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KAEDAH BEZA TERHINGGA UNTUK MASALAH RESAPAN DAN 

RESAPAN-OLAKAN PECAHAN MASA KABUR LINEAR 

  

ABSTRAK 

Persamaan pembezaan pecahan telah mendapat banyak perhatian dalam 

dekad yang lalu. Ini terbukti daripada bilangan penerbitan mengenai persamaan ini 

dalam pelbagai bidang sains dan kejuruteraan. Kuantiti yang rapuh dalam persamaan 

pembezaan pecahan yang tidak tepat dan tidak tentu boleh digantikan oleh kuantiti 

kabur untuk mencerminkan ketidaktentuan dan ketidakpastian. Persamaan 

pembezaan separa pecahan kemudian boleh dinyatakan dengan persamaan 

pembezaan separa pecahan kabur yang dapat memberikan gambaran yang lebih baik 

untuk fenomena tertentu yang melibatkan ketidakpastian. Penyelesaian analisis 

persamaan pembezaan separa pecahan kabus biasanya tidak mungkin diperoleh. Oleh 

itu, wujudnya minat untuk mendapatkan penyelesaian melalui kaedah berangka. 

Kaedah beza terhingga adalah salah satu kaedah berangka yang kerap digunakan 

untuk menyelesaikan persamaan pembezaan separa pecahan kerana mudah dan 

kebolehgunaan sejagatnya. Tumpuan tesis ini adalah pembangunan, analisis dan 

aplikasi skim beza terhingga dengan kejituan peringkat kedua dan kaedah beza 

terhingga padat dengan kejituan perngkat empat menyelesaikan persamaan  resapan 

pecahan masa kabur dan persamaan resapan-olakan pecahan masa kabur.  Dua teknik 

komputasi kabur (iaitu nombor kabur tunggal dan gandaan dua parametrik) disiasat. 

Rumus Caputo digunakan untuk menghitung terbitan pecahan masa kabur. 

Konsistensi, kestabilan, dan penumpuan kaedah perbezaan terhingga juga diselidiki. 

Eksperimen berangka dilakukan dan eksperimen menunjukkan keberkesanan dan 

kelayaka skema yang telah dikembangkan dalam tesis ini. Pendekatan bentuk 



xiv 

parametrik ganda didapati umum, mudah dan pengkomputeran berkesan kerana 

pemindahan persamaan pentadbir dari ketidakpastian kepada renyah berbanding 

dengan bentuk tunggal parametrik. Skim Crank Nicolson memberikan hasil yang 

sedikit lebih tepat daripada kaedah lain yang dipertimbangkan. Ruang pusat masa 

hadapan adalah kurang tepat berbanding ruang tengah masa ke belakang dan Saulyev 

adalah paling tidak tepat. Selain itu, skim perbezaan terhingga padat memberikan 

hasil yang sedikit lebih tepat daripada skim perbezaan terhingga klasik. 
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FINITE DIFFERENCE METHODS FOR LINEAR FUZZY TIME 

FRACTIONAL DIFFUSION AND ADVECTION-DIFFUSION EQUATION 

 

ABSTRACT 

Fractional differential equations have attracted considerable attention in the 

last decade or so. This is evident from the number of publications on such equations 

in various scientific and engineering fields. Crisp quantities in fractional differential 

equations which are deemed imprecise and uncertain can be replaced by fuzzy 

quantities to reflect imprecision and uncertainty. The fractional partial differential 

equation can then be expressed by fuzzy fractional partial differential equations 

which can give a better description for certain phenomena involving uncertainties. 

The analytical solution of fuzzy fractional partial differential equations is often not 

possible. Therefore, there is great interest in obtaining solutions via numerical 

methods. The finite difference method is one of the more frequently used numerical 

methods for solving the fractional partial differential equations due to their simplicity 

and universal applicability. In this thesis, the focus is the development, analysis and 

application of finite difference schemes of second order of accuracy and compact 

finite difference methods of fourth order of accuracy to solve fuzzy time  fractional 

diffusion equation and fuzzy time fractional advection-diffusion equation. Two 

different fuzzy computational techniques (single and double parametric form of 

fuzzy number) are investigated. The Caputo formula is used to approximate the fuzzy 

time fractional derivative. The consistency, stability, and convergence of the finite 

difference methods are investigated. Numerical experiments are carried out and the 

results indicate the effectiveness and feasibility of the schemes that have been 

developed. The double parametric form approach is found to be general, easy and 
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computationally effective due to the transfer of the governing equation from 

uncertain to crisp  as compared with single parametric form. The Crank Nicolson 

scheme provided slightly more accurate result than the other methods considered. 

