controlled by manned or unmanned mode. With the length of 4.44m, it 

is easy to be carried by ships. It has enough space to equip with other necessary 

devices and tools, such as underwater cameras, sonar equipment and so on. The 

UMV-O ASV is mainly used for the biogeochemistry of marine environment 

monitoring task with a long time, a wide range of activities.  

The United Kingdom has made rich research achievements in the field of 

ASV, among which the University of Plymouth has successfully developed the 

"Springer" catamaran ASV (Naeem et al., 2008). In 2002,  UK Qineti Q Limited has 

designed the "MIMIR" ASV(Zhao et al., 2011). In 2006, the ASV company developed 

a semi-submersible autonomous measuring boat (Motwani, 2012). 

The Italian CNR-ISSIA robotics group has made many achievements in the 

research of ASV. Among them, Caccia et al. (2007) developed the "Charlie" 

catamaran ASV, which is with 2.4m length, 1.7m wide and 300kg weight. It is 

propelled by propellers and equipped with a rudder-based control system. The two 

fixed steering gears are mounted behind the propeller and driven by a brushless DC 

motor. The navigation is performed by GPS and the gyroscope. The power source of 

"Charlie" ASV is a lead-acid battery of 12V and 40Ah. Besides, it is equipped with 

four groups of flexible solar panels. The single-board computer on board is operated 

by GNU / Linux. The real-time computer control system is developed by C++ 

language. 
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In 2008, Xinguang company of China developed the "Tianxiang 1" USV, 

which can be controlled by the remote autonomous way (Yan et al., 2010). With a 

length of 6.5m and carbon fiber hull, this ASV is equipped with GPS, radar, image 

transmission and processing system, and an intelligent navigation system. During the 

Qingdao Olympic Sailing Contest in 2008, the ASV is working as a meteorological 

emergency equipment to provide weather support services for the Olympic Sailing 

events. 

The latest ASV in China is developed by Research Institute of USV 

Engineering, Shanghai University (Peng et al., 2017). As the first self-developed 

surface unmanned intelligent measurement platform in China, “Jinghai-I” ASV 

carried out its first voyage in March 2013 during the second maritime cruise in the 

South China Sea, which took on the surveying task of the islands and reefs in the 

South China Sea and achieved good results. The “Jinghai-I” ASV has built-in sonar, 

high precision optical fiber compass, laser rangefinder system and image monitoring 

system, collision avoidance radar and high-precision GPS and Beidou satellite 

navigation guiding and positioning system which is developed by China. The data 

collected by the devices can be stored in the built-in mass storage system. So far, 

Jinghai series ASVs have been developed from“Jinghai-I” to “Jinghai-IV” to perform 

different missions in different conditions.  

2.3 Modelling and navigation, guidance and control (NGC) system of ASV  

The majority of ASVs are equipped with main propulsion and rudder, which 

means only two control variables are used to control the heading and position (x,y) of 

ASV, 3 degrees of freedom movement. These ASVs are called underactuated surface 

vessel system and are typical second-order nonholonomic constraint dynamic systems 
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(Do & Pan, 2009). Theoretically, the problems of underactuated systems control are 

the controllable degrees of freedom (system outputs) are greater than the actuators of 

system (control inputs). The Brockett theorem points out that (Brockett, 1983), there 

is no any smooth (even continuous) time invariant state feedback control law causes 

the underactuated system asymptotically stable. In addition, if the control methods for 

redundant system were applied to these underactuated systems, the performance 

would be extremely poor and unacceptable (Caharija et al., 2014). 