Forward time centre space is less accurate than backward time centre space and 

Saulyev is the least accurate. Furthermore, the compact finite difference schemes 

provided slightly more accurate result than classical finite difference schemes. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 General Background    

Many phenomena in science and engineering can be expressed as mathematical 

models. Some of these problems can be modelled by classical ordinary differential 

equation and some by classical partial differential equations. However, there are 

certain phenomena that can be more fully and comprehensively described by 

fractional differential equations. Fractional calculus essentially is differentiation and 

integration to an arbitrary order and the foundation of fractional calculus was 

established by well-known mathematicians such as G. W. Leibniz, P. S. Laplace, L. 

Euler, M. Caputo, J. Louiville, B. Riemann, N. H. Abel, H. Hardy and J. Fourier. In 

recent years, interest in the fractional calculus has been revived and it has been used 

to develop models of real-life problems which cannot be adequately modelled using 

classical differential equations. Fractional partial differential equations can be used 

for modeling scientific problems in several fields including biology, physics, 

chemistry and engineering. Fractional partial differential equations, for example, can 

be utilized for modeling anomalous diffusion in which a cloud of particles spreads at 

a rate incompatible with the classical Brownian motion pattern (Meershchaert and 

Tadjeran, 2006). Diffusing species are moving in fractal media and diffusing particle 

are jostled by collisions with other particles and molecules which prevent the 

particles from following a straight line and may cause species to diffuse at a slower 

rate. Existence of attractors in the media, on the other hand, may cause diffusion at a 

faster rate. For modelling problems such as these, scientists have used derivatives 
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with fractional order instead of integer order in the governing differential equations 

(Das, 2011). In diffusion equations when the first-order time derivative is replaced 

by a fractional derivative we obtain the time fractional diffusion equation which 

describes some problems in physical environments: bacteria cells moving in 

biofilms, charge carrier motion in amorphous semiconductors and diffusion in 

critical percolation networks (Klemm, 2002; Kordt et al., 2015; D‘Souza and Nagler, 

2015).  

 

   The anomalous or fractional diffusion equation is given by  
  

     
  

     

(Podlubny, 1998). When    , we recover the classical diffusion in which the 

motion of the diffusion particles is linearly proportional to the time  .  Anomalous 

sub-diffusion         occurs when the diffusing particles is stuck and hindered 

for a long time. When the diffusion process is faster than the Brownian motion, this 

leads to anomalous super-diffusion      .  The time fractional diffusion equation 

with drift component is called time fractional advection-diffusion equation. The 

fractional advection-diffusion equation can be utilized to describe both speed and 

movement of particles which are incompatible with the classical Brownian motion 

pattern. Many natural problems can be modelled by fractional advection-diffusion 

equations which can give a better description for the problems as compared with 

classical advection-diffusion equations. These include groundwater hydrology; the 

applications arise in aerodynamics, groundwater fluid flows in a porous medium and 

physiology (Meerschaert and Sikorskii, 2012; Horvat and Horvat, 2016; Johnsen et 

al., 2017). 

   In reality, real-life problems are often vague and contain uncertainties. This 

vagueness is known as ―stochastic uncertainty‖ and can be found in certain fields of 
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engineering, manufacturing, medicine, meteorology, and others (Nemati and 

Matinfar, 2008; Muhamediyeva, 2014; Faran et al., 2011; Hung and Elbert, 2006). The 

fuzziness can appear in the measurement process, the data collection, experimental 

part and also it can arise when calculating the initial conditions. These fuzzy aspects 

can occur when collecting data about materials such as water, microbial populations, 

soil, etc as described in (Mondal and Roy, 2015; Behzadi et al., 2016; Zhou et al., 

2017). Fuzzy sets can be an important tool for handling such problems and to achieve 

a better understanding of main phenomena. The intention of early research in fuzzy 

set theory that was carried out by Zadeh (1975) was to generalize the classical 

concept of a set and provide a proposal to explain the fuzziness. Fuzzy set theory is 

considered as a tool for modelling vague systems and processing uncertain 

information in mathematical models. These include using the fuzzy differential 

equations instead of deterministic differential equations. Studies of the theory of 

fuzzy partial differential equations (FPDEs) have increased manifold in recent times; 

the FPDEs are used in modelling robotics, quantum optics, engineering, medicine, 

gravity and intelligence tests (Omer and Omer, 2013; Angela and Nieto, 2006; Faran 

et al., 2011; Long et al., 2017). Therefore, both fractional partial differential 

equations and uncertainty play an essential role in solving mathematical problems. 

These lead to the fuzzy fractional partial differential equations (FFPDEs). 

 
 

   The analytical solution of FFPDEs is often impractical due to the complexity of the 

model. Therefore, increasing the interest in obtaining approximate solutions via 

numerical methods. The understanding and analysis of problems described can be 

enhanced by the use of numerical methods of solutions. One of the important types 

of numerical methods is the finite difference methods (FDM) which involves 
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replacing the derivatives with finite difference approximation. As a result, the 

differential equations will be converted to algebraic equations involving dependent 

variables at discrete points.  

 

   The aim of this thesis is to develop, analyse and apply finite difference methods to 

solve FFPDEs. In particular, fuzzy time fractional diffusion equations (FTFDEs) and 

fuzzy time fractional advection diffusion equations (FTFADEs). 

1.2 Motivation and significance   

Fractional partial differential equations are a generalization of classical partial 

differential equation which can give a better description of certain complex 

phenomena (Li and Ding, 2014). Crisp quantities in the fractional partial differential 

equations which are deemed imprecise and uncertain can be replaced by fuzzy 

quantities to reflect imprecision and uncertainty. This can be expressed by FFPDEs 

which have been discussed in numerous scientific articles (Khan and Razzaq, 2015; 

Long et al., 2017; Senol et al., 2019).  Some researchers have resorted to fuzzy 

fractional diffusion and fuzzy fractional advection-diffusion equation to model their 

complex physical problems in an efficient way. The FTFDEs differs from the fuzzy 

conventional diffusion equation in that the first-order time derivative is substituted 

by a fractional derivative so as to make the fuzzy phenomena global in time.  

FTFDEs with drift component are called FTFADEs. Recently some authors have 

studied FTFDE and FTFADE and the details of the techniques used can be found in 

these papers (Salah et al.,2013; Chakraverty and Tapaswini,2014; Ghazanfari and 

Ebrahimi, 2015; Abu-Saman and El-Zeri, 2016; Huang et al., 2018). FDM is one of 

the more frequently used methods for solving the FFPDEs due to their simplicity and 

universal applicability. From our review of the literature, most of the papers on the 
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solution of fuzzy fractional diffusion equations involve approximate analytical 

methods as opposed to numerical methods. The primary aim of this thesis is to 

develop, analyse and apply the finite difference schemes of second order of accuracy 

and compact finite difference methods of fourth order of accuracy to solve fuzzy 

fractional partial differential equations particularly, FTFDE and FTFADE. The 

availability of a wide array of the numerical methods to solve FTFDE and FTFADE 

will assist researchers in the study of phenomena which can be modelled using 

FTFDE and FTFADE. Therein lies the main motivation. Another motivation is the 

increasing use of double parametric form of fuzzy number. In the single parametric 

form of fuzzy number, a fuzzy equation converts to two crisp equations for the 

solution. Here, we have to solve the two crisp equations separately to obtain the 

lower and upper bounds of the solution which increase the computational cost. Hence 

to reduce the computational cost and increase the accuracy of the solution, the use of 

the double parametric form of fuzzy number will be investigated. This is also another 

motivation in this work. The significance of this research lies in the fact that new 

solution tools are developed. There tools add to the list of technique available to 

solve fuzzy fractional differential equations.  

1.3 Objective  

The general objective of this thesis is to develop finite difference method for 

FFDEs. 

The specific objectives of this study are: 

1. To formulate and apply finite difference methods  for solving the one-

dimensional fuzzy time fractional diffusion equation by using two different 

fuzzy computational techniques based on single parametric form and double 

parametric form of fuzzy number. 
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2. To extend the formulation of these finite difference methods to solve the one-

dimensional fuzzy time fractional advection-diffusion equations by using a 

fuzzy computational technique based on the double parametric form of fuzzy 

numbers. 

 

3. To formulate, analyze, and apply the compact finite difference methods for 

solving fuzzy time fractional diffusion and advection-diffusion equations in 

the double parametric form of fuzzy numbers. 

 

4. To establish the consistency, stability convergence and accuracy for each one 

of these developed methods (the classical finite difference methods and the 

compact finite difference methods). 

1.4 Methodology 

The methodology of this study is as follows: 

1) The finite difference methods will be studied for crisp time fractional 

diffusion equation. Then, the FTFDE will be converted to crisp form using 

two different fuzzy computational techniques (single parametric and double 

parametric forms of fuzzy number). Next, four finite difference methods 

which are, forward time centre space (FTCS), Saulyev‘s, backward time 

centre space (BTCS) and Crank Nicolson methods are formulated and applied 

to obtain the uncertain bound of the solution of FTFDE in single and double 

parametric form. The fractional derivative in the considered equation is 

estimated using the Caputo formula. The obtained results by the proposed 

methods are compared with the exact solution. Numerical experiments will be 

conducted for these methods using wolfram Mathematica10.  