For these underactuated ASVs, related research works are divided into three 

parts, stabilization control, which are trajectory tracking and path tracking. Lyapunov 

direct method (Mbede et al., 2000), backstepping method (Sonnenburg & Woolsey, 

2013), sliding mode control (Gazi, 2005), and feedback linearization method (Ge and 

Cui, 2002) are applied to underactuated ASV system. Modelling of underactuated 

ASV is the fundamental of control.  
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2.3.1 Modelling of ASV and environment 

2.3.1(a) Modelling of common ASV 

In this section the model of underactuated ASV equipped with rudder-

propeller system will be discussed. When describing ASVs’ motion, two reference 

frames are considered: an inertial, earth-fixed frame {E} and body-fixed frame {B}. 6 

degrees of freedom (DOF) for marine vessels are shown in Figure 2.3, which is 

defined as, surge, sway, heave, roll, pitch, and yaw. The corresponding motion 

variables are listed in Table 2.2 (Fossen, 2011).  

 

Figure 2.3 Motion variables for a marine vessel 
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Table 2.2 The notation of 6 degrees of freedom (Fossen, 2011) 

DOF  
forces and 

moments 

linear and 

angular 

velocities 

positions and 

Euler angles 

1 
motions in the x-direction 

(surge) 
X u x 

2 
motions in the y-direction 

(sway) 
Y v y 

3 
motions in the z-direction 

(heave) 
Z w z 

4 
rotation in the x-direction 

(roll, heel) 
K p   

5 
rotation in the y-direction 

(pitch, trim) 
M q   

6 
rotation in the z-direction 

(yaw) 
N r   

 

Since the ASV travels on the water surface which means that the motion is 

basically on horizontal plane, the model of ASV is simplified to 3 variables, surge, 

sway, and yaw. In the ASV navigation mode, position and orientation of the ASV are 

the basic motion parameters. As shown in Figure 2.3, position is determined by surge 

and sway and orientation is determined by yaw. In Table 2.2, surge, sway and yaw [x, 

y,  ]T of the vessel are expressed in earth-fixed frame {E}, while surge and sway 

velocities (with respect to the water) and yaw rate ],,[ rvu . 

As shown in Figure 2.4, assuming that the ASV motion is restricted to the 

horizontal plane, and pitch, roll and heave are neglected. Thus, Tyx ],,[  = , 

Trvu ],,[= . The control inputs of ASV are longitudinal force Fu and yaw moment 

Tr. {E} is earth-fixed frame and {B} is body-fixed frame. 
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Figure 2.4 Illustration of Planar motion model of ASV 

 

With the assumption that (Fossen, 2011),  

(1) The hull is symmetrical on XbZb planar.  

(2) The environment disturbances are considered to be slowly time-varied 

process. 

Then 3 degrees of freedom model is indicated as follows (Fossen, 2011), 

{
𝜂̇ = 𝐽(𝜂)𝜈

𝑀𝜈̇ + 𝐶(𝜈)𝜈 + 𝐷(𝜈)𝜈 = 𝜏 + 𝜏𝐸
                                     (2.1) 

Where 𝜂  and 𝜈  are generalized velocities and positions used to describe 

motions in 3 DOF, matrices M is the rigid-body inertia matrix, C is a matrix of rigid-

body Coriolis and centripetal forces. D is a damping coefficients matrix. J is a 

transformation matrix which can be computed by using MSS toolbox (Perez & 

Fossen, 2010). )(J , M , )(C , )()(  nDDD +=  are expressed in Equation (2.2),  

 

αR 

UT 

Zb 
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𝐽(𝜂) = [
cos (𝜓) −sin (𝜓) 0
sin (𝜓) cos (𝜓) 0
0 0 1

],   M=[

𝑚 − 𝑋𝑢̇ 0 0
0 𝑚 − 𝑌𝑢̇ −𝑌𝑟̇
0 𝑌𝑟̇ 𝐼𝑧𝑧 − 𝑁𝑟̇

] 

C(ν) = [

0 0 −mν + Yν̇ν + Yṙr
0 0 𝑚𝑢 − 𝑋𝑢̇𝑢

mν − Yν̇ν − Yṙr −𝑚𝑢 + Xu̇𝑢 0
]           (2.2) 