 

2)   The FDM will be studied for crisp time fractional advection-diffusion 
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equation. Then, the FTFADE will be converted to crisp form using double 

parametric forms of fuzzy number. Next, four finite difference methods 

which are. FTCS, Saulyev‘s, BTCS and Crank Nicolson methods are 

formulated and applied to obtain the uncertain bound of the solution of 

FTFADE in double parametric form. The fractional derivative in the 

considered equation is estimated using the Caputo formula. The obtained 

results by the proposed methods are compared with the exact solution. 

Numerical experiments will be conducted for these methods using wolfram 

Mathematica10.  

3) The compact finite difference methods will be studied for crisp time 

fractional diffusion and advection-diffusion equations. Then, the FTFDE and 

FTFADE will be converted to crisp form using double parametric forms of 

fuzzy number. Next, four  compact finite difference methods which are,  

compact forward time centre space (CFTCS), compact Saulyev‘s, compact 

backward time centre space (CBTCS) and compact Crank Nicolson methods 

are formulated and applied to obtain the uncertain bound of the solution of 

FTFDE and FTFADE in double parametric form. After that, the obtained 

results will be compared with exact solution. Numerical experiments will be 

conducted for these methods using wolfram Mathematica10. 

 

4) Consistency, stability, and convergence analysis will be implemented by 

using established techniques to check the feasibility and reliability of the 

methods. 
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1.5 Thesis Outline 

A description of the chapters contained in this thesis is as follows 

Chapter 2: The basic concepts which are required in this study are described. 

Chapter 3: We review the literature on numerical method for solving fractional 

diffusion equations in both crisp and fuzzy form. 

 Chapter 4: the finite difference schemes used for the solution of one dimensional 

FTFDE for two different fuzzy computational techniques are presented and discussed 

in this chapter. A comparative study between the proposed schemes is carried out.    

Chapter 5: the finite difference schemes used for the solution of one dimensional 

FTFADE for double parametric form of fuzzy number are presented and discussed in 

this chapter. A comparative study between the proposed schemes is carried out.    

Chapter 6: the compact finite difference schemes used for the solution of one 

dimensional FTFDE for double parametric form of fuzzy number are presented and 

discussed in this chapter. A comparative study between the proposed schemes is 

carried out.    

Chapter 7: the compact finite difference schemes used for the solution of one 

dimensional FTFADE for double parametric form of fuzzy number are presented and 

discussed in this chapter. A comparative study between the proposed schemes is 

carried out.    

Chapter 8:  The consistency, stability, and convergence analysis of the numerical 

methods that was developed in this study are investigated.  

Chapter 9: The conclusion of our study is discussed in chapter 9  
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CHAPTER 2  

 

BASIC CONCEPTS AND BACKGROUND 

2.1 Introduction 

The idea of the fuzzy fractional differential equations (FFDEs) is to form a 

suitable setting for mathematical modeling of certain real life phenomena. FFDEs take 

into consideration that the information about the behavior of a dynamical system may 

be uncertain or involve vague parameters so as to obtain a more practical and flexible 

model (Buckley and Feuring, 2001). In this chapter, we introduce the basic concepts 

of fuzzy sets and fractional calculus so as to provide the necessary backdrop for this 

thesis. We also give a brief overview of some theoretical aspects of the finite 

difference method. 

2.2 Fuzzy set 

Fuzzy set theory was introduced by Zadeh (1965) and is considered as a 

generalization of crisp (classical) set theory (Zadeh, 1975). In crisp sets theory the 

membership of elements in relation to a set is assessed in binary terms - an element 

either belongs or does not belong to the set. By contrast, fuzzy set theory permits the 

gradual assessment of the membership of elements in relation to a set; this is described 

with the aid of a membership function valued in the real unit interval [0, 1]. Fuzzy sets 

are an extension of classical set theory since, for a certain universe, a membership 

function may act as an indicator function, mapping all elements to either 1 or 0, as in 

the classical notion (Salazar et al., 2012) . A crisp set is normally defined as a 

collection of elements or objects x X which can be, countable, or not countable. Each 

single element can be either belong to or not belong to a set A, A  X. In the former 

http://en.wikipedia.org/wiki/Lotfi_Asker_Zadeh
http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Membership_function_%28mathematics%29
http://en.wikipedia.org/wiki/Universe_%28mathematics%29
http://en.wikipedia.org/wiki/Indicator_function
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case, the statement ―x belongs to A‖ is true, whereas in the latter case the statement is 

false (Zadeh, 1965). 

 

Definition 2.1 (Salazar et al., 2012): If x is a collection of objects denoted generally 

by X, then a  ̃ fuzzy set in X is expressed as a set of order pairs: 

 ̃  {(    ̃   )    }  

where    ̃             is a membership function of the fuzzy set   ̃.   

 

Also membership function can be called a degree of compatibility or degree of 

truth such that fuzzy   ̃  set is totally characterized by this membership function, and 

the range of membership function is a subset of the non-negative real numbers whose 

supremum is finite. As we can see in Fig.2.1, The membership function   ̃    

quantifies the grade of membership of the elements x to the fundamental set Χ. An 

element mapping to the value 0 means that the member is not included in the given 

set, 1 describes a fully included member. Values strictly between 0 and 1 characterize 

the fuzzy members (Salazar et al., 2012). 

 

 

Figure  2.1  Fuzzy set A   with classical crisp set 

 

 

http://en.wikipedia.org/wiki/Lotfi_Asker_Zadeh
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Definition 2.2 (Support of a fuzzy set) (George and Bo, 1995):  The support of a 

fuzzy set  ̃ within the universal set X is the set 

    ( ̃)  {   |  ̃     }  

 

The support of a fuzzy set   ̃ is the set       ̃  that contains all the elements 

in X that have nonzero membership grades in  ̃. 

 

Definition 2.3 (Convex fuzzy set) (Dong et al., 2010): Let    denote the n-

dimensional Euclidean space, and let        ̃  denote the set of all nonempty 

fuzzy sets in    . 

A fuzzy set with membership function   ̃           is called convex if 

                  {           }  

for all          and        . According to (Mahdaoui et al., 2011) a fuzzy set 

with membership function           , is called a cone if           , for all 

     and   . A convex fuzzy cone is a fuzzy cone, which is also a convex fuzzy 

set. 

2.3 The Extension Principle 

One of the most fundamental concepts of fuzzy set theory, which can be used 

to generalize crisp mathematical concepts to fuzzy sets, is the extension principle 

which it used for the fuzzification process (convert the governing equation from the 

crisp case to fuzzy case) in chapter 4 and chapter 5.   

Definition 2.4 (Gerla and Scarpati, 1998): Let   be the Cartesian product of universes 

           which is denoted by   and  ̃   ̃     ̃  be n-fuzzy subsets in  

          , respectively, with Cartesian product  ̃   ̃    ̃       ̃   and    is 
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a mapping from   to a universe  ,(               ). Then, the extension 

principle allows defining a fuzzy subset  ̃   ( ̃) in   by: 

 ̃  {(    ̃   )                             }  

where: 

  ̃    {
   

                 

   {  ̃ 
         ̃ 

    }                                  

                                                                                                                  

 

    is the inverse image of  . 

Remark (2.1): 

For n  1, the extension principle will be: 

 ̃  {(    ̃   )           }   

where: 

  ̃    8

   
        

{  ̃   }                                              

                                                                                
                                                    

 

which is one of the definitions of a fuzzy function (Ahmad et al., 2013). 

2.4 The r-Level Sets 

The r-level sets can be used to prove some results that are satisfied in ordinary 

sets are also satisfied in fuzzy sets. 

Definition 2.5 (Bodjanova, 2006): The r-level (or r-cut) set of a fuzzy set  ̃, labeled 

as  ̃ , is the crisp set of all x in   such that   ̃    i.e.,  

 ̃  {   |  ̃           }  
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Remark (2.2) (Bodjanova, 2006): 

One can also define the strong r-level sets as: 

  
  {   |  ̃           } 

The importance of strong r-level set is can cover and satisfied more properties of fuzzy 

set theory as compared to the classical r-level set. In the strong r-level set it is easily 

checked that the following properties are satisfied for all r, s  [0, 1]: 

1. ( ̃   ̃)
 

  ̃   ̃ . 

2. ( ̃   ̃)
 

  ̃   ̃  

3.  ̃    ̃  gives    ̃   ̃           

4. If r  s, then  ̃   ̃ . 

5.  ̃   ̃ if and only if  ̃   ̃ ,  r  [0, 1]. 

6.  ̃   ̃    ̃  and  ̃   ̃   ̃ , if  r  s. 