D = [

𝑋𝑢 0 0
0 𝑌𝜈 𝑌𝑟
0 𝑁𝜈 𝑁𝑟

],   Dn(ν) = − [

X|u|u 0 0

0 Y|ν|ν|ν| + Y|r|ν|r| Y|ν|r|ν|

0 N|ν|ν|ν| + N|r|ν|r| N|ν|r|ν| + N|r|r|r|
] 

where m is the mass of the ASV, 𝑋𝑢, 𝑌𝜈, …, 𝑁𝑟 are the linear damping coefficients 

and 𝑋𝑢̇, 𝑌𝑢̇, …, 𝑁𝑟̇ represent hydrodynamic added mass. X|u|u, Y|ν|ν, …, N|r|r are the 

manoeuvring coefficients. 𝐼𝑧𝑧 is the moment of inertia about the Zb axes.  

The thrust moment is represented as 


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


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
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
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u
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F

0                                                                (2.3) 

where rT  and uF  are the torque and force which are provided by rudder and propeller 

equipped on ASV, respectively. 

Environmental disturbances are expressed as 
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where ud , vd , rd is the environmental force disturbance on surge, sway and yaw. The 

simplified ASV model on horizontal planar is  
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{
 
 
 
 

 
 
 
 

𝑥̇ = 𝑢𝑐𝑜𝑠𝜓 − 𝑣𝑠𝑖𝑛𝜓
𝑦̇ = 𝑢𝑠𝑖𝑛𝜓 + 𝑣𝑐𝑜𝑠𝜓

𝜓̇ = 𝑟

𝑢̇ =
𝑚22

𝑚11
𝑣𝑟 −

𝑑11

𝑚11
𝑢 +

𝐹𝑢

𝑚11

𝑣̇ = −
𝑚11

𝑚22
𝑢𝑟 −

𝑑22

𝑚22
𝑣

𝑟̇ =
𝑚11−𝑚22

𝑚33
𝑢𝑣 −

𝑑33

𝑚33
𝑟 +

𝑇𝑟

𝑚33

                                         (2.5) 

where uXd =11 , vYd =22 , rNd =33 , 𝑚11 , 𝑚22  and 𝑚33  are the components of 

symmetry which can  be computed by M (Perez & Fossen, 2010). 

As shown in Figure 2.5, ASV model for the research is a catamaran with 

differential propellers, which means that both of the steering angle and the speed are 

controlled by two differential thrusters. 

 

Figure 2.5 Planar model of the ASV with differential thrust 

 

 

In Equation (2.1),  is a vector that contains the sum of all other forces and 

moments acting on the ASV  (Klinger et al., 2014).  
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where lF and 
rF  are the port and starboard forces respectively, which are provided by 

differential thrust. d  is the side hull separation (from hull centerline to ASV 

centerline).  

From Figure 2.5 it can be seen that the steering of ASV is based on differential 

thrust. If rl FF = , the ASV will move in a straight line. If lF  and rF  are not equal, it 

will cause a heading change of ASV. In some cases, the ASV is required to maintain a 

constant speed. Therefore, the forces lF  and rF  could be decomposed into,  

2/FFFl +=                                                       (2.7) 

2/FFFr −=                                                      (2.8) 

where F  and F  are magnitudes of the collective thrust and differential thrust,  

respectively. In this case, F  is to control speed and F  is to control the heading. 

2.3.1(b) Environmental disturbances of wind, wave and current 

The model discussed above is to calculate the manoeuvrability of ASV in calm 

water area. However, the ASV is affected by the disturbances such as wind, wave and 

current when it is moving in the practical environment.  

Due to the randomness of wind, wave and current, it is difficult to set up the 

disturbance force models of wind, wave and current since a large amount of data 

needed to be collected and processed (Azzeri et al., 2015; Sarda et al., 2016; Song et 

al., 2017). To simplify the disturbance model, the wave is assumed to be generated by 

a consistent wind, thus the direction of the wind and wave are same. The wind and 

wave conducted force are added to the right hand side of Equation (2.1) based on the 

principle of superposition, (Fossen, 2011).  
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