If  ̃ is a fuzzy set, { ̃ } ,  r  [0, 1] is a family of subsets of the universal set  , 

then: 

 ̃   
       

  ̃   

 

This means that all r-levels corresponding to any fuzzy set form a family of 

nested crisp sets, as visually depicted in Figure 2.2. 
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Figure ‎2.2   Nested r-level sets (Bodjanova, 2006) 

2.5 Fuzzy Numbers 

Fuzzy numbers are subsets of the real numbers set and represent vagueness 

values (Dong et al., 2010). Fuzzy numbers are linked to degrees of membership which 

state how true it is to say if something belongs or not to a determined set. Also a fuzzy 

number can be expressed as a fuzzy set defining a fuzzy interval in the real number  . 

Since the boundary of this interval is ambiguous, the interval is also a fuzzy set. 

Generally a fuzzy interval is represented by two endpoints    and    peak point    as 

           (Figure 2.3). The r-cut operation can be also applied to the fuzzy number. 

If we denote r-cut interval for fuzzy number  ̃ as [ ̃]
 
, the obtained interval [ ̃]

 
, is 

defined as [ ̃]
 

 [  
      

   ], we can also know that it is an ordinary crisp interval 

(Figure 2.3).  
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Figure ‎2.3  Fuzzy Number   ̃             

 

Definition 2.6 (Kanagarajan and Sambath, 2010): Let  ̃ be the set of all upper semi-

continuous normal convex fuzzy numbers with r-level bounded intervals such that: 

                           {       } . 

An arbitrary fuzzy number is represented by an ordered pair of membership 

functions   ̃      *         +
 
for all         which is satisfying  

1.      is normal, i.e        with         . 

2.      is convex fuzzy set ,i.e.                 {     ,     }         

         . 

3.  μ    ̃, μ is upper semi continuous on R;  {x   R; µ( t ) > 0 } is compact. 

4.      is a bounded left continuous non-decreasing function over      . 

5.      is a bounded left continuous non-increasing function over      .     

6.            , for all r   [0, 1].  

           The r-level sets of any fuzzy number are much more effective as 

representation forms of fuzzy set than the above properties. Also, according to 
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(Zadeh, 1978), fuzzy sets can be defined by the families of their r-level sets 

based on the resolution identity theorem. 

 

Definition 2.7 (Triangular fuzzy Number): A fuzzy number  , is called a triangular 

fuzzy number if defined by three numbers           where the graph of       is a 

triangle with the base on the interval       and vertex at       as can see in Fig 2.4 

and its membership function has the following form (Kanagarajan and Sambath, 

2010): 

µ (x; , , )  

0,

,

,

0,

if x

x
if x

x
if x

if x

 

 
  

  

 
  

  

 





  
 


  
 




 

 

Figure  2.4  Triangular Fuzzy Number 

and its r-level is  

  ̃  = [α+ r (β− ), 𝛾 − r (γ− )],           

 

Definition 2.8 (Gaussian fuzzy Number): 

The membership function        of an arbitrary asymmetrical Gaussian fuzzy 

number,   {       } is defined as followes (Chakraverty and Tapaswini, 2014): 

  x

(x)

1

0

0.5
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      {
 

 
      

   
    

                    

 
 

      

   
                       

          

where         are the modal value, denote the left-hand and right-hand spreads 

(fuzziness) corresponding to the Gaussian distribution. 

Definition 2.9 (Trapezoidal fuzzy Number): 

A fuzzy number   is called a Trapezoidal fuzzy number if defined by four 

numbers             where the graph of       is a Trapezoid with the base on 

the interval       and vertex      ,       as can be seen in Fig. 2.5 and its 

membership function has the following form (Dubois and Prade, 1980): 
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Definition 2.10: double parametric form of fuzzy numbers (Chakraverty and 

Tapaswini, 2014)  

Using the single parametric form, we have  ̃             . Now this may can be 

written as crisp number using double parametric form  

 

 ̃       [         ]        where              . 

2.6 Fuzzy Function 

 Fuzzifying a crisp function of crisp variable is a function which produces 

images of crisp domain in a fuzzy set.  

Definition 2.8 (Fard, 2009): A mapping  ̃    ̃  (or  ̃   ) for some interval    ̃ 

Is called a fuzzy function or fuzzy process with non-fuzzy variable (crisp), and we 

denote r-level set by: 

                        ̃      *             +               

where  ̃ defined in (Fard, 2009). That is to say, the fuzzifying function is a mapping 

from a domain to a fuzzy set of range. Fuzzifying function and the fuzzy relation 

coincide with each other in the mathematical manner. 

2.7 Fuzzy Differentiation 

 

Definition 2.11 (Salahshour, 2011): Let   ([ ̃  ̃]
 
) be the Hausdorff distance 

between two fuzzy set (or fuzzy numbers)  ̃  ̃   ̃ such that  

                       ([ ̃  ̃])     ,  ([ ̃  ̃]
 
) |       -   

and   ̃     is a complete metric space.  ̃ is the set of all upper semi-continuous 

normal convex fuzzy numbers with bounded r-level set. Since the r-cuts of fuzzy 
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numbers are always closed and bounded, such that the intervals are   ̃      

*         +
 
                .Let   ̃     [         ] [ ̃   ]  [         ] be 

two fuzzy numbers in definitions (2.7-2.8), for    0. According to (Lowen, 1980), 

we can define the addition and multiplication between to fuzzy numbers by s as 

follows  

1- (   )    (         ) 

2- (   )    (         ) 

3- (   )                         . 

 

Now let   ̃       ̃    { }, 

 ([ ̃  ̃]
 
)               {|         | |         |} be the Hausdorff 

distance between fuzzy numbers where the following properties are well-known 

(Rebecca, 2009): 

i.  ([ ̃   ̃  ̃   ̃]
 
)   ([ ̃  ̃]

 
)    ̃  ̃  ̃   ̃. 

ii.  ([   ̃    ̃]
 
)  | | ([ ̃  ̃]

 
)         ̃  ̃    ̃. 

iii.  ([ ̃   ̃  ̃   ̃]
 
)   ([ ̃  ̃]

 
)   ([ ̃  ̃]

 
)    ̃  ̃  ̃  ̃   ̃ .  

 

Definition 2.12 (Seikkala, 1987): Consider  ̃  ̃   ̃. If there exist  ̃   ̃ such 

that  ̃   ̃   ̃, then z  is called the Hukuhara difference of x and y and is denoted by 

 ̃   ̃   ̃. 

Definition 2.13 (Mansouri and Ahmady, 2012): If  ̃    ̃ and     , where  

        .  ̃ is said to be Hukuhara differentiable at   , if there exists an element 

[  ̃]
 

  ̃ such that for all h > 0 sufficiently small (near to 0),  ̃         
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 ̃           ̃        ̃        exists with the limits are taken in the metric 

space  ̃     

   
    

  ̃          ̃      

 
    

    

  ̃        ̃         

 
 

The fuzzy set  [  ̃    ]  is called the Hukuhara derivative of  [  ̃]
 
 at    . 

These limits are taken in the space   ̃     if     or T, then we consider the 

corresponding one-side derivation. Recall that  ̃   ̃   ̃   ̃ are defined on r-level 

set, where   ̃     ̃     ̃  ,          . By consideration of the definition of the 

metric D all the r-level set [ ̃   ]
 
 are Hukuhara differentiable at   , with Hukuhara 

derivatives [  ̃    ] ,when  ̃    ̃ is Hukuhara differentiable at    with Hukuhara 

derivative [  ̃    ]   lead to that  ̃ is Hukuhara differentiable for all         which 

satisfies the above limits i.e. if f  is differentiable at              then all its r-

levels [  ̃   ]
 
  are Hukuhara differentiable at   . 

 

Theorem 2.1 (Stefaninia et al., 2006): Let  ̃           ̃ be Hukuhara 

differentiable and denote 

  [  ̃   ]
 

 *           +
 

 *               +. 

Then the boundary functions                 are both differentiable 

   [  ̃   ]
 

 [(      *
 

 (      )
 

] ,           

Theorem 2.2 (Mansouri and Ahmady, 2012): Let  ̃           ̃ be Hukuhara 

differentiable and denote 

 [  ̃   ]
 

 *           +
 

 *               +. Then both of the boundary functions 

                are differentiable, we can write for n
th

 order fuzzy derivative  
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[ ̃      ]
 

 0(         *
 

 . 
   

     /

 

1 ,           . 

From the proof that mentioned in (Mansouri and Ahmady, 2012) of theorem (2.1) we 

can define the fuzzy Hukuhara differentiability of   times as following: 

Definition 2.14: Define the mapping   ̃    ̃ and     , where           . We say 

that   ̃ is Hukuhara differentiable for     ̃ , if there exists an element [ ̃   ]
 

  ̃ 

such that for all h > 0 sufficiently small (near to 0), exists  ̃              

 ̃           ,  ̃             ̃              and the limits are taken in the 

metric   ̃     

   
    

  ̃               ̃           

 
    

    

  ̃             ̃              

 
 

exists and equal to  ̃   . 

2.8 Fractional Calculus 

The Fractional calculus involves the differentiation and integration to an 

arbitrary order. This area of study emerged in 1695 after the Leibniz created the 

notation 
   

    when he was asked by L‘Hopital (what if     
 

 
   at which he replied: 

―It will lead to a paradox‖.  Later, Leibniz stated that differential calculus might be 

used for achieving this result. Leibniz was referring to Wallis's infinite product for 

    which utilized the notation  
 

   (Dold and Eckmann, 1975). Numerous 

mathematicians have studied this area further, which is now known as the fractional 

calculus. 
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2.8.1 Fractional integrals 

The fractional integrals indicate to the integrals of arbitrary order (Podlubny, 

1999).  For any dependent function     , the fractional integral operator of order, 

   ,  can be represented as 

  
  

 
            

 
 
       

wherein,   and   represent the two limits of a fractional integral operator and these are 

generally called as the terminals of the fractional integral (Podlubny, 1999). 

 In 1874, the mathematician Riemann obtained a formula for the fractional integration 

by applying a generalization of Taylor series in the following manner:  

  
 

 
      

 

    
∫

    

        

 

 
                                             (2.5) 

where      is a complementary function was introduced by Riemann since he did not 

fix the lower integration limit   (Miller and Rose, 1993). 

Sonin and Barus (1968) presented the Riemann-Liouville definition in his research 

article. Furthermore, he used the Cauchy integral scheme for the integral order 

derivatives of the complex domain which is given by (Weilbeer, 2005). 

       
  

   
∫

 

    

                                                            (2.6) 

The Riemann-Liouville integral is define as  

  
 

 
      

 

    
∫

    

        

 

 
                                                     (2.7) 

Also, the Riemann-Liouville integral can be derived in another way by considering the 

n-fold for any function      as follows (Dold and Eckmann, 1975): 

  
 

 
      ∫    

 

 

 ∫    

  

 

 ∫          

    

 

 

From Dirlichlet‘s approach, the n-fold integral can be considered as a single integral   

  
 

 
      

 

      
∫

      

         

 

 
                                                 (2.8) 
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Eq.( 2.8 ) can be thought as the general formula of  equation   Eq. (2.7)  by replacing 

         and  assuming     . 

2.8.2    Fractional derivatives  

The short name for derivatives of arbitrary order is fractional derivatives. 

Usually the notation   
        used to express the derivative of order   of 

function     .  Here   is an arbitrary positive real number and   and   denote the two 

limits related to the operation of fractional differentiation. 

Fractional derivatives can be defined in different ways. The most common definition 

is Riemann-Liouville definition as follows (Klages et al., 2008): 

  
 

 
      

 

      

 

  
∫

    

      

 

 
                                              (2.9) 

 

The general form of Eq. (2.9) is written as   

  
 

 
      

 

      
(

 

  
)
 

∫
    

          

 

 
                               (2.10) 

The fractional derivative was also defined by Caputo (1967) as follows:     

  
 

 
      

 

      
∫

 

  
    

      

 

 
                                               (2.11) 

The Eq. (2.9) and (2.11) are linked to the Riemann-Liouville integral as follows  

  
 

 
        

 
 
    

   
 
          

  
 

 
        

     
 

 
 

 
                         

Based on Eq. (2.11) the time fractional derivative term can be approximated as: 

(Zhuang and Liu, 2006) 

        

   
 

    

      
∑ 𝑗  (  

    𝑗
   

  𝑗
) 

 

𝑗= 

 

 (2.12) 
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where   𝑗   𝑗         𝑗          𝑗           

 

Also, time fractional derivative term can be written in the following form (Karatay et 

al., 2011):  

        

   
     ∑𝑣𝑗     

  𝑗
   

  

 

𝑗= 

  

 (2.13) 

where                                𝑣     𝑣𝑗  (  
   

𝑗
) 𝑣𝑗        𝑗           

 

The Caputo fractional derivative is a good candidate to model the processes of real-

life problems governed by fractional differential equation. In the formulation of the 

problem, the Caputo fractional derivative allows initial and boundary conditions to be 

included. Furthermore, its derivative at a constant value is zero (Karatay et al., 2011). 

2.9 Fractional Diffusion equation 

The basic process in the diffusion phenomena is the flow of fluid from a region 

of higher density to the one of lower density. The anomalous or fractional diffusion 

equation differs from the classical diffusion equation when the integer order 

derivatives are replaced by the fractional order derivatives. The anomalous diffusion 

happens when the cloud of particles spreads at a rate incompatible with the classical 

Brownian motion pattern. There are three types of fractional diffusion equation, time 

fractional diffusion equation, space fractional diffusion equation and time-space 

fractional diffusion equation. In diffusion equations when the first-order time 

derivative is replaced by a fractional derivative we obtain the time fractional diffusion 

equation.  




